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Chapitre 1

Rappels sur les espaces normés

Ce chapitre préliminaire est consacré a quelques rappels sur la topologie des espaces vec-
toriels normés sur R, qui sont le cadre naturel dans lequel on développera le calcul différentiel
dans les prochains chapitres. L’exemple canonique est bien sur R™ auquel on consacrera de nom-
breux exemples, mais on s’interessera aussi aux espaces de fonctions qui sont d’usage constant
en analyse. On supposera que le lecteur a en téte quelques rudiments de topologie des espaces
métriques, a savoir les notions d’ouverts, fermés, interieur, adhérence, continuité, etc. Sauf
mention contraire, tout les espaces vectoriels que ’on rencontrera seront ' sur R, ce qui est
suffisant pour le calcul différentiel.

1.1 Espaces Vectoriels normés, espaces de Banach

Définition 1.1.1 Un espace vectoriel normé réel est la donnée d’un R-espace vectoriel E et
d’une application (appelée norme)

E —RT
M
vérifiant les axiomes suivants :
1.VzeE, |z|=0=x=0.
2.V (z,\) € ExR, || Ax| = |All|z]].
3. VxyekE, [lv+yll <zl +llyll.

Remarques.

Sur un méme espace vectoriel E, il peut exister plusieurs normes, on prend alors bien soin de
distinguer leurs notations, exemple ||.||; et [|.||2-

Un espace vectoriel normé est un cas particulier d’espace métrique : on peut vérifier que

d(z,y) = ||z =yl

définit bien une distance d sur E si ||.|| est une norme.

1 s N , s . . . . .
Les théorémes énoncés dans ce chapitre sont en fait aussi valables sur C, voir cours d’analyse fonctionnelle.
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4 CHAPITRE 1. RAPPELS SUR LES ESPACES NORMES

Ceci fait donc de tout espace normé un espace topologique ou l'on pourra désormais parler
d’ouverts, fermés, de compacts, de continuité etc.
Exemples.

— Le R-espace vectoriel R"” muni de ||.||1, ||-]lco Ou ||.||2 est normé si 'on a posé

Izl = lail, a2 = (Z !%\2) ,
i=1 i=1

e = max [z

— Si X est un espace métrique compact,
C(X) = {fonctions continues f: X — R}

est un espace normé pour la norme || f||o = sup,cx |f(x)].

— Si I'(N) désigne l'espace vectoriel des suites (z;)ien telles que Y,y |@;| converge, c’est
un espace normé si on le munit de la norme ||z; = 1% |74

— L’espace des matrices carrées réelles M,,(R) muni par exemple de

| M || = max | M|
Z7j
est normé.

Proposition 1.1.1 Un sous-ensemble U C E d’un espace vectoriel normé (E,|.||) est ouvert
ssi pour tout x € U, il existe € > 0 tel que

B(z,e)={ye€E : |z —y|<e}cU.

Remarques. L’ensemble B(z,¢) est traditionnellement appelé boule ouverte centrée en x et de
rayon €. C’est bien un ouvert au sens de la définition précédente (le vérifier). On notera aussi

Bp(z,e):={y € E : |z —y| <e}

la boule fermée correspondante. La proposition précédente découle directement de la définition
métrique des ouverts. On peut se demander sous quelles conditions deux normes sur un méme
espace vectoriel induisent la méme topologie (i.e. la méme notion d’ouvert). La réponse est
donnée dans ce qui suit.

Définition 1.1.2 Deux normes ||.|[1 et |.||2 sur un méme espace E sont dites équivalentes ssi
il existe deux constantes ci,ca > 0 tel que pour tout x € E,

cillzlly < flzfl2 < el
Vérifier par exemple que |||, [|.]|2 et ||.||[cc sont des normes équivalentes sur R".

Proposition 1.1.2 §i deuz normes sur un méme espace sont équivalentes, elles induisent la
méme topologie.
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Un résultat essentiel pour nous est le suivant.

Théoréme 1.1.1 Si E est un espace vectoriel de dimension finie (sur R), alors toutes les
normes sur E sont équivalentes.

Ce théoréme a une importance capitale pour la pratique : toutes les questions topologiques (ou-
verture, fermeture, continuité, convergence de suites etc...) peuvent étre traitées en choisissant
la norme qu’il nous plaira, en général la plus adaptée au probleme.

On rappelle qu’une suite de vecteurs (2, )nen d'un espace normé (E, ||.||) est dite convergente
dans E pour la norme ||| ssi il existe Z € E tel que pour tout € > 0, il existe ng € N tel que

Vn > ng, [|T — x| <e.

Une autre notion dont nous aurons parfois besoin en calcul différentiel est celle de complétude.
Elle est liée aux suites de Cauchy.

Définition 1.1.3 Une suite de vecteurs (x,)nen d’un espace vectoriel normé (E, ||.||) est dite
de Cauchy ssi pour tout € > 0, il existe ng € N tel que pour tout n,m > ng, ||x, — x| <e. Si
toutes les suites de Cauchy de E sont convergentes, E est dit complet ou espace de Banach.

L’interét de la complétude est manifeste lorsque I'on aborde des questions de convergence de
séries de vecteurs dans un espace normé. On rappelle qu'une série de vecteurs

an

neN

d’un espace normé E est dite convergente (pour ||.||) ssi la suite de ses sommes partielles

n
Sp — E ZT;
=0

est convergente dans E (pour |[.|[). Une série de vecteurs )y, de E est dite normalement
convergente (pour |.||) ssila série a termes positifs ) ||zn|| est convergente.

Proposition 1.1.3 Un espace normé E est complet si et seulement si toute série normalement
convergente est convergente.

On ne peut passer sous silence le cas de la dimension finie.

Théoréme 1.1.2 Tout espace vectoriel normé de dimension finie est complet.

1.2 Continuité

Définition 1.2.1 Soient (E,|.|g) et (F,|.|r) deuz espaces normés, et D C E. Une applica-
tion f: D — F est dite continue ssi elle vérifie ['une des trois propriétés équivalentes suivantes.
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1. L’image réciproque par f de tout ouvert de (F,||.|r) est un ouvert de D pour la topologie
induite sur D par celle de (E, ||.||g)-

2. Pour tout xg € D, pour tout € > 0, il existe § > 0 tel que
|lx —zo|lp <d etx € D=|f(x)— f(zo)|r < e

3. Pour tout xg € D, pour toute suite (un)nen d’éléments de D telle que limy,_, oo Uy = g,
on a limy,_ 4o f(un) = f(x0).

Lorsque E et F sont de dimension finie, cette définition est indépendante de la norme choi-
sie. Une classe d’applications qui méritent une attention particuliere est celle des applications
linéaires. Si E et F' sont des espaces vectoriels, on notera L(E, F') Pespace vectoriel des applica-
tions linéaires de E dans F'. Si E et F sont normés, on notera L.(F, F') espace des applications
linéaires continues de F¥ dans F'. La continuité est caractérisée par la proposition suivante.

Proposition 1.2.1 Soient (E,||.|g) et (F,|.||r) deux espaces normés, une application T €
L(E,F) est continue ssi elle vérifie l'une des conditions suivantes équivalentes.

1. T est continue en Of.
2. T est bornée sur la boule unité fermée de F.
3. Il existe M > 0 tel que | T(z)||p < M||z||g pour tout x € E.

Ceci permet de définir une norme naturelle |.|[z. gz 7) (appelée aussi norme d’opérateur ou
norme subordonnée aux normes ||.||g et ||.||[r ) sur L.(E, F') (le vérifier) en posant

1Tl ze(m,ry = sup [T (z)]F.

=]l z<1

C’est une norme d’algebre compatible avec la composition. Si E, F, G sont trois espaces normés
et f:E—F, g: F — G deux applications linéaires continues, on a

lgo fllzoe,a) < N9llcoma)llfllcee,r)-

Il est important de noter le cas de la dimension finie :

Théoréme 1.2.1 Si F est de dimension finie, alors toute application linéaire E — F est
continue.

Un résultat fondamental sur les espaces d’applications linéaires est le suivant.
Théoréme 1.2.2 Si F est complet, alors L.(E, F) est complet pour la norme d’opérateur.
Une application intéressante est la suivante.

Proposition 1.2.2 Soit E un espace de Banach et f : R — R une fonction entiere dont le
développement en série en 0 est

+oo
flz) = Z anz™.
n=0

Pour tout T € L.(E, E), la série ) yaI" est normalement convergente dans L.(E, E) pour
la norme d’opérateur, et on note f(T) sa limite.
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L’intérét de ce genre de proposition est de pouvoir faire du calcul fonctionnel, i.e. donner un
sens A des expressions comme e? ou sin(A) lorsque A est une matrice carrée. Voici un autre
exemple utile en pratique.

Proposition 1.2.3 Soit E un espace de Banach et T € L.(E, E) tel que ||T|| < 1. Alors I =T
est inversible dans L.(E, E) et son inverse est donné par la somme de la série :

+oo
I-mt=> 1
n=0

1.3 Questions de compacité

On termine ce chapitre en rappelant quelques résultats liés a la compacité.

Définition 1.3.1 Soit (X, d) un espace métrique. Une partie K de X est compacte ssi de toute
sutte déléments de K, on peut extraire une suite convergente dans K.

La notion de compacité est liée a la continuité par la proposition fondamentale suivante.

Proposition 1.3.1 Soit (X,d) un espace métrique et K un compact de X. Toute fonction
continue f : K — R est bornée et atteint ses bornes.

Dans un espace vectoriel normé de dimension finie, les compacts sont caractérisés :
Théoréme 1.3.1 Les compacts d’un espace normé de dimension finie sont les fermés bornés.

En particulier, en dimension finie, toute boule Bp(z,7) fermée est compacte. Ce résultat est
faux en dimension infinie, et ¢’est méme une propriété caractéristique des espaces de dimension
finie comme en témoigne le théoreme de Riesz :

Théoréme 1.3.2 Un espace vectoriel normé est de dimension finie ssi sa boule unité fermée
est compacte.

Un corollaire de ceci est qu’en dimension infinie, les compacts sont forcément d’interieur vide
(donc pas bien gros). Les questions de compacité en dimension infinie sont en général liées a
des variantes du théoréeme d’Ascoli, voir cours d’analyse fonctionnelle.

1.4 Notations de Landau

Il sera commode pour les prochains chapitres d’utiliser les notations suivantes. Soit F, F
un espace normé et a € E. Soit f: E — F et g: E — RT, deux fonctions définies au voisinage
de a. On dit que f est négligeable devant g lorsque x tend vers a, noté

f(x) = o(g(x))

ssi pour tout x voisin de a, il existe e(x) > 0 avec lim,_,, €(z) = 0 tel que

1 (@)l[F < e(z)g(x).
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On dit que f est dominée par g lorsque x tend vers a, noté

ssi il existe M > 0 tel que pour tout x voisin de a,

1f (@)llp < Mg(z).

1.5 Exercices divers

Exercice 0
Soit E, F, G trois espaces normés, et f : £ X F' — G une application bilinéaire. Montrer que f
est continue ssi

Ifl:=sup  [[f(z,9)lle < +oo.
el <1, lyll p<1

Montrer que ||.|| est une norme sur l'espace L.(E, F; G) des applications bilinéaires continues.
Montrer que L.(E, F'; G) est complet si G Dest.

Exercice 1.
Vérifier que

n n 1/2
o = 3ol llll = (Z w) et Jlefoe = max |z
1= 1=

sont 3 normes équivalentes sur R™.

Exercice 2.
Soit (E, ||.|]) un espace normé, montrer que ’application “norme”
) p s q pp

{E—>R

z = ||z

est continue. Montrer que I'application d : F x E — R définie par

d(z,y) = ||lz -yl

est aussi continue.

Exercice 3.
Les fonctions suivantes R? — R sont-elles continues ?
Sinon, préciser pourquoi (a I’aide de suites etc.)

DAY S (a, ,
(1.1) flz,y) = {662+y2 p Ex Z; i E(()) 8;
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Ayt .
e st (@) # (0,0)

(1.2) g9(z,y) = { 0 si(e.y)=(0.0)

(13 A, 0) = { e s (@) # (0.0

0 si (z,y) = (0,0)

(1.4) w(z,y) = { Ve 5 @) # (0.0
0 si (z,y) = (0,0)

Exercice 4.

On munit R™ de ||z]j; = >_;-, |@i|, expliciter la norme d’opérateur associée sur
L(R™ R") ~ M, (R).

Méme question lorsque R™ est munit de ||.||co-

Exercice 5.
On consideére l'espace M, (R) munit d’une norme d’opérateur ||| au choix.
— Montrer que GL,(R) est un ouvert de (M, (R), ||.||).
— Montrer que “I’inversion”
GLn(R) — GLn(R)
{ M — M-1

est continue.

Exercice 6.
Montrer que pour tout M € M, (R),

—+00

exp(M) := Z

n=0

Mn
n!
a bien un sens et définit une application continue de M,,(R) dans lui méme. On pourra pour

cela commencer par montrer que pour tout n € N, M — M" est continue, puis utiliser un
raisonnement de convergence uniforme.

Exercice 7.
Soit (X, d) un espace métrique compact et « > 0. On dit que f : X — R est a-Holder sur X

ssi
TFy d(m, y)
On munit 'espace C*(X) des fonctions a-Holder sur X de la norme
/@)~ Il

flla == sup |f(x)| + sup
/1] xeX\ ()| S )
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Montrer alors que (C*(X), ||.|la) est un espace de Banach.

Exercice 8.
Soit f : R™ — R une fonction continue telle que

f(z) = +oo.

[|[| =00

Montrer qu’il existe xg € R"™ tel que f(xg) = inf ern f(x).



Chapitre 2

Calcul Différentiel

Ce chapitre constitue le coeur du cours. On y trouvera toutes les notions de base relatives
a la différentiabilité dans les espaces vectoriels normés.

2.1 Différentiabilité
Définition 2.1.1 Soient E, F' deux espaces vectoriels normés, U un ouvert de E et
f:U—F.
Soit a € U, [ est dite différentiable au point a ssi il existe L € L.(E,F) telle que
fla+h) = f(a)+ L(h) +o(||h||E), lorsque h — 0.

Remarques. Si f est différentiable au point a, 'application L est unique et appelée différentielle
ou application linéaire tangente & f au point a, on la note d, f. Si f est différentiable en tout
point de U, on dit que f est différentiable sur U. Si 'application

df {L{ — L(E,F)

av dqf

est continue (L.(FE, F) est muni de sa norme d’opérateur), on dit que f est de classe C! sur
U. En dimension finie, 'existence d’une différentielle ne dépend pas du choix de la norme. Si
f : E — F est une application linéaire continue, f est évidemment différentiable sur E et pour
tout x € E, d,f = f, i.e. df est constante.

Proposition 2.1.1 Une application différentiable en un point est continue en ce point.

La réciproque est bien sur fausse, penser au cas de la dimension 1.

Définition 2.1.2 Soient E, F deux espaces normés, U un ouwvert de & et f : U — F. Soit
a €U, v e E, silafonction de la variable réelle

t — fla+tv)

11



12 CHAPITRE 2. CALCUL DIFFERENTIEL

est dérivable en t =0, on dit que f est dérivable en a suivant la direction v et on note

0, (@) — tim 10 10) = T @)

t—0 t

e F.

Proposition 2.1.2 §i f : U — F est différentiable en a € U, alors f est dérivable en a suivant
toute direction v € F et

avf(a) = daf(v)'

La réciproque est fausse. La dérivabilité suivant toute direction n’implique méme pas la conti-
nuité. Voir les exercices. Les propositions suivantes montrent essentiellement que somme, pro-
duit et composées de fonctions différentiables sont différentiables.

Proposition 2.1.3 Soient E, F deux espaces normés, U un ouwvert de FE et f,g : U — F.
Sotent A\, u € R, si f,g sont différentiables en a € U alors A\f + ug est différentiable en a et on
a la formule

do(Af 4+ pg) = Mo f + pdag.

Proposition 2.1.4 Soit E un espace normé, U C E un ouvert et f,g : U — R. Si f,g sont
différentiables en a € U alors fg est différentiable en a et on a

da(fg) = f(a)dag + g(a)da f.

Proposition 2.1.5 Soient E, F,G trois espaces normés et U un ouvert de E, V un ouvert de
F. Soient f: U — F et g:V — G tels que f(U) C V. Si f est différentiable en a € U et g
différentiable en f(a) alors go f est différentiable en a et on a

da(g o f) - (df(a)g) ° (daf)

Définition 2.1.3 Soit E un espace normé, U et V deux ouverts de E et f : U — V une
application. On dit que f est un C1-difféomorphisme de U sur V ssi f : U — V est une bijection
de classe C' sur U dont Uinverse f~1 est de classe C' sur V. Pour tout x € U, d,f est alors
inversible dans L.(E, E) et on a pour tout y € V,

dy(f71) = (dy-10) )"

Ainsi la différentielle d’une application réciproque se déduit de la différentielle de 'applica-
tion directe par inversion. On peut vérifier qu’en dimension 1 on retrouve la formule usuelle.
Enoncons maintenant un résultat fondamental de topologie des espaces normés.

Théoréme 2.1.1 Soit E un espace normé et U un ouvert de E. Les propositions suivantes
sont équivalentes.

- L’ouvert U est conneze.

— L’ouvert U est connexe par arcs.

— L’ouvert U est conneze par lignes brisées.
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On rappelle qu'un arc joignant x,y € U est une application continue 7 : [a,b] C R — U telle
que y(a) = x et y(b) = y. Une ligne brisée ~ dans U joignant x & y est un arc linéaire par
morceaux : il existe une subdivision finie t) = a < t; < ... < t, = b de 'intervalle [a,b] et p+ 1

vecteurs g = x,x1,...,%, =y € U tels que pour tout 0 < i <p— 1, y([t;, tit1]) CU avec
tiy1 —1 t—t;
() = ———xy — ————— x4
fY’[tz,t'Lﬁ»l[( ) i — b 1 i — b i+1

La longueur de « est Zf;ol lz; — zit1|l. On peut alors définir, si U est un ouvert connexe, la
distance dy(z,y) comme étant la borne inf. des longueurs des lignes brisées dans U joignant x
a y. Ces définitions sont motivées par le théoreme fondamental suivant (dit des accroissements

finis).

Théoréeme 2.1.2 Soit U un ouvert connexe d’un espace vectoriels normé E, et soit f : U — F
une application différentiable. Supposons qu’il existe M > 0 tel que sup,cy ||dz f|| < M, alors
pour tout x,y € U, on a

1f(2) = F)ll < Mdy(z,y).

Ce théoreme a deux corollaires importants.

Corollaire 2.1.1 Soit U un ouvert convexe d’un espace vectoriel normé E, et soit f :U — F
une application différentiable. Supposons qu’il existe M > 0 tel que sup,cy ||d. f|| < M, alors
pour tout x,y € U, on a

1f(2) = F@)l < Mz —y].

Corollaire 2.1.2 Soit F' un espace vectoriel normé et f : [a,b] — F continue, dérivable sur
Ja,b[. Supposons qu’il existe M > 0 tel que sup,e)q 4 |f'(7)| < M, alors

1f(a) = f(O)] < Mla —b].

2.2 Calcul en dimension finie

On suppose dans cette section que E est de dimension finie n, ce qui modulo le choix d’une
base revient a dire que E = R™. On notera (eq, ..., e,) la base canonique de R" et (dx1, ..., dx,)
sa base duale ou dx; : R™ — R avec

dmi(hl, . e .,hn) = hi.

2.2.1 Dérivées partielles

Proposition 2.2.1 Soit f : U4 C R — F une application différentiable en a € U, ot est un

ouvert. On note la dérivée de f en a suivant e; sous la forme g—g{i(a) € F. On Uappelle dérivée

partielle i-eme de f en a. On a alors la formule

"0
dof = Zl Baj; (a)dz;.



14 CHAPITRE 2. CALCUL DIFFERENTIEL

Comme on I’a fait remarquer précédemment, I’existence des n dérivées partielles en a n’implique
absolument pas la différentiabilité. On a en revanche le résultat suivant trés utile en pratique.
La preuve est basée sur l'inégalité des accroissements finis.

Théoréme 2.2.1 Soit f: U CR™ — F, ou U est un ouvert. Si toutes les dérivées partielles
de f existent au voisinage et sont continues en un point a € U, alors f est différentiable en a
et dof est donnée par la formule précédente. Si les conditions précédentes sont vérifiées pour
tout a €U, f est de classe C' sur U.

Ce théoreme permet de ramener I'’étude de la différentiabilité a des simples problemes de
continuité. Il est d’usage constant dans tous les problémes usuels. Dans le cas ou F est lui aussi
de dimension finie, on peut préciser les écritures.

Proposition 2.2.2 Soit f = (f1,..., fm) : U CR™ — R™ différentiable en a € U. On appelle
matrice jacobienne Jo f de f au point a, la matrice de dof dans les bases canoniques de R™ et
R™ . On a alors

o o

a—g(a) %(a)
Jaf: 5

Ofm Ofm

3%1(@) 8;;—”(@)

et pour tout h = (h1,...,hy) € R, dof(h) = (Jof)( 'h).

Le théoreme de composition précisé en dimension finie donne lieu & une regle de calcul dite
“regle de la chaine”.

Proposition 2.2.3 Soit f = (f1,...,fm) U CR*" = R™ et g:V C R — R avec U,V
ouverts tels que f(U) C V. Si f est différentiable en a € U et g est différentiable en f(a), alors
on calcule les dérivées partielles de go f : U — R par la formule

2ol =3 Sy

2.2.2 Dérivées partielles d’ordre supérieur

Soit f: U C R™ — F une application. Si cela a un sens, on peut définir par récurrence des
dérivées partielles d’ordre supérieur p par

o f a( o f )

&rip e 8$Z’1 &rip 8::3%_1 e 8$Z’1

ou (i1,...,ip) € {1,...,n}P. Vu la lourdeur des notations, on préfere parfois adopter une
notation multi-indicielle en posant a = (i1,...,4) € {1,...,n}P, p = |a| et en notant
P
Df = o .

Une fonction f: U C R™ — F est dite de classe C? sur U ssi toutes les dérivées partielles D f
avec |a| < p existent et sont continues sur Y. Remarquer qu’a priori, 'ordre dans lequel on
effectue les dérivations successives a son importance. On a toutefois le théoreme suivant (dit
de Schwarz).
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Théoréme 2.2.2 Soit f:U C R? = R avec U ouvert, et a € U tel que

2f 0
0xdy ¢ Oyox

existent au voisinage de a et sont continues en a. Alors

o2 f o2 f
Oxdy (a) = 8y3x(a)'

L’hypothese de continuité en a est importante, il existe des contre-exemples, voir exercices. Un
corollaire bien utile pour nous est le suivant.

Corollaire 2.2.1 Soit f : U C R"™ — F, avec F' de dimension finie, une application de classe
CP sur U, alors les dérivées partielles D*f jusqu’d l'ordre p ne dépendent pas de 'ordre de
dérivation.

On dit qu’une fonction est de classe C*° ssi elle est de classe CP pour tout p € N.

2.3 Différentielle seconde et au-dela

Se donnant U un ouvert d’un espace normé F et f : U — F (ou F est normé) de classe
C', on peut se demander si df : U — L.(E,F) est a son tour différentiable, auquel cas la
différentielle de df serait une application

ddf) U — L. (E,L.(E,F)).
Les choses sont heureusement plus simples qu’il n’y parait grace a la proposition suivante.

Proposition 2.3.1 Soient E, F' deuz espaces normés. On note L.(E, E; F) l'espace des appli-
cations bilinéaires continues de E x E — F muni de sa norme naturelle!. L’espace vectoriel
L.(E,L.(E,F)) est muni de sa norme d’opérateur. L’application

Lo(E,E;F) — Lo (E, Lo(E, F))

E—Lo(E,F)

est un isomorphisme isométrique dit “canonique a gauche”.

Ceci nous meéne aux définitions.

Définition 2.3.1 Soient E, F deux espaces normés, et f : U — F une application C'. f est
dite deux fois différentiable en a € U ssi df : U — L.(E, F) est différentiable en a. On note
alors

da f = du(df).

Si f est deus fois différentiable sur U et si x v+ d>f est continue, [ est dite de classe C2.

Voir exercice 9 du chapitre précédent.
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Remarquer que d>f € L. (E, L.(E, F)) ainsi pour tout h € E, d2f(h) € L.(E, F). L’application

(h,k) = (d2.f)(h) (k)

est bilinéaire et on note aussi cela par d2f(h,k). Noter que la place de h et k a a priori de
I'importance. On laisse au lecteur le soin de vérifier que combinaisons linéaires, composées et
produit de fonctions C? sont C? quand cela a un sens.

Théoréme 2.3.1 Si f : U — F est deuz fois différentiable en x € U, alors pour tout (h,k) €
E?,
(dzf)(hs k) = (d2.f) (k. D),

i.e. la différentielle seconde en x est bilinéaire symétrique.
En pratique, le cas de la dimension finie s’étudie a 1’aide du résultat suivant.

Proposition 2.3.2 Soit f : U CR"™ — F deux fois différentiable en x € U. Alors les derivées
partielles d’ordre deux en x existent et pour tout h,k € R™, on a
0% f

89@335]»

(d2f)(h k)= )

1<i,j<n

L’application f est C? en x ssi les derivées partielles d’ordre deux existent au voisinage de x
et sont continues en x.

La proposition précédente montre qu’en dimension finie, les deux définitions que nous avons
données sont bien les mémes. Le théoreme 2.3.1 combiné au résultat précédent montre que si
f est deux fois différentiable, alors les dérivées croisées existent et sont égales. C’est une autre
version du théoreme de Schwarz vu plus haut. L’interét du calcul différentiel d’ordre deux est
pleinement justifié par le théoreme suivant.

Théoréme 2.3.2 (Formule de Taylor-Young) Soit f : U — F deux fois différentiable en x € U.
Alors pour tout h € E wvoisin de 0, on a

Pl h) = fla) + (e D)) + 5 (&) ) + o1,

L’expression ci-dessus précise le comportement local de f au voisinage de z, c’est ce qu’on
appelle un développement limité a ’'ordre 2. On peut généraliser ces définitions par récurrence
a lordre quelconque : f sera dite de classe C™ si elle est C™ ! et si la différentielle n — 1-ieme est
continuement différentiable. La différentielle n-ieme de f, notée d7} f est alors une application
multilinéaire symétrique de E™ — F'. Dire que f est C" revient a dire en dimension finie que
toutes les dérivées partielles j'usqu’a 'ordre n existent et sont continues, ce qui est la définition
donnée plus haut. On peut de méme démontrer une formule de Taylor a l'ordre quelconque
analogue a celle vue plus haut. Il existe aussi d’autres formules de Taylor, de nature plus globale.
Contentons nous d’énoncer ici la formule la plus utile en pratique, celle de dite de Taylor avec
reste intégral.
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Soit f : U C RP — R? une fonction de classe C*, a € U et h € RP. On appelle puissance
symbolique d’ordre n (1 < n < k) Pexpression

[; hia—x(a)

Théoréme 2.3.3 Soit f : U C RP — R? une fonction de classe C*, a € U et h € RP tel que le
segment [a,a 4+ h] CU. Alors on a

= Z ﬁhll hp 7(@)

11+ 2p! (2 tp
i1+i2+...+ip:n 1 P 8.%'1 e 8.%'17

2] [k—1]
af ".af 1 of
fla+h)= }:h ;;ma#@] +”ﬂwk—D h:hmﬁ)]
1—t .
hi=—(a+th)| dt.
+ /0 [Z +th)| dt

L’interét de la formule précédente est qu’elle n’est pas seulement valable localement, mais vaut
pour tout h tel que [a,a + h] C U.

2.4 Recherche d’extremums locaux

Dans ce qui suit U désignera a priori un ouvert d’un espace normé F.

Définition 2.4.1 Soit E un espace normé et f :U C E — R une application. Soit a € U. On
dit que f admet un minimum local (ou relatif) en a ssi il existe V voisinage de a tel que pour
tout x €V,

f(z) > f(a).
On dit que f admet un minimum local strict (ou relatif strict) en a ssi il existe V voisinage de
a tel que pour tout x € V avec x # a,

f(x) > [f(a).
On a des définition analogues pour maximum local et maximum local strict en renversant les
inégalités.

Théoréme 2.4.1 Si f: U — R est différentiable ena € U et sia est un minimum ou marimum
local, alors

dof = 0.

La réciproque est bien sur fausse. Il est trés important que U soit un ouvert. Lorsque d,f = 0
on dit que a est un point critique de f.

Sip: E x E — R est bilinéaire symétrique, pour tout h € E, on pose

Qlpl(h) := ¢(h, h).

L’application Q[y] est appelée forme quadratique associée a .
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Définition 2.4.2 On dit que Qp| est positive ssi pour tout h € E,
Qlg](h) = 0.

On a une définition analogue pour négative.
Définition 2.4.3 On dit que Qlp| est définie ssi 'application
E — E*
{w — ()
est un isomorphisme bicontinu entre E et son dual topologique E*.

Proposition 2.4.1 Si E est de dimension finie, Qp] est définie positive ssi pour tout h €
E\ {0},
Qlel(h) > 0.

Proposition 2.4.2 Si Q[p] est définie positive, alors il existe X > 0 tel que pour tout h € F,
2
Qlel(h) = ]I
Si Q[¢] est définie négative, on a les mémes résultats en renversant les inégalités.

Théoréeme 2.4.2 Soit f:U — R, a €U et f deux fois différentiable en a.
~ Si f admet un minimum local en a, alors Q[d? f] est positive.
~ Si Q[d2f] est définie positive, alors f admet un minimum local strict en a.

L’intérét principal du théoreme précedent est de donner une condition suffisante du second ordre
pour avoir un extremum local. En dimension finie, la différentielle seconde de f est donnée par
la matrice Hessienne de f : pour tout h = *(hy,...,h,) € R?,

d2f(h,h) = 'hH,h,

ou o/ oy
a—x%(a) e —am1amn ((Z)
Hq = : - :
02 f 9% f
O0xn0T1 (CL) cee @( )

La matrice H, étant réelle symétrique, elle est diagonalisable en base orthomormée i.e. il
existe P € O,(R) tel que H, = ‘PDP ou D est diagonale. Il est alors clair que Q[d> f]
est définie positive ssi toutes les valeurs propres de H, sont strictement positives. Ceci conduit
en dimension 2 au critéere de Monge pour étudier la nature des points critiques.

Théoréme 2.4.3 Soit f:U C R? — R deuz fois différentiable en a € U, point critique de f.
Posons o f o f o f
R= @(a), = 89c6y(a)’ = 8—y2(a)'
~ SiRT —S%?>0etR>0, f aun minimum local strict en a.
-~ SiRT —8?>0et R<0, f aun mazimum local strict en a.
~ Si RT — §% <0, f n’a pas d’extremum local en a, c’est un point selle ou col.
~ 8i RT — S? =0 on ne peut conclure, c¢’est un point critique dit dégénéré.
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2.5 Exercices

Exercice 1.
L’application ¢ : R — R définie par

est-elle continue, différentiable, C' ?

Exercice 2.
Montrer que f : R? — R définie par

y—gsix#()

est dérivable dans toutes les directions en (0,0) sans méme étre continue en (0, 0).

Exercice 3.
Les applications suivantes R? — R sont-elles différentiables, C' ?

2,3
225 (a,y) # (0,0)

21) fy) = { 0 si (z,y) = (0,0).

rsiny s1y7é0
(2.2) g(w,y)z{ v
xz siy=0.

2 o T :
Y sm(—) siy#0
y) = "

2.3 h(x,
(2:3) ( 0 siy=0.

Exercice 4.
Soit [|.|| une norme sur un espace vectoriel normé E. Montrer que ¢ : = +— |x| n’est pas
différentiable en 0.

Exercice 5.
Soient F, F,G trois espaces normés et ¢ : F X FF — G une application bilinéaire continue.
Montrer que v est de classe C! et calculer sa différentielle. Application :
— Soit (H,(.,.)) un espace préhilbertien réel, et f : H \ {0} — R est définie par f(x) =
(x,x>1/ 2. Montrer que f est C', donner sa différentielle.
— Montrer que pour tout n € N, Papplication M,,(R) — M,,(R) définie par M — M" est
C! et calculer sa différentielle.
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Exercice 6.
Montrer que
6 {]O, +00[x]0, 27r[— R2\ ([0, +00[x{0})
' (r,0) — (rcos(@),rsin(6))

est un C'-difféomorphisme, expliciter pour cela son inverse.

Exercice 7.
Soit E, F deux espaces normés et Y C E un ouvert connexe. On considere f : U — F
différentiable et telle que pour tout = € U, d,f = 0. Montrer que f est constante.

Exercice 8.
Soit f : R™ — R une application différentiable en 0, et telle que pour tout x € R™ \ {0}, pour
tout t > 0,

f(ta) = tf(x).

Montrer que f est linéaire.

Exercice 9.
Montrer que ’application
7. {GLN(R) — GL,(R)
’ M M1

est de classe C', expliciter sa différentielle.

Exercice 9 bis.
Montrer que ’application

[GL,(R) = GL,(R)
: { M— M-1

est de classe C?, expliciter sa différentielle seconde. Généraliser & 1’ordre quelconque.

Exercice 10.
Montrer que ’application
. Mn(R) = M, (R)
¢: { M — exp(M)

est de classe C', calculer sa différentielle. On pourra cela commencer par étudier le cas de
M — M™ (voir exercice 5) et utiliser le résultat de Iexercice 12.

Exercice 11.
Montrer que ’application
[ GL(R) x M,p(R) — R
v { (A,B) — Tr (A~1B?)

est de classe C'1, calculer sa différentielle.
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Exercice 11 bis.
Montrer que ’application
. My (R) — R
v {M — det(M)

est de classe C'1, calculer sa différentielle.

Exercice 12.
Soit U C R™ un ouvert convexe et (fn)ney : U — R une suite de fonctions différentiables telle
que
— Il existe a € U tel que (f,(a)) soit convergente.
— La suite (dfy,) converge uniformément sur U vers ¢ : U — L(R™,R).
Montrer que (f,) tend uniformément sur U vers g différentiable sur U et dg = lim,,— oo dfy,.

Exercice 13.

Montrer que la formule
+00 1

fen) = e =

n=0

définit une fonction de classe C' sur R?, calculer ses dérivées partielles.

Exercice 14.
Soit f: R™\ {0} — R différentiable telle que pour tout ¢ > 0, on ait f(tz) = t“f(x) ou a > 0.
Montrer que pour tout x € R",

dy f(2) = af (z).

Exercice 15.
Soit E l'espace de Banach des fonctions numériques continues sur [0, 1], munit de la norme
| flloo = supgepo,1) | f(@)]. Montrer que la fonctionnelle

{ E—-R

: 1

[ Jo 1F@)Pd

est de classe C! sur E, et calculer sa différentielle.

Exercice 16.

Soit E 'espace de Banach des fonctions numériques continues sur [0, 1], toujours munit de la

norme || floc = supgejo,1) [f(2)]. Soit K : [0,1] x [0,1] — R une fonction continue. Montrer que
I'application P : E — E définie par

1
P(f)(x) = /0 K () exp( (1)t

est de classe C'! sur E, calculer sa différentielle.
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Exercice 17.
Montrer que la fonction f : R?> — R définie par

2,2 |
zyarye st (z,y) # (0,0)

flz,y) = { 0 si(z,y) = (0,0)

est de classe C'1. Montrer que les dérivées secondes

0% f
yox

0% f
0xdy

(0,0) et 0,0)

existent mais ne sont pas égales.

Exercice 18.
On notera ¢ le changement de coordonnées

. { R* x R — R?
7 (r,0) — (rcos(@),rsin(h)).

Soit f de classe C? sur R?, on appelle Laplacien de f la fonction

*f  0*f
Af - @ 8—y2.
Montrer que pour tout (r,6) € R* x R,
_(foyp) 19(f o) 1 9*(fop)
(Af)op(r,0) = T(Tﬁ) + ;T(Tﬁ) + ﬁw(r,a)-

Exercice 19.
Trouver toutes les fonctions f : R? — R de classe C! telle que

Utiliser pour cela le difféomorphisme ¢(z,y) = (z,y + z2).
Exercice 20.
Soient a < b deux réels et I un intervalle compact de R. Soit (¢,z) +— f(¢,2) une fonction

numérique définie au voisinage de [a, b] x I, et telle que g—i existe et est continue sur [a,b] x I.
On note ¢ : I — R la fonction définie par

b
o) = [ sty

— Montrer que ¢ est continue.
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— montrer que @ est C' Let que pour tout = € I,

b9
d@)= [ L

Enoncer un théoreme plus général ou la variable x vit dans un ouvert de R".

Exercice 21.
Montrer a ’aide d’exercices précédents que la formule

+oo
I(z) = / e ittt
0

définit une fonction I' de classe C* sur |0, 4o0[.

Exercice 22.
Etudier les extremums locaux puis globaux de

'{RZ — R
f: (z,y) — a4yt =2 —y)

Exercice 23.
Méme chose avec

R? — R
[ 3 2 _ _
(x,y) —  2°+3xy® — 152z — 12y + 2.

Exercice 24.
Meéme chose avec

) R3 — R
T wge) = (= 2)e e,

Exercice 25.
Soit ||.|| une norme sur R™. On note

B={zeR" : |z] <1} et 90B={z € R" : |z| =1}

23

Soit f : R™ — R différentiable telle que f|sp soit constante. Montrer qu'il existe zy € B tel que

dyy f = 0.

Exercice 26.

Soit E un espace vectoriel normé, U C FE un ouvert convexe, et f : U — R une fonction

différentiable. On dit que f est convexe si, pour tous z,y € U et tout ¢t € [0,1], on a :

flte+ (1 —t)y) <tf(x)+ (1 —1t)f(y).
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1. Montrer que f est convexe si et seulement si elle satisfait, pour tous x,zg € U :
f(x) = fxo) + duy f (2 — 20).

2. On suppose que f est convexe. Montrer que si d,, f = 0, alors f admet en zp un minimum
absolu, puis que I’ensemble des points ou df s’annule est un convexe sur lequel f est
constante.

Exercice 27.
Soit f : R® — R de classe C2. On notera le Laplacien par

n
0 f
=1 ?
1. Montrer que si Af > 0 sur B, alors on a pour tout x € B,

f(z) < sup f(y).

yeoB

2. Montrer que si Af = 0 sur B, alors pour tout x € B,

inf f(y) < f(z) < sup f(y).
yeoB yeOB

Exercice 28.
Soient F et F' des espaces vectoriels normés.
— Montrer que f : E — F de classe C? est affine si et seulement si on a : Vo € E,d2f = 0.
~ Soit B € L2(E, F). Trouver toutes les fonctions f : E — F de classe C? telles que pour
tout » € B, d>f = B.

Exercice 29.
Soit f: E — Fet g: F — G de classe C2. Calculer d2(g o f).



Chapitre 3

Inversion locale, fonctions implicites

Ce petit chapitre est consacré a deux théoremes fondamentaux du calcul différentiel dont
les applications a l’analyse et la géométrie différentielle sont nombreuses. Commencons par
rappeler le théoreme du point fize dans les espaces complets qui est I’outil central de la preuve
du théoreme d’inversion locale.

Théoréme 3.0.1 Soit (X,d) un espace métrique complet, et soit f : X — X une application
k-contractante (0 < k < 1) i.e. pour tout x,y € X,

d(f(z), f(y)) < kd(x,y).

Alors f admet un unique point fixe dans X.

3.1 L’inversion locale

La différentielle d’une fonction en un point étant une approximation linéaire de celle ci au
voisinage de ce point, il est raisonnable de penser que les propriétés de cette diférentielle en ce
point (injectivité, surjectivité, rang) impliquent des propriétés locales de cette fonction. C’est
ce qu’aflirme le théoréme suivant.

Théoréme 3.1.1 Soient E, F deux espaces de Banach, U un ouvert de E et f : U — F une
application C1. Sia € U est tel que dyf : E — F est un isomorphisme bicontinu, alors il existe
un ouvert V C U contenant a et un ouvert W contenant f(a) tels que f : V — W soit un
C-difféomorphisme.

En d’autres termes, si d, f est inversible, alors f 1'est aussi localement. Ce résultat n’a bien sur
aucune valeur globale. On a toutefois le corollaire suivant, dit théoreme d’inversion globale.

Corollaire 3.1.1 Soient E, F' deuz espaces de Banach, U un ouvert de E et f : U — F une
application injective de classe Ct. Alors les propriétés suivantes sont équivalentes :

~ V= f(UU) est un owvert et f:U — V est un C'-difféomorphisme.

— Pour tout x € U, d,f est un isomorphisme bicontinu.

25
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L’hypothése d’injectivité est importante, il existe des contre-exemples, voir exercices. Dans le
cas de la dimension finie, on peut aisément préciser les questions de régularité.

Proposition 3.1.1 Soit f : U4 C R™ — R" de classe CP avec p > 1. Si a € U est tel que
dof : R® — R™ est un isomorphisme alors il existe un ouvert V C U contenant a et un ouvert
W contenant f(a) tels que f : V — W soit un CP-difféomorphisme, i.e. f~1: W — V emiste et
est CP.

On peut de méme énoncer un résultat d’inversion globale en classe CP.

Corollaire 3.1.2 Soit U un ouvert de R™ et f : U — R™ une application injective de classe
CP. Alors les propriétés suivantes sont équivalentes :

-~V = f(UU) est un ouvert et f:U — V est un CT-difféomorphisme.

— Pour tout x € U, d, f est un isomorphisme bicontinu.

3.2 Fonctions implicites

Soient Ei, Fs, F' trois espaces de Banach, Y C FE; x Es un ouvert, et f : U — F une
application. On dit que f admet une différentielle partielle par rapport a la premieére variable
au point (xg,y0) € U ssi application partielle f,, : @ — f(z,y0) est différentiable en z9. On
note

alf(gﬂo’y(]) = dmofyo'

On a une définition analogue pour la deuxiéme variable.

Théoréme 3.2.1 Soient E1, Fo, I' trois espaces de Banach, U C E1 X Eo un ouvert, et f :
U — F une application C1. Soit (a,b) € U tel que f(a,b) = 0 et supposons que Jaf(a,b) est un
isomorphisme bicontinu de Eo sur F. Il existe un ouvert ¥V C U contenant (a,b), un ouvert W
de By contenant a, une application C*, g : W — Es tel que pour tout (z,y) € V,

flz,y) =0ssizeW ety =g(z).

Le théoreme des fonctions implicites montre essentiellement que l’ensemble des solutions de
f(x,y) = 0 peut étre localement vu comme le graphe {(z, g(z)) : = € W} d’une fonction C?,
pourvu que la différentielle partielle par rapport a la deuxieme variable soit un isomorphisme
bicontinu. On peut preciser cet énoncé en dimension finie.

Théoréme 3.2.2 Soit U C RP x R? un ouvert, et

fo(@i, o zpyn, ., yq) — (filzsy),. .., folzy)) € RY

une application C*, k > 1. Soit (a,b) € U tel que f(a,b) = 0 et supposons que

g—zﬁ(a;b) g—g(a;b)
|20

1o) 0

F(aib) ... G(asd)
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Il existe un ouvert V C U contenant (a,b), un ouvert W de RP contenant a, une application
Ck, g: W — RY tel que pour tout (z,y) €V,

flz,y) =0ssixeW ety =g(z).

Ce théoréme est trés utilisé avec ¢ = 1 et p = 1,2. Il montre que les courbes de R? et les
surfaces de R3 définies “implicitement” par une équation du type f(x,%) = 0 sont localement
des courbes et des surfaces paramétrées. Il est aussi possible de calculer les dérivées partielles
de g, par exemple si ¢ =1 et p =2 on a au voisinage de a,

dg %($1,$2,9($1,$2)) dg 38—32(551,562,9(%@2))
8—(x1,x2) - - of 3 a—(xlny) - - of .
x1 a—y(wl,w,g(?ﬂl,xz)) x2 a—y(90179€279(35179€2))

En itérant ces calculs, on peut calculer des développements limités de g au voisinage de a.
3.3 Exercices

Exercice 1.
Soit f : R%\ {0} — R? définie par f(z,y) = (22 — y2,22y). Montrer que f est un C°°-
difféomorphisme local au voisinage de tout point de R?\ {0}. Est-ce un difféomorphisme global ?

Exercice 2.
Méme questions avec g : R? \ {0} — R? définie par g(z,y) = (e cos(y), €% sin(y)).

Exercice 3.
Soit f: R™ — R™ de classe C! tel que f — Id soit k-contractante avec 0 < k < 1. Montrer que
f est un C'-difféomorphisme global.

Exercice 4.
Soit f : R3 — R3 définie par

fx,y,2) = (€% + 2% ¥ — ¥ x —y).
Montrer que f est un C*°-difféomorphisme de R? sur f(R3) que I'on explicitera.

Exercice 5.
L’espace C°([0,1]) est munit de || f|lc = SUPgejoq | ()] et C*(]0,1]) est munit de

1£ller = 1flloo + 11 lloo-

Montrer que ’application
: {Col([(), 1]) — €°([0,1])
' f=fr+f?

est un Cl-difféomorphisme local au voisinage de 0, ot C}([0,1]) désigne

{feC'([0,1) : f(0) =0}
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Exercice 6.

Soit f: R? — R, (x,y) — sin(y) + zy* + 22. Montrer qu'’il existe ¢ : U — R de classe O™
(ot U est un ouvert contenant 0) telle que pour tout x € U, ¢(x) est I'unique solution y de
f(x,y) = 0. Donner un développement limité & I'ordre 6 en 0 de ¢.

Exercice 7.
Montrer que y3 4+ y + = = 0 définit implicitement y en fonction de x et que ¢ : x — y = ()
est C™ sur R.

Exercice 8.
Méme chose avec y3 + (22 + 1)y + 2% = 0.

Exercice 9.
Calculer les dérivées partielles premiéres de ¢ : (x,y) — z définie implicitement au voisinage
de (2,—e) par

lnhz=z+4+y+2—1

Exercice 10.

Montrer que I' = {(z,y) € R? : 2% + y3 + 3y — 1} est au voisinage de (0,1) le graphe d’une
fonction ¢ : x +— y avec ¢(0) = 1. Donner un développement limité & l'ordre 3 de ¢ en 0.
Dessiner I" au voisinage de (0, 1).

Probleme
Soit E un espace euclidien de dimension finie. On notera (x|y) le produit scalaire sur E et
|z|| = (z]x)'/? la norme euclidienne associée. Dans ce qui suit f désigne une application de

classe C' de E dans lui-méme telle que pour tout = € E et tout h € E on ait

(dof(h)|def(h)) = (h|h).

1. Montrer que pour tout (z,y) € E2, on a |[f(z) — f(y)| < ||z — v]|.

2. Montrer que pour tout a € F, il existe un voisinage U, de a tel que la restriction de f a
U, est un diffSomorphisme de classe C' de U, sur f(U,).

3. En déduire qu’il existe un voisinage ouvert V, C U, tel que la restriction de f a V, vérifie
pour tout (z,y) € V.2,

1 () = F)ll = llz = yll-
4. Pour tout (z,y) € V.2, on pose

plz,y) = | f(z) = FW)l.

Montrer que la dérivée partielle % (z,y) existe sur V2. En déduire que pour tout (z,y) €
V2 et pour tout (h,k) € E?,

(de f(R)|dy f (K)) = (h[F).
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5. Soit h € E. Calculer |dyf(h) — dyf(h)||> pour tout z,y € V,. En conclure que la
différentielle de f est constante sur V.

6. Montrer que la différentielle de f est constante sur E. En déduire que f est une isométrie
affine, i.e. il existe une application linéaire A : E — E préservant les distances et xg €

tel que pour tout z € F,
f(z) = A(x) + zo.

7. Montrer que f est un C'*°-difféomorphisme de E sur F.
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Chapitre 4

Equations différentielles

Ce chapitre est consacré aux équations différentielles dites “ordinaires”. On y trouvera les
théoréemes usuels d’existence et d’unicité ainsi que quelques méthodes classiques d’étude quali-
tative. Une section complete est dédiée aux équations linéaires et aux méthodes de résolution
spécifiques.

4.1 Définitions et terminologie

Définition 4.1.1 Soient k, p des entiers, et I C R un intervalle. SoitUd C RPx...xRP = (Rp)k
un ouvert, et F' : I x U — RP une application. On appelle solution de l’équation différentielle
résolue d’ordre k

(4'1) y(k) = F(t7 y? y,7 A 7y(k;_1))

tout couple (J,y) ot
1. J C I est un intervalle non-trivial.
2. y:J — RP est une fonction k-fois dérivable sur J.
3. Pour tout t € J, (y(t),y'(t),...,y* V() el, et

y® () = Ft,y(1), 9 (t),-...y" (@),

A priori, I'intervalle d’existence J d’une solution (J, y) n’est pas égal a I. Considérer par exemple
I'équation 3’ = y? qui entre dans le cadre précédent avec k =1, p=1, I =R et F(t,y) = v?,
alors pour tout xg # 0, la fonction

Zo
t - -
yO( ) xo(to—t)—i—l

vérifie ’équation, mais n’est pas définie sur R, bien que I = R. Ceci nous mene a la notion de
solution maximale.

Définition 4.1.2 Une solution (J,y) de (4.1) est dite mazimale si pour toute solution (J,7)
telle que J C J et y|; =y, on a nécéssairement J = J.

31
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Il existe une méthode simple pour ramener toute équation du type (4.1) & une équation d’ordre
1, qui consiste & augmenter le nombre de variables. En effet, (J,y) est solution de (4.1) ssi
(J,Y) est solution de

Y =G(t,Y)

ol on a posé
Y(t) = (), y'(t),...,y* (1) € (R
et
G(t,y1,92, -, Uk) = (Y2,Y3, - - Yk, F(t Y1, - -+, YK))-

Ce procédé est a retenir et s’utilise souvent dans le cas des équations linéaires scalaires (voir
plus bas).

4.2 Equations linéaires

Soit I C R un intervalle et A : I — M, (R), B : I — R" des applications. Une équation
différentielle linéaire d’ordre 1 est une équation du type

(4.2) Y' = A(t)Y + B(t).

Une solution de (4.2), conformément au §1 est la donnée d’un couple (J,Y), ou J C I est
un intervalle, et Y : J — R”™ est une fonction dérivable telle que pour tout ¢ € J, Y'(t) =
A(t)Y (t) + B(t). Le théoreme fondamental de cette théorie est le suivant (dit théoréme de
Cauchy linéaire).

Théoréme 4.2.1 Soient A : I — M,(R), B: I — R" continues. Pour tout ty € I, pour tout
Yy € R™, il existe une unique fonction Y : I — R", de classe C* telle que Y (to) = Yy et pour
tout t € I,

Y'(t) = A(t)Y (t) + B(t).

Ce théoreme affirme que les solutions maximales sont définies sur tout I, et il y a unicité de
la solution satisfaisant la condition initiale Y (ty) = Y. Le probleme d’explosion en temps fini
n’existe pas pour les équations linéaires. Un corollaire important du théoreme de Cauchy est
le suivant.

Proposition 4.2.1 Soit A : I — M, (R), continue. L’ensemble des solutions H de [’équation
homogéne

Y = AQ)Y
est un sous-espace vectoriel de C'(I,R"), de dimension finie n.
Comme conséquence on notera la proposition suivante.

Corollaire 4.2.1 Sous les hypothéses du théoréme de Cauchy (4.2.1), ’ensemble des solutions
S de (4.2) est un espace affine de dimension finie n. Si Y est une solution particuliére de (4.2),
alors

S=Y +H,

au sens ot toute solution de (4.2) est somme de Y et d’une solution de l’équation homogene.
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Il suffit donc, apres avoir résolu ’équation homogene, d’étre capable d’exhiber une solution de
I’équation complete pour les avoir toutes.

4.2.1 Variation des constantes, Wronskien

Théoréme 4.2.2 Soient V1, Vs, ..., V, € CH(I,R"), n solutions de I’équation homogéne
Y' = A(b)Y,

ou A: I — M,(R) est continue. Posons pour tout t € I, W(t) = det(Vi(t),...,Vp(t)). Alors
on a pour tout t,ty € I,

W(t) = W (ty) exp ( /t t TrA(u)du) .

0
La famille V1,...,V, est une base des solutions ssi pour tout t € I, W(t) # 0, ssi il existe
to € I tel que W(tg) # 0.

Le déterminant W (t) est appelé “Wronskien”. Sa non-annulation lorsque Vi, ..., V,, est libre est
a la base de la méthode de “Variation des constantes” due a Lagrange. Elle consiste a chercher
une solution particuliere de (4.2) connaissant au préalable une base Vi, ..., V,, des solutions de
I’équation homogene. On cherche une solution sous la forme

Y(t) = mOVi(t) + ..+ (OVa(0),

ot les y1; : I — R sont des fonctions & valeurs scalaires et de classe C''. On observe alors que Y
est solution de ’équation complete (4.2) ssi

SOV = B(),
=1

qui est un systéme linéaire d’inconnues p, . . ., !, résoluble car det(Vi(t), ..., V,(t)) # 0. Apres
intégration, on obtient les u; et donc une solution particuliere de I’équation complete.

Examinons les cas concrets des équations linéaires scalaires d’ordre 1 et 2.

Equations d’ordre 1.
Elles sont du type

y = a(t)y + b(t).

La solution générale de ’équation homogene est

y(t) = Cexp ( /tt a(u)du> ,

ol tg € I et C est une constante. L’espace des solutions est de dimension 1. La méthode de
variation des constantes nous dicte de chercher une solution particuliere y(t) sous la forme

10 = O exp ([ atwrin).

0
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ce qui conduit a résoudre
t
C'(t) = exp (—/ a(u)du) B(t).
to

Equations d’ordre 2.
Elles sont du type

y'(t) = a(t)y’ + b(t)y + c(t).
Contrairement au cas de lordre 1, il n’existe pas en général de méthode systématique pour

résoudre 1’équation homogene. Si on a su (par les moyens du bord) trouver deux solutions
linéairement indépendantes u et v, on cherche alors une solution particuliere sous la forme

y(t) = At)u(t) + pt)v(t),
c’est a dire en faisant varier les deux constantes. Sous forme vectorielle, 'équation devient

Y' = A(t)Y + B(t),

40=(ty oty )

Une base des solutions de I’équation homogene est donc U = (u,u’), V = (v,v’) et la variation
des constantes se ramene a résoudre le systeme

{)\’(t)u(t) + Wtwt) = 0
N () + @@)'@) = ct).

dont on sait déja qu’il est de Cramer. Notons au passage que le Wronskien

avec Y = (y,vy), B(t) = (0,c¢(t)) et

W(t) =

vérifie dans ce cas précis pour tout t,ty €

t
W (t) = W (tp) exp </ a(u)du> ,
to
relation utile dans de nombreux sujets de concours.

4.2.2 Equations a coefficients constants

La méthode de variation des constantes s’appliquant quel que soit le second membre, on
décrira la méthode specifique de résolution dans le cas homogene, c’est a dire pour les équations
du type

Y’ = AY,

onY :R— R"et A e My,(R). La théorie est résumée dans le résultat suivant.
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Théoréme 4.2.3 Soit Yy € R", tg € R. L’unique solution Y de Y' = AY wvérifiant Y (tg) = Yj
est donnée pour tout t € R par

Y(t) = exp ((t — to)A) Yo.

L’intéret de la formule ci-dessus est surtout théorique. Décrivons la méthode de résolution
en pratique si A est diagonalisable (a priori sur C). On note Aj, Ag,..., Ay € R les valeurs
propres réelles de A (répétées avec multiplicité), et Vi, Vs, ..., Vi € R™ les vecteurs propres
associés. Soient p1,..., iy, i1, - ., fip € C les valeurs propres complexes conjuguées de A, dont
les vecteurs propres associés seront notés W7, ... ,Wp,Wl, .. ,Wp € C". Onadoncn=2p+k.
On a l'observation suivante.

Proposition 4.2.2 Une base des solutions réelles de l’équation Y' = AY est donnée par les
n fonctions de la variable t

e”‘lvl, ... ,et)‘k Vis R (e‘“twl) , (e‘“twl) ,o.. R (e“Pth) S (e“Pth) .

Pour résoudre le probleme de Cauchy Y (¢g) = Yp, on cherche une combinaison linéaire Y des
fonctions ci-dessus vérifiant Y (t9) = Yo, ce qui se rameéne a résoudre un systéme. Voir les
exercices pour des exemples de calcul concret.

Terminons cette section en décrivant le cas important des équations linéaires d’ordre 2 a coef-
ficients constants, c’est a dire des équations du type

(E) v"+ay +by=0.

Cette classe d’équations se rameéne a une équation linéaire vectorielle d’ordre 1. On préfere
cependant traiter le probleme directement a I’aide du critére suivant.

Proposition 4.2.3 Posons P(X) = X2 +aX +b. Alors
— Si P a deux racines distinctes r1,ry réelles, les solutions de (H) sont les fonctions t —
et + et N\ e R.
— i P a une racine double réelle r, les solutions de (H) sont les fonctions t — (A + ut)e™,
A peR.
— Si P a deux racines complezes conjuguées o+ i3, les solutions de (H) sont les fonctions
t — Ae® cos(Bt) + pe® sin(Bt), A\, p € R.

4.3 Equations non linéaires, théorie de I’existence

On reprend les notations du §1, ol p est un entier, I est un intervalle ouvert de R, I est un
ouvert de RP, et F' : I x U — RP est une application. On notera ||.|| une norme sur RP. On se
limite aux équations dérdre 1, en vertu du principe de réduction expliqué au §1. On dira que
F est localement lipschitzienne en la seconde variable ssi pour tout (¢g,z9) € I x U, il existe
un voisinage V de (to, zo) et une constante C' > 0 telle que pour tout (¢,z) et (¢,2") dans V,

IF(t,x) — F(t, )| < Cllz = 2]

On a le théoreme suivant (dit de Cauchy-Lipschitz).
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Théoréme 4.3.1 On suppose que F' : I x U — RP est continue et localement lipschitzienne
en la seconde variable. Alors pour tout (tg,xo) € I x U, il existe une unique solution mazximale
(J,y) de léquation différentielle

y' =F(ty)
avec J intervalle ouvert contenant ty et y(to) = .

L’unicité est riche de conséquences : deux solutions maximales prenant la méme valeur en
un point tg € I sont égales. En particulier les courbes des solutions (appelées aussi courbes
intégrales, orbites intégrales) ne peuvent se croiser. Cette remarque rigidifie considérablement
la structure des orbites en petites dimensions (p < 2).

L’hypothese “localement lipschitzienne en la seconde variable” se vérifie en pratique a l'aide
de la remarque suivante.

Proposition 4.3.1 Si F: [ xU — RP est de classe C', alors F est localement lipschitzienne
en la seconde variable.

Si F est de classe C', alors en fait un résultat plus précis est valable, et montre en plus la
régularité des solutions par rapport aux conditions initiales.

Théoréme 4.3.2 On suppose que F : I x U — RP est de classe C*. Alors pour tout (tg, xz) €
I xU, il existe € > 0, un ouvert V C RP contenant xg tel que pour tout x € V, il existe une
unique solution (J,y,) de ’équation différentielle

y;g = F(t,ym)

avec J = [ty — €,tg + €] et y,(tg) = x. De plus, pour tout t € J, la fonction x +— y,(t) est de
classe C*.

Le théoreme ci-dessus prouve de plus que le temps d’existence est localement uniforme par
rapport aux données initiales (si x est proche de xg alors la solution y, vivra au moins aussi
longtemps que ¥y, ). La question du temps d’existence des solutions est cruciale dans les appli-
cations. Comme on I’a vu au §1, méme si I = R, les solutions maximales peuvent exploser en
temps fini. Le théoreme suivant (appelé principe de majoration a priori, ou principe de sor-
tie de tout compact) précise le comportement des solutions maximales au bord de 'intervalle
d’existence.

Théoréme 4.3.3 Sous les hypothéses du théoréme de Cauchy-Lipschitz, soity :Ja,b[C I — RP
une solution maximale avec b < sup . Alors pour tout compact K C U, il existe un voisinage
V de b dans ]a, b tel que pour tout t €V, y(t) ¢ K.

Un conséquence immédiate est que si U = RP alors la solution maximale vérifie
lm (1) = +oo

si b < supl. On a des résultats analogues pour la borne inf. a. En pratique, pour prouver
I'existence en tout temps des solutions maximales, on combine souvent le principe de sortie
de tout compact avec des estimées a priori des solutions obtenues avec le fameux lemme de
Gronwall.
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Théoréme 4.3.4 Soient p,1,y, 3 fonctions continues sur [a,b], a valeurs réelles positives.
On suppose que pour tout t € [a,b],

y(t) < olt) + / b (u)y(u)du.

Alors pour tout t € [a,b],

v < olt) + [ plsis)en (/ t vlu)d) ds.

Voir les exercices et la section suivante pour des applications de ce lemme. Il est a noter que la
technique de preuve du lemme est a retenir (plus que le lemme lui méme).

4.4 Equations autonomes et flots, complétude

On s’interesse ici au cas particulier et important des équations différentielles du type

oll F :RP — RP est de classe C'. On dit qu'un “champ de vecteurs” F : R? — RP est complet
ssi les solutions maximales de y' = F(y) sont définies sur R. On a le théoréme suivant.

Théoréme 4.4.1 Supposons qu’il existe C1,Cy > 0 tel que |[F(x)|| < Ci|lz|| + Co pour tout
x € RP, alors F' est complet.

Le théoreme ci-dessus est un cas typique d’application de Gronwall+principe de sortie de tout
compact. Pour certains types de champs de vecteurs particuliers (cas hamiltoniens), on peut
obtenir la complétude sans hypotheses aussi restrictives de croissance, voir le probleme 2. Si la
croissance du champ de vecteur F' est “plus que linéaire”, on a pas en général complétude : si
on considére I’équation scalaire
yl — ya

ou a > 1, alors toutes les solutions non identiquement nulles explosent en temps fini. Soit
F :RP — RP? un champ de vecteur C' et complet. Pour tout = € R? et t € R, on pose

Dy(x) ==y, (1),

ol y, est I'unique solution de y' = F(y) vérifiant y(0) = . On a le théoreme suivant (dit des

flots).

Théoréme 4.4.2 Pour tout © € RPet t,s € R, on a ®y(Ps(z)) = Prys(x). Pour tout t € R,
®; : RP — RP est un Cl-difféomorphisme.

Ce théoreme est le point de départ de la théorie moderne des systemes dynamiques continus,
appelés flots. Il reformule ’étude des solutions d’une équation différentielle autonome en termes
de I'étude de l'action d’une famille a un parametre de difféomorphismes, le flot du champ de
vecteur F.
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4.5 Exercices

Exercice 1.

Résoudre les équations différentielles suivantes, préciser 'intervalle d’existence des solutions.
Existe-t-il des solutions définies sur R 7

1. ¢ +y =sin(t).
2. (1+2)y =ty+1+12
3. (1—-)y +ty=0.

Exercice 2.
Résoudre I'équation différentielle suivante.

y// + 2y/ ty= el
Exercice 3.
Résoudre, en fonction de a € R, I’équation différentielle suivante
y" +y = sin(at).
Exercice 4.
Soit w € RS et f: R — R continue. Résoudre I’équation différentielle sur R

y' +wly = f(t).

Exercice 5.
Résoudre les systemes différentiels suivants.

L { ¥ = 4o -2

y = x+y
¥ = z+8y+eé
2. r -3t
y = 2x+4+y+te
2 = x4z
3 y = —y—=z
o= 2y+z

Exercice 6.

Soit ¢ : I — R une fonction continue. On considere ’équation différentielle

(BE) " +q(t)y=0.

— Montrer que les zéros des solutions (non identiquement nulles) de (E) sont isolés dans I.
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— Soit y une solution non identiquement nulle de (E), et a < b deux zéros consécutifs de y

dans I. Montrer que
b
4
t)|dt > ——.
| latolar > 7=

Exercice 7.

Soit ¢ : Rt — R de classe C!. On suppose de plus que ¢ est strictement positive et croissante.
Utiliser le lemme de Gronwall pour montrer que toutes les solutions de y” + ¢(t)y = 0 sont
bornées sur R.

Exercice 8.
Décrire les solutions de 4/ = F(y) ot F : R — R est définie par

0 si <0

F(m):{ Ve osiox>0.
Le théoreme de Cauchy-Lipschitz s’applique-t-il ?

Probleme 1.
On considere dans R? I’équation différentielle suivante :

v = —y+a@@®+y?)
FE
( ) { y/ — x_|_y(x2_|_y2)

Soit (x9,%0) un point distinct de l'origine et on note v :Jt_, t,[— R? la solution maximale de
(E) vérifiant v(0) = (zo, yo)-
. Justifier lexistence et I'unicité de ~.

1
2. On pose N(z,y) = 2% + y* et h = N o~. Exprimer h/(t) en fonction de v(¢). En déduire
que t_ = —o0.

w

Quelle équation différentielle (F') vérifie h ? Expliciter les solutions maximales de (F).

4. Montrer que ¢4 est fini et que lim;_;  ||v(¢)| = 4+o00. Montrer aussi que v(t) — (0,0)
quand t — —oo. Donner lallure des solutions de (F).

Probleme 2.
On considere ’équation différentielle

/
po= —VV(q
w {2 TV
q = p
ot (¢,p) € R" x R™, V € C?2(R",R) et VV = (g—x, . 5)7‘2) € R"™ est le gradient de V. Dans
tout ce qui suit, ||.|| désigne la norme euclidienne sur R™. On suppose dans la suite que le

“potentiel” V est positif sur tout R™.

1. Soit vo(t) = (qo(t),po(t)) la solution maximale de (H) vérifiant 70(0) = (xo,y0), définie
sur son intervalle maximal d’existence noté Iy =Jt_,¢[. Justifier son existence et son
unicité.
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. Pour tout (¢,p) € R?", on pose H(q, p) = ||p||>+V (q). Notons ho(t) = Ho~(t). Calculer

pour tout ¢ € Iy, hy(t). En déduire que hg est une constante, que I’on notera Ey sur Iy.

. Montrer qu’il existe Cy > 0 tel que pour tout t € I,

1/2
oMz = (lao®)[12 + llpo()[2)"* < Colt] + Co.

. En déduire que Iy = R, i.e. que les solutions maximales sont définies sur R.

5. Montrer que si V(q) — 400 quand ||g|| — +o0, alors toutes les solutions (maximales) de

(H) sont bornées sur R.

. Sit— v(t) = (q(t),p(t)) est une solution de (H), on appelle “énergie” E la constante

E = Ho~(t). Une solution t — ~(t) = (q(t), p(t)) est dite “captive” ssi elle est bornée sur
R. Montrer que si V admet un minimum local strict en zg € R", alors il existe € > 0 tel
que pour tout E € [V (29),V (20) + €[, il existe une solution captive d’énergie E. Illustrer
ce résultat par un dessin.

Indication : Poser Ey = V(zp). Montrer par des raisonnements topologiques qu’il existe
e > 0 tel que la composante connexe V. de V~1([0, Ey + ¢€[) contenant z, soit bornée
et l'on ait V(V,) = [Ep, Ey + €[. Remarquer alors que les solutions v de (H) vérifiant
7(0) = (q,0) avec g € V. sont bornées.

Probleme 3.
On considere ’équation différentielle

oll a: R — R} est continue.

1.

o N o o

Justifier que pour tout (g, z¢) € R?, il existe une unique solution maximale x : I — R de
(x) telle que z(tg) = xg.

. Determiner les solutions maximales constantes de (x).

. Soit y une solution maximale non constante de (x), définie sur I. Déduire de la question

précédente qu'il existe un unique k € Z tel que pour tout ¢ € I, (k—3)m < y(t) < (k+1)m.
Montrer que y est donc définie sur R = I et est strictement croissante. On notera donc
I- =limy o y(t) et Iy = limy 4o y(t).

On suppose ici que a admet une limite non nulle en +00. Montrer que I = (k + %)77
Montrer de méme que si o admet une limite non nulle en —oo, alors I = (k — %)71

On suppose dorénavant que «a(t) = e!. Que peut-on dire sur [_, 1, ?

Soit yo € R\ (Z + 3)m. Expliciter la solution maximale y de () vérifiant y(0) = yo.
Calculer lim;_,_ y(t). Conclusion ?



