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Chapitre 1

Rappels sur les espaces normés

Ce chapitre préliminaire est consacré à quelques rappels sur la topologie des espaces vec-
toriels normés sur R, qui sont le cadre naturel dans lequel on développera le calcul différentiel
dans les prochains chapitres. L’exemple canonique est bien sur R

n auquel on consacrera de nom-
breux exemples, mais on s’interessera aussi aux espaces de fonctions qui sont d’usage constant
en analyse. On supposera que le lecteur a en tête quelques rudiments de topologie des espaces
métriques, à savoir les notions d’ouverts, fermés, interieur, adhérence, continuité, etc. Sauf
mention contraire, tout les espaces vectoriels que l’on rencontrera seront 1 sur R, ce qui est
suffisant pour le calcul différentiel.

1.1 Espaces Vectoriels normés, espaces de Banach

Définition 1.1.1 Un espace vectoriel normé réel est la donnée d’un R-espace vectoriel E et
d’une application (appelée norme)

‖.‖ :

{
E → R

+

x 7→ ‖x‖
vérifiant les axiomes suivants :

1. ∀ x ∈ E, ‖x‖ = 0 ⇒ x = 0.

2. ∀ (x, λ) ∈ E × R, ‖λx‖ = |λ|‖x‖.
3. ∀ x, y ∈ E, ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Remarques.

Sur un même espace vectoriel E, il peut exister plusieurs normes, on prend alors bien soin de
distinguer leurs notations, exemple ‖.‖1 et ‖.‖2.

Un espace vectoriel normé est un cas particulier d’espace métrique : on peut vérifier que

d(x, y) = ‖x− y‖

définit bien une distance d sur E si ‖.‖ est une norme.

1Les théorèmes énoncés dans ce chapitre sont en fait aussi valables sur C, voir cours d’analyse fonctionnelle.
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4 CHAPITRE 1. RAPPELS SUR LES ESPACES NORMÉS

Ceci fait donc de tout espace normé un espace topologique où l’on pourra désormais parler
d’ouverts, fermés, de compacts, de continuité etc.
Exemples.

– Le R-espace vectoriel R
n muni de ‖.‖1, ‖.‖∞ ou ‖.‖2 est normé si l’on a posé

‖x‖1 =
n∑

i=1

|xi|, ‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

,

‖x‖∞ = max
1≤i≤n

|xi|.

– Si X est un espace métrique compact,

C(X) = {fonctions continues f : X → R}

est un espace normé pour la norme ‖f‖∞ = supx∈X |f(x)|.
– Si l1(N) désigne l’espace vectoriel des suites (xi)i∈N telles que

∑
i∈N

|xi| converge, c’est

un espace normé si on le munit de la norme ‖x‖1 =
∑+∞

i=0 |xi|.
– L’espace des matrices carrées réelles Mn(R) muni par exemple de

‖M‖∞ = max
i,j

|Mij |

est normé.

Proposition 1.1.1 Un sous-ensemble U ⊂ E d’un espace vectoriel normé (E, ‖.‖) est ouvert
ssi pour tout x ∈ U , il existe ε > 0 tel que

B(x, ε) := {y ∈ E : ‖x− y‖ < ε} ⊂ U .

Remarques. L’ensemble B(x, ε) est traditionnellement appelé boule ouverte centrée en x et de
rayon ε. C’est bien un ouvert au sens de la définition précédente (le vérifier). On notera aussi

BF (x, ε) := {y ∈ E : ‖x− y‖ ≤ ε}

la boule fermée correspondante. La proposition précédente découle directement de la définition
métrique des ouverts. On peut se demander sous quelles conditions deux normes sur un même
espace vectoriel induisent la même topologie (i.e. la même notion d’ouvert). La réponse est
donnée dans ce qui suit.

Définition 1.1.2 Deux normes ‖.‖1 et ‖.‖2 sur un même espace E sont dites équivalentes ssi
il existe deux constantes c1, c2 > 0 tel que pour tout x ∈ E,

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1.

Vérifier par exemple que ‖.‖1, ‖.‖2 et ‖.‖∞ sont des normes équivalentes sur R
n.

Proposition 1.1.2 Si deux normes sur un même espace sont équivalentes, elles induisent la
même topologie.
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Un résultat essentiel pour nous est le suivant.

Théorème 1.1.1 Si E est un espace vectoriel de dimension finie (sur R), alors toutes les
normes sur E sont équivalentes.

Ce théorème a une importance capitale pour la pratique : toutes les questions topologiques (ou-
verture, fermeture, continuité, convergence de suites etc...) peuvent être traitées en choisissant
la norme qu’il nous plaira, en général la plus adaptée au problème.

On rappelle qu’une suite de vecteurs (xn)n∈N d’un espace normé (E, ‖.‖) est dite convergente
dans E pour la norme ‖.‖ ssi il existe x̃ ∈ E tel que pour tout ε > 0, il existe n0 ∈ N tel que

∀n ≥ n0, ‖x̃− xn‖ ≤ ε.

Une autre notion dont nous aurons parfois besoin en calcul différentiel est celle de complétude.
Elle est liée aux suites de Cauchy.

Définition 1.1.3 Une suite de vecteurs (xn)n∈N d’un espace vectoriel normé (E, ‖.‖) est dite
de Cauchy ssi pour tout ε > 0, il existe n0 ∈ N tel que pour tout n,m ≥ n0, ‖xn − xm‖ ≤ ε. Si
toutes les suites de Cauchy de E sont convergentes, E est dit complet ou espace de Banach.

L’interêt de la complétude est manifeste lorsque l’on aborde des questions de convergence de
séries de vecteurs dans un espace normé. On rappelle qu’une série de vecteurs

∑

n∈N

xn

d’un espace normé E est dite convergente (pour ‖.‖) ssi la suite de ses sommes partielles

sn =

n∑

i=0

xi

est convergente dans E (pour ‖.‖). Une série de vecteurs
∑

n∈N
xn de E est dite normalement

convergente (pour ‖.‖) ssi la série à termes positifs
∑

n∈N
‖xn‖ est convergente.

Proposition 1.1.3 Un espace normé E est complet si et seulement si toute série normalement
convergente est convergente.

On ne peut passer sous silence le cas de la dimension finie.

Théorème 1.1.2 Tout espace vectoriel normé de dimension finie est complet.

1.2 Continuité

Définition 1.2.1 Soient (E, ‖.‖E) et (F, ‖.‖F ) deux espaces normés, et D ⊂ E. Une applica-
tion f : D → F est dite continue ssi elle vérifie l’une des trois propriétés équivalentes suivantes.
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1. L’image réciproque par f de tout ouvert de (F, ‖.‖F ) est un ouvert de D pour la topologie
induite sur D par celle de (E, ‖.‖E).

2. Pour tout x0 ∈ D, pour tout ε > 0, il existe δ > 0 tel que

‖x− x0‖E ≤ δ et x ∈ D ⇒ ‖f(x) − f(x0)‖F ≤ ε.

3. Pour tout x0 ∈ D, pour toute suite (un)n∈N d’éléments de D telle que limn→+∞ un = x0,
on a limn→+∞ f(un) = f(x0).

Lorsque E et F sont de dimension finie, cette définition est indépendante de la norme choi-
sie. Une classe d’applications qui méritent une attention particulière est celle des applications
linéaires. Si E et F sont des espaces vectoriels, on notera L(E,F ) l’espace vectoriel des applica-
tions linéaires de E dans F . Si E et F sont normés, on notera Lc(E,F ) l’espace des applications
linéaires continues de E dans F . La continuité est caractérisée par la proposition suivante.

Proposition 1.2.1 Soient (E, ‖.‖E) et (F, ‖.‖F ) deux espaces normés, une application T ∈
L(E,F ) est continue ssi elle vérifie l’une des conditions suivantes équivalentes.

1. T est continue en 0E.

2. T est bornée sur la boule unité fermée de E.

3. Il existe M > 0 tel que ‖T (x)‖F ≤M‖x‖E pour tout x ∈ E.

Ceci permet de définir une norme naturelle ‖.‖Lc(E,F ) (appelée aussi norme d’opérateur ou
norme subordonnée aux normes ‖.‖E et ‖.‖F ) sur Lc(E,F ) (le vérifier) en posant

‖T‖Lc(E,F ) = sup
‖x‖E≤1

‖T (x)‖F .

C’est une norme d’algèbre compatible avec la composition. Si E,F,G sont trois espaces normés
et f : E → F , g : F → G deux applications linéaires continues, on a

‖g ◦ f‖Lc(E,G) ≤ ‖g‖Lc(F,G)‖f‖Lc(E,F ).

Il est important de noter le cas de la dimension finie :

Théorème 1.2.1 Si E est de dimension finie, alors toute application linéaire E → F est
continue.

Un résultat fondamental sur les espaces d’applications linéaires est le suivant.

Théorème 1.2.2 Si F est complet, alors Lc(E,F ) est complet pour la norme d’opérateur.

Une application intéressante est la suivante.

Proposition 1.2.2 Soit E un espace de Banach et f : R → R une fonction entière dont le
développement en série en 0 est

f(x) =
+∞∑

n=0

anx
n.

Pour tout T ∈ Lc(E,E), la série
∑

n∈N
anT

n est normalement convergente dans Lc(E,E) pour
la norme d’opérateur, et on note f(T ) sa limite.
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L’intérêt de ce genre de proposition est de pouvoir faire du calcul fonctionnel, i.e. donner un
sens à des expressions comme eA ou sin(A) lorsque A est une matrice carrée. Voici un autre
exemple utile en pratique.

Proposition 1.2.3 Soit E un espace de Banach et T ∈ Lc(E,E) tel que ‖T‖ < 1. Alors I−T
est inversible dans Lc(E,E) et son inverse est donné par la somme de la série :

(I − T )−1 =

+∞∑

n=0

T n.

1.3 Questions de compacité

On termine ce chapitre en rappelant quelques résultats liés à la compacité.

Définition 1.3.1 Soit (X, d) un espace métrique. Une partie K de X est compacte ssi de toute
suite déléments de K, on peut extraire une suite convergente dans K.

La notion de compacité est liée à la continuité par la proposition fondamentale suivante.

Proposition 1.3.1 Soit (X, d) un espace métrique et K un compact de X. Toute fonction
continue f : K → R est bornée et atteint ses bornes.

Dans un espace vectoriel normé de dimension finie, les compacts sont caractérisés :

Théorème 1.3.1 Les compacts d’un espace normé de dimension finie sont les fermés bornés.

En particulier, en dimension finie, toute boule BF (x, r) fermée est compacte. Ce résultat est
faux en dimension infinie, et c’est même une propriété caractéristique des espaces de dimension
finie comme en témoigne le théorème de Riesz :

Théorème 1.3.2 Un espace vectoriel normé est de dimension finie ssi sa boule unité fermée
est compacte.

Un corollaire de ceci est qu’en dimension infinie, les compacts sont forcément d’interieur vide
(donc pas bien gros). Les questions de compacité en dimension infinie sont en général liées à
des variantes du théorème d’Ascoli, voir cours d’analyse fonctionnelle.

1.4 Notations de Landau

Il sera commode pour les prochains chapitres d’utiliser les notations suivantes. Soit E,F
un espace normé et a ∈ E. Soit f : E → F et g : E → R

+, deux fonctions définies au voisinage
de a. On dit que f est négligeable devant g lorsque x tend vers a, noté

f(x) = o(g(x))

ssi pour tout x voisin de a, il existe ε(x) ≥ 0 avec limx→a ε(x) = 0 tel que

‖f(x)‖F ≤ ε(x)g(x).
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On dit que f est dominée par g lorsque x tend vers a, noté

f(x) = O(g(x))

ssi il existe M > 0 tel que pour tout x voisin de a,

‖f(x)‖F ≤Mg(x).

1.5 Exercices divers

Exercice 0
Soit E,F,G trois espaces normés, et f : E × F → G une application bilinéaire. Montrer que f
est continue ssi

‖f‖ := sup
‖x‖E≤1,‖y‖F≤1

‖f(x, y)‖G < +∞.

Montrer que ‖.‖ est une norme sur l’espace Lc(E,F ;G) des applications bilinéaires continues.
Montrer que Lc(E,F ;G) est complet si G l’est.

Exercice 1.
Vérifier que

‖x‖1 =

n∑

i=1

|xi|, ‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

et ‖x‖∞ = max
1≤i≤n

|xi|

sont 3 normes équivalentes sur R
n.

Exercice 2.
Soit (E, ‖.‖) un espace normé, montrer que l’application “norme”

{
E → R

x 7→ ‖x‖

est continue. Montrer que l’application d : E × E → R définie par

d(x, y) = ‖x− y‖

est aussi continue.

Exercice 3.
Les fonctions suivantes R

2 → R sont-elles continues ?

Sinon, préciser pourquoi (à l’aide de suites etc.)

(1.1) f(x, y) =

{
x3+y3

x2+y2 si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)
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(1.2) g(x, y) =

{
x4y4

(x2+y4)3
si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

(1.3) h(x, y) =

{
(x+y)2

(x2+y2)
si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

(1.4) w(x, y) =

{ sin x sin y√
|x|+

√
|y|

si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

Exercice 4.

On munit R
n de ‖x‖1 =

∑n
i=1 |xi|, expliciter la norme d’opérateur associée sur

L(Rn,Rn) ' Mn(R).

Même question lorsque R
n est munit de ‖.‖∞.

Exercice 5.
On considère l’espace Mn(R) munit d’une norme d’opérateur ‖.‖ au choix.

– Montrer que GLn(R) est un ouvert de (Mn(R), ‖.‖).
– Montrer que “l’inversion” {

GLn(R) → GLn(R)

M 7→M−1

est continue.

Exercice 6.
Montrer que pour tout M ∈ Mn(R),

exp(M) :=
+∞∑

n=0

Mn

n!

a bien un sens et définit une application continue de Mn(R) dans lui même. On pourra pour
cela commencer par montrer que pour tout n ∈ N, M 7→ Mn est continue, puis utiliser un
raisonnement de convergence uniforme.

Exercice 7.
Soit (X, d) un espace métrique compact et α > 0. On dit que f : X → R est α-Hölder sur X
ssi

sup
x 6=y

|f(x) − f(y)|
d(x, y)α

<∞.

On munit l’espace Cα(X) des fonctions α-Hölder sur X de la norme

‖f‖α := sup
x∈X

|f(x)| + sup
x 6=y

|f(x) − f(y)|
d(x, y)α

.
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Montrer alors que (Cα(X), ‖.‖α) est un espace de Banach.

Exercice 8.
Soit f : R

n → R une fonction continue telle que

lim
‖x‖→+∞

f(x) = +∞.

Montrer qu’il existe x0 ∈ R
n tel que f(x0) = infx∈Rn f(x).



Chapitre 2

Calcul Différentiel

Ce chapitre constitue le coeur du cours. On y trouvera toutes les notions de base relatives
à la différentiabilité dans les espaces vectoriels normés.

2.1 Différentiabilité

Définition 2.1.1 Soient E,F deux espaces vectoriels normés, U un ouvert de E et

f : U → F.

Soit a ∈ U , f est dite différentiable au point a ssi il existe L ∈ Lc(E,F ) telle que

f(a+ h) = f(a) + L(h) + o(‖h‖E), lorsque h→ 0.

Remarques. Si f est différentiable au point a, l’application L est unique et appelée différentielle
ou application linéaire tangente à f au point a, on la note daf . Si f est différentiable en tout
point de U , on dit que f est différentiable sur U . Si l’application

df :

{U → Lc(E,F )

a 7→ daf

est continue (Lc(E,F ) est muni de sa norme d’opérateur), on dit que f est de classe C1 sur
U . En dimension finie, l’existence d’une différentielle ne dépend pas du choix de la norme. Si
f : E → F est une application linéaire continue, f est évidemment différentiable sur E et pour
tout x ∈ E, dxf = f , i.e. df est constante.

Proposition 2.1.1 Une application différentiable en un point est continue en ce point.

La réciproque est bien sur fausse, penser au cas de la dimension 1.

Définition 2.1.2 Soient E,F deux espaces normés, U un ouvert de E et f : U → F . Soit
a ∈ U , v ∈ E, si la fonction de la variable réelle

t 7→ f(a+ tv)

11
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est dérivable en t = 0, on dit que f est dérivable en a suivant la direction v et on note

∂vf(a) = lim
t→0

f(a+ tv) − f(a)

t
∈ F.

Proposition 2.1.2 Si f : U → F est différentiable en a ∈ U , alors f est dérivable en a suivant
toute direction v ∈ E et

∂vf(a) = daf(v).

La réciproque est fausse. La dérivabilité suivant toute direction n’implique même pas la conti-
nuité. Voir les exercices. Les propositions suivantes montrent essentiellement que somme, pro-
duit et composées de fonctions différentiables sont différentiables.

Proposition 2.1.3 Soient E,F deux espaces normés, U un ouvert de E et f, g : U → F .
Soient λ, µ ∈ R, si f, g sont différentiables en a ∈ U alors λf + µg est différentiable en a et on
a la formule

da(λf + µg) = λdaf + µdag.

Proposition 2.1.4 Soit E un espace normé, U ⊂ E un ouvert et f, g : U → R. Si f, g sont
différentiables en a ∈ U alors fg est différentiable en a et on a

da(fg) = f(a)dag + g(a)daf.

Proposition 2.1.5 Soient E,F,G trois espaces normés et U un ouvert de E, V un ouvert de
F . Soient f : U → F et g : V → G tels que f(U) ⊂ V. Si f est différentiable en a ∈ U et g
différentiable en f(a) alors g ◦ f est différentiable en a et on a

da(g ◦ f) = (df(a)g) ◦ (daf).

Définition 2.1.3 Soit E un espace normé, U et V deux ouverts de E et f : U → V une
application. On dit que f est un C1-difféomorphisme de U sur V ssi f : U → V est une bijection
de classe C1 sur U dont l’inverse f−1 est de classe C1 sur V. Pour tout x ∈ U , dxf est alors
inversible dans Lc(E,E) et on a pour tout y ∈ V,

dy(f
−1) = (df−1(y)f)−1.

Ainsi la différentielle d’une application réciproque se déduit de la différentielle de l’applica-
tion directe par inversion. On peut vérifier qu’en dimension 1 on retrouve la formule usuelle.
Enoncons maintenant un résultat fondamental de topologie des espaces normés.

Théorème 2.1.1 Soit E un espace normé et U un ouvert de E. Les propositions suivantes
sont équivalentes.

– L’ouvert U est connexe.
– L’ouvert U est connexe par arcs.
– L’ouvert U est connexe par lignes brisées.
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On rappelle qu’un arc joignant x, y ∈ U est une application continue γ : [a, b] ⊂ R → U telle
que γ(a) = x et γ(b) = y. Une ligne brisée γ dans U joignant x à y est un arc linéaire par
morceaux : il existe une subdivision finie t0 = a < t1 < . . . < tp = b de l’intervalle [a, b] et p+ 1
vecteurs x0 = x, x1, . . . , xp = y ∈ U tels que pour tout 0 ≤ i ≤ p− 1, γ([ti, ti+1]) ⊂ U avec

γ|[ti,ti+1[(t) =
ti+1 − t

ti+1 − ti
xi −

t− ti

ti+1 − ti
xi+1.

La longueur de γ est
∑p−1

i=0 ‖xi − xi+1‖. On peut alors définir, si U est un ouvert connexe, la
distance dU (x, y) comme étant la borne inf. des longueurs des lignes brisées dans U joignant x
à y. Ces définitions sont motivées par le théorème fondamental suivant (dit des accroissements
finis).

Théorème 2.1.2 Soit U un ouvert connexe d’un espace vectoriels normé E, et soit f : U → F

une application différentiable. Supposons qu’il existe M ≥ 0 tel que supx∈U ‖dxf‖ ≤ M , alors
pour tout x, y ∈ U , on a

‖f(x) − f(y)‖ ≤MdU (x, y).

Ce théorème a deux corollaires importants.

Corollaire 2.1.1 Soit U un ouvert convexe d’un espace vectoriel normé E, et soit f : U → F

une application différentiable. Supposons qu’il existe M ≥ 0 tel que supx∈U ‖dxf‖ ≤ M , alors
pour tout x, y ∈ U , on a

‖f(x) − f(y)‖ ≤M‖x− y‖.

Corollaire 2.1.2 Soit F un espace vectoriel normé et f : [a, b] → F continue, dérivable sur
]a, b[. Supposons qu’il existe M ≥ 0 tel que supx∈]a,b[ |f ′(x)| ≤M , alors

‖f(a) − f(b)‖ ≤M |a− b|.

2.2 Calcul en dimension finie

On suppose dans cette section que E est de dimension finie n, ce qui modulo le choix d’une
base revient à dire que E = R

n. On notera (e1, . . . , en) la base canonique de R
n et (dx1, . . . , dxn)

sa base duale où dxi : R
n → R avec

dxi(h1, . . . , hn) = hi.

2.2.1 Dérivées partielles

Proposition 2.2.1 Soit f : U ⊂ R
n → F une application différentiable en a ∈ U , où est un

ouvert. On note la dérivée de f en a suivant ei sous la forme ∂f
∂xi

(a) ∈ F . On l’appelle dérivée
partielle i-ème de f en a. On a alors la formule

daf =

n∑

i=1

∂f

∂xi
(a)dxi.
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Comme on l’a fait remarquer précédemment, l’existence des n dérivées partielles en a n’implique
absolument pas la différentiabilité. On a en revanche le résultat suivant trés utile en pratique.
La preuve est basée sur l’inégalité des accroissements finis.

Théorème 2.2.1 Soit f : U ⊂ R
n → F , où U est un ouvert. Si toutes les dérivées partielles

de f existent au voisinage et sont continues en un point a ∈ U , alors f est différentiable en a

et daf est donnée par la formule précédente. Si les conditions précédentes sont vérifiées pour
tout a ∈ U , f est de classe C1 sur U .

Ce théorème permet de ramener l’étude de la différentiabilité à des simples problèmes de
continuité. Il est d’usage constant dans tous les problèmes usuels. Dans le cas où F est lui aussi
de dimension finie, on peut préciser les écritures.

Proposition 2.2.2 Soit f = (f1, . . . , fm) : U ⊂ R
n → Rm différentiable en a ∈ U . On appelle

matrice jacobienne Jaf de f au point a, la matrice de daf dans les bases canoniques de R
n et

R
m . On a alors

Jaf =




∂f1

∂x1
(a) . . . ∂f1

∂xn
(a)

...
...

∂fm

∂x1
(a) . . . ∂fm

∂xn
(a)


 ,

et pour tout h = (h1, . . . , hn) ∈ R
n, daf(h) = (Jaf)( th).

Le théorème de composition précisé en dimension finie donne lieu à une règle de calcul dite
“règle de la chaine”.

Proposition 2.2.3 Soit f = (f1, . . . , fm) : U ⊂ R
n → R

m et g : V ⊂ R
m → R avec U ,V

ouverts tels que f(U) ⊂ V. Si f est différentiable en a ∈ U et g est différentiable en f(a), alors
on calcule les dérivées partielles de g ◦ f : U → R par la formule

∂(g ◦ f)

∂xj
(a) =

m∑

i=1

∂g

∂yi
(f(a))

∂fi

∂xj
(a).

2.2.2 Dérivées partielles d’ordre supérieur

Soit f : U ⊂ R
n → F une application. Si cela a un sens, on peut définir par récurrence des

dérivées partielles d’ordre supérieur p par

∂pf

∂xip . . . ∂xi1

:=
∂

∂xip

(
∂pf

∂xip−1
. . . ∂xi1

)
,

où (i1, . . . , ip) ∈ {1, . . . , n}p. Vu la lourdeur des notations, on préfère parfois adopter une
notation multi-indicielle en posant α = (i1, . . . , ip) ∈ {1, . . . , n}p, p = |α| et en notant

Dαf :=
∂pf

∂xip . . . ∂xi1

.

Une fonction f : U ⊂ R
n → F est dite de classe Cp sur U ssi toutes les dérivées partielles Dαf

avec |α| ≤ p existent et sont continues sur U . Remarquer qu’a priori, l’ordre dans lequel on
effectue les dérivations successives a son importance. On a toutefois le théorème suivant (dit
de Schwarz).
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Théorème 2.2.2 Soit f : U ⊂ R
2 → R avec U ouvert, et a ∈ U tel que

∂2f

∂x∂y
et

∂2f

∂y∂x

existent au voisinage de a et sont continues en a. Alors

∂2f

∂x∂y
(a) =

∂2f

∂y∂x
(a).

L’hypothèse de continuité en a est importante, il existe des contre-exemples, voir exercices. Un
corollaire bien utile pour nous est le suivant.

Corollaire 2.2.1 Soit f : U ⊂ R
n → F , avec F de dimension finie, une application de classe

Cp sur U , alors les dérivées partielles Dαf jusqu’à l’ordre p ne dépendent pas de l’ordre de
dérivation.

On dit qu’une fonction est de classe C∞ ssi elle est de classe Cp pour tout p ∈ N.

2.3 Différentielle seconde et au-delà

Se donnant U un ouvert d’un espace normé E et f : U → F (où F est normé) de classe
C1, on peut se demander si df : U → Lc(E,F ) est à son tour différentiable, auquel cas la
différentielle de df serait une application

d(df) : U → Lc (E,Lc(E,F )) .

Les choses sont heureusement plus simples qu’il n’y parait grâce à la proposition suivante.

Proposition 2.3.1 Soient E,F deux espaces normés. On note Lc(E,E;F ) l’espace des appli-
cations bilinéaires continues de E × E → F muni de sa norme naturelle1. L’espace vectoriel
Lc (E,Lc(E,F )) est muni de sa norme d’opérateur. L’application





Lc(E,E;F ) −→ Lc (E,Lc(E,F ))

f 7→
{

E→Lc(E,F )
x 7→f(x,.)

est un isomorphisme isométrique dit “canonique à gauche”.

Ceci nous mène aux définitions.

Définition 2.3.1 Soient E,F deux espaces normés, et f : U → F une application C1. f est
dite deux fois différentiable en a ∈ U ssi df : U → Lc(E,F ) est différentiable en a. On note
alors

d2
af := da(df).

Si f est deux fois différentiable sur U et si x 7→ d2
xf est continue, f est dite de classe C2.

1Voir exercice 9 du chapitre précédent.
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Remarquer que d2
xf ∈ Lc (E,Lc(E,F )) ainsi pour tout h ∈ E, d2

xf(h) ∈ Lc(E,F ). L’application

(h, k) 7→ (d2
xf)(h)(k)

est bilinéaire et on note aussi cela par d2
xf(h, k). Noter que la place de h et k a a priori de

l’importance. On laisse au lecteur le soin de vérifier que combinaisons linéaires, composées et
produit de fonctions C2 sont C2 quand cela a un sens.

Théorème 2.3.1 Si f : U → F est deux fois différentiable en x ∈ U , alors pour tout (h, k) ∈
E2,

(d2
xf)(h, k) = (d2

xf)(k, h),

i.e. la différentielle seconde en x est bilinéaire symétrique.

En pratique, le cas de la dimension finie s’étudie à l’aide du résultat suivant.

Proposition 2.3.2 Soit f : U ⊂ R
n → F deux fois différentiable en x ∈ U . Alors les derivées

partielles d’ordre deux en x existent et pour tout h, k ∈ R
n, on a

(d2
xf)(h, k) =

∑

1≤i,j≤n

∂2f

∂xi∂xj
(x)hikj .

L’application f est C2 en x ssi les derivées partielles d’ordre deux existent au voisinage de x
et sont continues en x.

La proposition précédente montre qu’en dimension finie, les deux définitions que nous avons
données sont bien les mêmes. Le théorème 2.3.1 combiné au résultat précédent montre que si
f est deux fois différentiable, alors les dérivées croisées existent et sont égales. C’est une autre
version du théorème de Schwarz vu plus haut. L’interêt du calcul différentiel d’ordre deux est
pleinement justifié par le théorème suivant.

Théorème 2.3.2 (Formule de Taylor-Young) Soit f : U → F deux fois différentiable en x ∈ U .
Alors pour tout h ∈ E voisin de 0, on a

f(x+ h) = f(a) + (dxf)(h) +
1

2
(d2

xf)(h, h) + o(‖h‖2).

L’expression ci-dessus précise le comportement local de f au voisinage de x, c’est ce qu’on
appelle un développement limité à l’ordre 2. On peut généraliser ces définitions par récurrence
à l’ordre quelconque : f sera dite de classe Cn si elle est Cn−1 et si la différentielle n−1-ième est
continuement différentiable. La différentielle n-ième de f , notée dn

xf est alors une application
multilinéaire symétrique de En → F . Dire que f est Cn revient à dire en dimension finie que
toutes les dérivées partielles j’usqu’a l’ordre n existent et sont continues, ce qui est la définition
donnée plus haut. On peut de même démontrer une formule de Taylor à l’ordre quelconque
analogue à celle vue plus haut. Il existe aussi d’autres formules de Taylor, de nature plus globale.
Contentons nous d’énoncer ici la formule la plus utile en pratique, celle de dite de Taylor avec
reste intégral.
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Soit f : U ⊂ R
p → R

q une fonction de classe Ck, a ∈ U et h ∈ R
p. On appelle puissance

symbolique d’ordre n (1 ≤ n ≤ k) l’expression

[
p∑

i=1

hi
∂f

∂xi
(a)

][n]

:=
∑

i1+i2+...+ip=n

n!

i1! . . . ip!
hi1

1 . . . h
ip
p

∂nf

∂xi1
1 . . . ∂x

ip
p

(a).

Théorème 2.3.3 Soit f : U ⊂ R
p → R

q une fonction de classe Ck, a ∈ U et h ∈ R
p tel que le

segment [a, a+ h] ⊂ U . Alors on a

f(a+ h) = f(a) +

[
p∑

i=1

hi
∂f

∂xi
(a)

]
+

1

2!

[
p∑

i=1

hi
∂f

∂xi
(a)

][2]

+ . . .+
1

(k − 1)!

[
p∑

i=1

hi
∂f

∂xi
(a)

][k−1]

+

∫ 1

0

(1 − t)k−1

(k − 1)!

[
p∑

i=1

hi
∂f

∂xi
(a+ th)

][k]

dt.

L’interêt de la formule précédente est qu’elle n’est pas seulement valable localement, mais vaut
pour tout h tel que [a, a+ h] ⊂ U .

2.4 Recherche d’extremums locaux

Dans ce qui suit U désignera a priori un ouvert d’un espace normé E.

Définition 2.4.1 Soit E un espace normé et f : U ⊂ E → R une application. Soit a ∈ U . On
dit que f admet un minimum local (ou relatif) en a ssi il existe V voisinage de a tel que pour
tout x ∈ V,

f(x) ≥ f(a).

On dit que f admet un minimum local strict (ou relatif strict) en a ssi il existe V voisinage de
a tel que pour tout x ∈ V avec x 6= a,

f(x) > f(a).

On a des définition analogues pour maximum local et maximum local strict en renversant les
inégalités.

Théorème 2.4.1 Si f : U → R est différentiable en a ∈ U et si a est un minimum ou maximum
local, alors

daf = 0.

La réciproque est bien sur fausse. Il est trés important que U soit un ouvert. Lorsque daf = 0
on dit que a est un point critique de f .

Si ϕ : E × E → R est bilinéaire symétrique, pour tout h ∈ E, on pose

Q[ϕ](h) := ϕ(h, h).

L’application Q[ϕ] est appelée forme quadratique associée à ϕ.
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Définition 2.4.2 On dit que Q[ϕ] est positive ssi pour tout h ∈ E,

Q[ϕ](h) ≥ 0.

On a une définition analogue pour négative.

Définition 2.4.3 On dit que Q[ϕ] est définie ssi l’application
{

E → E∗

x 7→ ϕ(x, .)

est un isomorphisme bicontinu entre E et son dual topologique E∗.

Proposition 2.4.1 Si E est de dimension finie, Q[ϕ] est définie positive ssi pour tout h ∈
E \ {0},

Q[ϕ](h) > 0.

Proposition 2.4.2 Si Q[ϕ] est définie positive, alors il existe λ > 0 tel que pour tout h ∈ E,

Q[ϕ](h) ≥ λ‖h‖2.

Si Q[ϕ] est définie négative, on a les mêmes résultats en renversant les inégalités.

Théorème 2.4.2 Soit f : U → R, a ∈ U et f deux fois différentiable en a.
– Si f admet un minimum local en a, alors Q[d2

af ] est positive.
– Si Q[d2

af ] est définie positive, alors f admet un minimum local strict en a.

L’intérêt principal du théorème précedent est de donner une condition suffisante du second ordre
pour avoir un extremum local. En dimension finie, la différentielle seconde de f est donnée par
la matrice Hessienne de f : pour tout h = t(h1, . . . , hn) ∈ R

n,

d2
af(h, h) = thHah,

où

Ha =




∂2f
∂x2

1

(a) . . . ∂2f
∂x1∂xn

(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂x2
n
(a)


 .

La matrice Ha étant réelle symétrique, elle est diagonalisable en base orthomormée i.e. il
existe P ∈ On(R) tel que Ha = tPDP où D est diagonale. Il est alors clair que Q[d2

af ]
est définie positive ssi toutes les valeurs propres de Ha sont strictement positives. Ceci conduit
en dimension 2 au critère de Monge pour étudier la nature des points critiques.

Théorème 2.4.3 Soit f : U ⊂ R
2 → R deux fois différentiable en a ∈ U , point critique de f .

Posons

R =
∂2f

∂x2
(a), S =

∂2f

∂x∂y
(a), T =

∂2f

∂y2
(a).

– Si RT − S2 > 0 et R > 0, f a un minimum local strict en a.
– Si RT − S2 > 0 et R < 0, f a un maximum local strict en a.
– Si RT − S2 < 0, f n’a pas d’extremum local en a, c’est un point selle ou col.
– Si RT − S2 = 0 on ne peut conclure, c’est un point critique dit dégénéré.
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2.5 Exercices

Exercice 1.
L’application ϕ : R → R définie par

ϕ(t) =

{
t2 sin

(
1
t

)
si t 6= 0

0 si t = 0

est-elle continue, différentiable, C1 ?

Exercice 2.
Montrer que f : R

2 → R définie par

f(x, y) =

{
y2

x si x 6= 0

y si x = 0

est dérivable dans toutes les directions en (0, 0) sans même être continue en (0, 0).

Exercice 3.
Les applications suivantes R

2 → R sont-elles différentiables, C1 ?

(2.1) f(x, y) =

{
x2y3

x2+y2 si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0).

(2.2) g(x, y) =

{
x sin y

y si y 6= 0

x si y = 0.

(2.3) h(x, y) =




y2 sin

(
x
y

)
si y 6= 0

0 si y = 0.

Exercice 4.
Soit ‖.‖ une norme sur un espace vectoriel normé E. Montrer que ϕ : x 7→ ‖x‖ n’est pas
différentiable en 0.

Exercice 5.
Soient E,F,G trois espaces normés et ψ : E × F → G une application bilinéaire continue.
Montrer que ψ est de classe C1 et calculer sa différentielle. Application :

– Soit (H, 〈., .〉) un espace préhilbertien réel, et f : H \ {0} → R est définie par f(x) =
〈x, x〉1/2. Montrer que f est C1, donner sa différentielle.

– Montrer que pour tout n ∈ N, l’application Mn(R) → Mn(R) définie par M 7→ Mn est
C1 et calculer sa différentielle.
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Exercice 6.
Montrer que

φ :

{
]0,+∞[×]0, 2π[→ R

2 \ ([0,+∞[×{0})
(r, θ) 7→ (r cos(θ), r sin(θ))

est un C1-difféomorphisme, expliciter pour cela son inverse.

Exercice 7.
Soit E,F deux espaces normés et U ⊂ E un ouvert connexe. On considère f : U → F

différentiable et telle que pour tout x ∈ U , dxf = 0. Montrer que f est constante.

Exercice 8.
Soit f : R

n → R une application différentiable en 0, et telle que pour tout x ∈ R
n \ {0}, pour

tout t > 0,

f(tx) = tf(x).

Montrer que f est linéaire.

Exercice 9.
Montrer que l’application

I :

{
GLn(R) → GLn(R)

M 7→M−1

est de classe C1, expliciter sa différentielle.

Exercice 9 bis.
Montrer que l’application

I :

{
GLn(R) → GLn(R)

M 7→M−1

est de classe C2, expliciter sa différentielle seconde. Généraliser à l’ordre quelconque.

Exercice 10.
Montrer que l’application

φ :

{Mn(R) → Mn(R)

M 7→ exp(M)

est de classe C1, calculer sa différentielle. On pourra cela commencer par étudier le cas de
M 7→Mn (voir exercice 5) et utiliser le résultat de l’exercice 12.

Exercice 11.
Montrer que l’application

ψ :

{
GLn(R) ×Mn(R) → R

(A,B) 7→ Tr (A−1B2)

est de classe C1, calculer sa différentielle.



2.5. EXERCICES 21

Exercice 11 bis.
Montrer que l’application

ψ :

{Mn(R) → R

M 7→ det(M)

est de classe C1, calculer sa différentielle.

Exercice 12.
Soit U ⊂ R

n un ouvert convexe et (fn)n∈N
: U → R une suite de fonctions différentiables telle

que

– Il existe a ∈ U tel que (fn(a)) soit convergente.
– La suite (dfn) converge uniformément sur U vers ϕ : U → L(Rn,R).

Montrer que (fn) tend uniformément sur U vers g différentiable sur U et dg = limn→+∞ dfn.

Exercice 13.
Montrer que la formule

f(x, y) =
+∞∑

n=0

1

1 + (x− n)2 + (y − n)2

définit une fonction de classe C1 sur R
2, calculer ses dérivées partielles.

Exercice 14.
Soit f : R

n \ {0} → R différentiable telle que pour tout t > 0, on ait f(tx) = tαf(x) où α > 0.
Montrer que pour tout x ∈ Rn,

dxf(x) = αf(x).

Exercice 15.
Soit E l’espace de Banach des fonctions numériques continues sur [0, 1], munit de la norme
‖f‖∞ = supx∈[0,1] |f(x)|. Montrer que la fonctionnelle

T :

{
E → R

f 7→
∫ 1
0 |f(t)|2dt

est de classe C1 sur E, et calculer sa différentielle.

Exercice 16.
Soit E l’espace de Banach des fonctions numériques continues sur [0, 1], toujours munit de la
norme ‖f‖∞ = supx∈[0,1] |f(x)|. Soit K : [0, 1] × [0, 1] → R une fonction continue. Montrer que
l’application P : E → E définie par

P (f)(x) =

∫ 1

0
K(x, t) exp(f(t))dt

est de classe C1 sur E, calculer sa différentielle.
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Exercice 17.
Montrer que la fonction f : R

2 → R définie par

f(x, y) =

{
xy x2−y2

x2+y2 si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

est de classe C1. Montrer que les dérivées secondes

∂2f

∂x∂y
(0, 0) et

∂2f

∂y∂x
(0, 0)

existent mais ne sont pas égales.

Exercice 18.
On notera ϕ le changement de coordonnées

ϕ :

{
R
∗ × R → R

2

(r, θ) 7→ (r cos(θ), r sin(θ)).

Soit f de classe C2 sur R
2, on appelle Laplacien de f la fonction

∆f :=
∂2f

∂x2
+
∂2f

∂y2
.

Montrer que pour tout (r, θ) ∈ R
∗ × R,

(∆f) ◦ ϕ(r, θ) =
∂2(f ◦ ϕ)

∂r2
(r, θ) +

1

r

∂(f ◦ ϕ)

∂r
(r, θ) +

1

r2
∂2(f ◦ ϕ)

∂θ2
(r, θ).

Exercice 19.
Trouver toutes les fonctions f : R

2 → R de classe C1 telle que

∂f

∂x
+ 2x

∂f

∂y
= 0.

Utiliser pour cela le difféomorphisme ϕ(x, y) = (x, y + x2).

Exercice 20.
Soient a < b deux réels et I un intervalle compact de R. Soit (t, x) 7→ f(t, x) une fonction
numérique définie au voisinage de [a, b] × I, et telle que ∂f

∂x existe et est continue sur [a, b] × I.
On note ϕ : I → R la fonction définie par

ϕ(x) =

∫ b

a
f(t, x)dt.

– Montrer que ϕ est continue.
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– montrer que ϕ est C1 et que pour tout x ∈ I,

ϕ′(x) =

∫ b

a

∂f

∂x
(t, x)dt.

Enoncer un théorème plus général où la variable x vit dans un ouvert de R
n.

Exercice 21.
Montrer à l’aide d’exercices précédents que la formule

Γ(x) =

∫ +∞

0
e−ttx−1dt

définit une fonction Γ de classe C∞ sur ]0,+∞[.

Exercice 22.
Etudier les extremums locaux puis globaux de

f :

{
R

2 −→ R

(x, y) 7→ x4 + y4 − 2(x− y)2.

Exercice 23.
Même chose avec

f :

{
R

2 −→ R

(x, y) 7→ x3 + 3xy2 − 15x− 12y + 2.

Exercice 24.
Même chose avec

f :

{
R

3 −→ R

(x, y, z) 7→ (x− z2)e−(x2+y2)/2.

Exercice 25.
Soit ‖.‖ une norme sur R

n. On note

B = {x ∈ R
n : ‖x‖ < 1} et ∂B = {x ∈ R

n : ‖x‖ = 1}.

Soit f : R
n → R différentiable telle que f |∂B soit constante. Montrer qu’il existe x0 ∈ B tel que

dx0
f = 0.

Exercice 26.
Soit E un espace vectoriel normé, U ⊂ E un ouvert convexe, et f : U → R une fonction
différentiable. On dit que f est convexe si, pour tous x, y ∈ U et tout t ∈ [0, 1], on a :

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y).
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1. Montrer que f est convexe si et seulement si elle satisfait, pour tous x, x0 ∈ U :

f(x) ≥ f(x0) + dx0
f(x− x0).

2. On suppose que f est convexe. Montrer que si dx0
f = 0, alors f admet en x0 un minimum

absolu, puis que l’ensemble des points où df s’annule est un convexe sur lequel f est
constante.

Exercice 27.
Soit f : R

n → R de classe C2. On notera le Laplacien par

∆f :=

n∑

i=1

∂2f

∂x2
i

.

1. Montrer que si ∆f > 0 sur B, alors on a pour tout x ∈ B,

f(x) < sup
y∈∂B

f(y).

2. Montrer que si ∆f = 0 sur B, alors pour tout x ∈ B,

inf
y∈∂B

f(y) ≤ f(x) ≤ sup
y∈∂B

f(y).

Exercice 28.
Soient E et F des espaces vectoriels normés.

– Montrer que f : E → F de classe C2 est affine si et seulement si on a : ∀x ∈ E, d2
xf = 0.

– Soit B ∈ L2(E,F ). Trouver toutes les fonctions f : E → F de classe C2 telles que pour
tout x ∈ E, d2

xf = B.

Exercice 29.
Soit f : E −→ F et g : F −→ G de classe C2. Calculer d2

x(g ◦ f).



Chapitre 3

Inversion locale, fonctions implicites

Ce petit chapitre est consacré à deux théorèmes fondamentaux du calcul différentiel dont
les applications à l’analyse et la géométrie différentielle sont nombreuses. Commencons par
rappeler le théorème du point fixe dans les espaces complets qui est l’outil central de la preuve
du théorème d’inversion locale.

Théorème 3.0.1 Soit (X, d) un espace métrique complet, et soit f : X → X une application
k-contractante (0 < k < 1) i.e. pour tout x, y ∈ X,

d(f(x), f(y)) ≤ kd(x, y).

Alors f admet un unique point fixe dans X.

3.1 L’inversion locale

La différentielle d’une fonction en un point étant une approximation linéaire de celle ci au
voisinage de ce point, il est raisonnable de penser que les propriétés de cette diférentielle en ce
point (injectivité, surjectivité, rang) impliquent des propriétés locales de cette fonction. C’est
ce qu’affirme le théorème suivant.

Théorème 3.1.1 Soient E,F deux espaces de Banach, U un ouvert de E et f : U → F une
application C1. Si a ∈ U est tel que daf : E → F est un isomorphisme bicontinu, alors il existe
un ouvert V ⊂ U contenant a et un ouvert W contenant f(a) tels que f : V → W soit un
C1-difféomorphisme.

En d’autres termes, si daf est inversible, alors f l’est aussi localement. Ce résultat n’a bien sur
aucune valeur globale. On a toutefois le corollaire suivant, dit théorème d’inversion globale.

Corollaire 3.1.1 Soient E,F deux espaces de Banach, U un ouvert de E et f : U → F une
application injective de classe C1. Alors les propriétés suivantes sont équivalentes :

– V = f(U) est un ouvert et f : U → V est un C1-difféomorphisme.
– Pour tout x ∈ U , dxf est un isomorphisme bicontinu.
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L’hypothése d’injectivité est importante, il existe des contre-exemples, voir exercices. Dans le
cas de la dimension finie, on peut aisément préciser les questions de régularité.

Proposition 3.1.1 Soit f : U ⊂ R
n → R

n de classe Cp avec p ≥ 1. Si a ∈ U est tel que
daf : R

n → R
n est un isomorphisme alors il existe un ouvert V ⊂ U contenant a et un ouvert

W contenant f(a) tels que f : V → W soit un Cp-difféomorphisme, i.e. f−1 : W → V existe et
est Cp.

On peut de même énoncer un résultat d’inversion globale en classe Cp.

Corollaire 3.1.2 Soit U un ouvert de R
n et f : U → R

n une application injective de classe
Cp. Alors les propriétés suivantes sont équivalentes :

– V = f(U) est un ouvert et f : U → V est un CP -difféomorphisme.
– Pour tout x ∈ U , dxf est un isomorphisme bicontinu.

3.2 Fonctions implicites

Soient E1, E2, F trois espaces de Banach, U ⊂ E1 × E2 un ouvert, et f : U → F une
application. On dit que f admet une différentielle partielle par rapport à la première variable
au point (x0, y0) ∈ U ssi l’application partielle fy0

: x 7→ f(x, y0) est différentiable en x0. On
note

∂1f(x0, y0) := dx0
fy0
.

On a une définition analogue pour la deuxième variable.

Théorème 3.2.1 Soient E1, E2, F trois espaces de Banach, U ⊂ E1 × E2 un ouvert, et f :
U → F une application C1. Soit (a, b) ∈ U tel que f(a, b) = 0 et supposons que ∂2f(a, b) est un
isomorphisme bicontinu de E2 sur F . Il existe un ouvert V ⊂ U contenant (a, b), un ouvert W
de E1 contenant a, une application C1, g : W → E2 tel que pour tout (x, y) ∈ V,

f(x, y) = 0 ssi x ∈ W et y = g(x).

Le théorème des fonctions implicites montre essentiellement que l’ensemble des solutions de
f(x, y) = 0 peut être localement vu comme le graphe {(x, g(x)) : x ∈ W} d’une fonction C1,
pourvu que la différentielle partielle par rapport à la deuxième variable soit un isomorphisme
bicontinu. On peut preciser cet énoncé en dimension finie.

Théorème 3.2.2 Soit U ⊂ R
p × R

q un ouvert, et

f : (x1, . . . , xp; y1, . . . , yq) 7→ (f1(x; y), . . . , fq(x; y)) ∈ R
q

une application Ck, k ≥ 1. Soit (a, b) ∈ U tel que f(a, b) = 0 et supposons que

∣∣∣∣∣∣∣∣

∂f1

∂y1
(a; b) . . . ∂f1

∂yq
(a; b)

...
. . .

...
∂fq

∂y1
(a; b) . . .

∂fq

∂yq
(a; b)

∣∣∣∣∣∣∣∣
6= 0.
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Il existe un ouvert V ⊂ U contenant (a, b), un ouvert W de R
p contenant a, une application

Ck, g : W → R
q tel que pour tout (x, y) ∈ V,

f(x, y) = 0 ssi x ∈ W et y = g(x).

Ce théorème est trés utilisé avec q = 1 et p = 1, 2. Il montre que les courbes de R
2 et les

surfaces de R
3 définies “implicitement” par une équation du type f(x, y) = 0 sont localement

des courbes et des surfaces paramétrées. Il est aussi possible de calculer les dérivées partielles
de g, par exemple si q = 1 et p = 2 on a au voisinage de a,

∂g

∂x1
(x1, x2) = −

∂f
∂x1

(x1, x2, g(x1, x2))
∂f
∂y (x1, x2, g(x1, x2))

,
∂g

∂x2
(x1, x2) = −

∂f
∂x2

(x1, x2, g(x1, x2))
∂f
∂y (x1, x2, g(x1, x2))

.

En itérant ces calculs, on peut calculer des développements limités de g au voisinage de a.

3.3 Exercices

Exercice 1.
Soit f : R

2 \ {0} → R
2 définie par f(x, y) = (x2 − y2, 2xy). Montrer que f est un C∞-

difféomorphisme local au voisinage de tout point de R
2\{0}. Est-ce un difféomorphisme global ?

Exercice 2.
Même questions avec g : R

2 \ {0} → R
2 définie par g(x, y) = (ex cos(y), ex sin(y)).

Exercice 3.
Soit f : R

n → R
n de classe C1 tel que f − Id soit k-contractante avec 0 < k < 1. Montrer que

f est un C1-difféomorphisme global.

Exercice 4.
Soit f : R

3 → R
3 définie par

f(x, y, z) = (e2y + e2z, e2x − e2z , x− y).

Montrer que f est un C∞-difféomorphisme de R
3 sur f(R3) que l’on explicitera.

Exercice 5.
L’espace C0([0, 1]) est munit de ‖f‖∞ = supx∈[0,1] |f(x)| et C1([0, 1]) est munit de

‖f‖C1 = ‖f‖∞ + ‖f ′‖∞.

Montrer que l’application

ϕ :

{
C1

0 ([0, 1]) → C0([0, 1])

f 7→ f ′ + f2

est un C1-difféomorphisme local au voisinage de 0, où C1
0 ([0, 1]) désigne

{f ∈ C1([0, 1]) : f(0) = 0}.
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Exercice 6.
Soit f : R

2 → R, (x, y) 7→ sin(y) + xy4 + x2. Montrer qu’il existe ϕ : U → R de classe C∞

(où U est un ouvert contenant 0) telle que pour tout x ∈ U , ϕ(x) est l’unique solution y de
f(x, y) = 0. Donner un développement limité à l’ordre 6 en 0 de ϕ.

Exercice 7.
Montrer que y3 + y + x = 0 définit implicitement y en fonction de x et que ϕ : x 7→ y = ϕ(x)
est C∞ sur R.

Exercice 8.
Même chose avec y3 + (x2 + 1)y + x4 = 0.

Exercice 9.
Calculer les dérivées partielles premières de ϕ : (x, y) 7→ z définie implicitement au voisinage
de (2,−e) par

ln z = x+ y + z − 1.

Exercice 10.
Montrer que Γ = {(x, y) ∈ R

2 : x3 + y3 + 3xy − 1} est au voisinage de (0, 1) le graphe d’une
fonction ϕ : x 7→ y avec ϕ(0) = 1. Donner un développement limité à l’ordre 3 de ϕ en 0.
Dessiner Γ au voisinage de (0, 1).

Problème

Soit E un espace euclidien de dimension finie. On notera (x|y) le produit scalaire sur E et
‖x‖ = (x|x)1/2 la norme euclidienne associée. Dans ce qui suit f désigne une application de
classe C1 de E dans lui-même telle que pour tout x ∈ E et tout h ∈ E on ait

(dxf(h)|dxf(h)) = (h|h).

1. Montrer que pour tout (x, y) ∈ E2, on a ‖f(x) − f(y)‖ ≤ ‖x− y‖.
2. Montrer que pour tout a ∈ E, il existe un voisinage Ua de a tel que la restriction de f à
Ua est un difféomorphisme de classe C1 de Ua sur f(Ua).

3. En déduire qu’il existe un voisinage ouvert Va ⊂ Ua tel que la restriction de f à Va vérifie
pour tout (x, y) ∈ V 2

a ,

‖f(x) − f(y)‖ = ‖x− y‖.

4. Pour tout (x, y) ∈ V 2
a , on pose

ϕ(x, y) = ‖f(x) − f(y)‖2.

Montrer que la dérivée partielle ∂2ϕ
∂x∂y (x, y) existe sur V 2

a . En déduire que pour tout (x, y) ∈
V 2

a et pour tout (h, k) ∈ E2,

(dxf(h)|dyf(k)) = (h|k).
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5. Soit h ∈ E. Calculer ‖dxf(h) − dyf(h)‖2 pour tout x, y ∈ Va. En conclure que la
différentielle de f est constante sur Va.

6. Montrer que la différentielle de f est constante sur E. En déduire que f est une isométrie
affine, i.e. il existe une application linéaire A : E → E préservant les distances et x0 ∈ E

tel que pour tout x ∈ E,
f(x) = A(x) + x0.

7. Montrer que f est un C∞-difféomorphisme de E sur E.
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Chapitre 4

Equations différentielles

Ce chapitre est consacré aux équations différentielles dites “ordinaires”. On y trouvera les
théorèmes usuels d’existence et d’unicité ainsi que quelques méthodes classiques d’étude quali-
tative. Une section complète est dédiée aux équations linéaires et aux méthodes de résolution
spécifiques.

4.1 Définitions et terminologie

Définition 4.1.1 Soient k, p des entiers, et I ⊂ R un intervalle. Soit U ⊂ R
p×. . .×R

p = (Rp)k

un ouvert, et F : I × U → R
p une application. On appelle solution de l’équation différentielle

résolue d’ordre k

(4.1) y(k) = F (t, y, y′, . . . , y(k−1))

tout couple (J, y) où

1. J ⊂ I est un intervalle non-trivial.

2. y : J → R
p est une fonction k-fois dérivable sur J .

3. Pour tout t ∈ J , (y(t), y′(t), . . . , y(k−1)(t)) ∈ U , et

y(k)(t) = F (t, y(t), y′(t), . . . , y(k−1)(t)).

A priori, l’intervalle d’existence J d’une solution (J, y) n’est pas égal à I. Considérer par exemple
l’équation y′ = y2 qui entre dans le cadre précédent avec k = 1, p = 1, I = R et F (t, y) = y2,
alors pour tout x0 6= 0, la fonction

y0(t) =
x0

x0(t0 − t) + 1

vérifie l’équation, mais n’est pas définie sur R, bien que I = R. Ceci nous mène à la notion de
solution maximale.

Définition 4.1.2 Une solution (J, y) de (4.1) est dite maximale si pour toute solution (J̃ , ỹ)
telle que J ⊂ J̃ et ỹ|J = y, on a nécéssairement J̃ = J .
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Il existe une méthode simple pour ramener toute équation du type (4.1) à une équation d’ordre
1, qui consiste à augmenter le nombre de variables. En effet, (J, y) est solution de (4.1) ssi
(J, Y ) est solution de

Y ′ = G(t, Y )

où on a posé
Y (t) = (y(t), y′(t), . . . , y(k−1)(t)) ∈ (Rp)k

et
G(t, y1, y2, . . . , yk) = (y2, y3, . . . , yk, F (t, y1, . . . , yk)).

Ce procédé est à retenir et s’utilise souvent dans le cas des équations linéaires scalaires (voir
plus bas).

4.2 Equations linéaires

Soit I ⊂ R un intervalle et A : I → Mn(R), B : I → R
n des applications. Une équation

différentielle linéaire d’ordre 1 est une équation du type

(4.2) Y ′ = A(t)Y +B(t).

Une solution de (4.2), conformément au §1 est la donnée d’un couple (J, Y ), où J ⊂ I est
un intervalle, et Y : J → R

n est une fonction dérivable telle que pour tout t ∈ J , Y ′(t) =
A(t)Y (t) + B(t). Le théorème fondamental de cette théorie est le suivant (dit théorème de
Cauchy linéaire).

Théorème 4.2.1 Soient A : I → Mn(R), B : I → R
n continues. Pour tout t0 ∈ I, pour tout

Y0 ∈ R
n, il existe une unique fonction Y : I → R

n, de classe C1 telle que Y (t0) = Y0 et pour
tout t ∈ I,

Y ′(t) = A(t)Y (t) +B(t).

Ce théorème affirme que les solutions maximales sont définies sur tout I, et il y a unicité de
la solution satisfaisant la condition initiale Y (t0) = Y0. Le problème d’explosion en temps fini
n’existe pas pour les équations linéaires. Un corollaire important du théorème de Cauchy est
le suivant.

Proposition 4.2.1 Soit A : I → Mn(R), continue. L’ensemble des solutions H de l’équation
homogène

Y ′ = A(t)Y

est un sous-espace vectoriel de C1(I,Rn), de dimension finie n.

Comme conséquence on notera la proposition suivante.

Corollaire 4.2.1 Sous les hypothèses du théorème de Cauchy (4.2.1), l’ensemble des solutions
S de (4.2) est un espace affine de dimension finie n. Si Ỹ est une solution particulière de (4.2),
alors

S = Ỹ + H,
au sens où toute solution de (4.2) est somme de Ỹ et d’une solution de l’équation homogène.
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Il suffit donc, après avoir résolu l’équation homogène, d’être capable d’exhiber une solution de
l’équation complète pour les avoir toutes.

4.2.1 Variation des constantes, Wronskien

Théorème 4.2.2 Soient V1, V2, . . . , Vn ∈ C1(I,Rn), n solutions de l’équation homogène

Y ′ = A(t)Y,

où A : I → Mn(R) est continue. Posons pour tout t ∈ I, W (t) = det(V1(t), . . . , Vn(t)). Alors
on a pour tout t, t0 ∈ I,

W (t) = W (t0) exp

(∫ t

t0

TrA(u)du

)
.

La famille V1, . . . , Vn est une base des solutions ssi pour tout t ∈ I, W (t) 6= 0, ssi il existe
t0 ∈ I tel que W (t0) 6= 0.

Le déterminant W (t) est appelé “Wronskien”. Sa non-annulation lorsque V1, . . . , Vn est libre est
à la base de la méthode de “Variation des constantes” due à Lagrange. Elle consiste à chercher
une solution particulière de (4.2) connaissant au préalable une base V1, . . . , Vn des solutions de
l’équation homogène. On cherche une solution sous la forme

Ỹ (t) = µ1(t)V1(t) + . . .+ µn(t)Vn(t),

où les µi : I → R sont des fonctions à valeurs scalaires et de classe C1. On observe alors que Ỹ
est solution de l’équation complète (4.2) ssi

n∑

i=1

µ′i(t)Vi(t) = B(t),

qui est un système linéaire d’inconnues µ′1, . . . , µ
′
n résoluble car det(V1(t), . . . , Vn(t)) 6= 0. Après

intégration, on obtient les µi et donc une solution particulière de l’équation complète.

Examinons les cas concrets des équations linéaires scalaires d’ordre 1 et 2.

Equations d’ordre 1.
Elles sont du type

y′ = a(t)y + b(t).

La solution générale de l’équation homogène est

y(t) = C exp

(∫ t

t0

a(u)du

)
,

où t0 ∈ I et C est une constante. L’espace des solutions est de dimension 1. La méthode de
variation des constantes nous dicte de chercher une solution particulière ỹ(t) sous la forme

ỹ(t) = C(t) exp

(∫ t

t0

a(u)du

)
,
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ce qui conduit à résoudre

C ′(t) = exp

(
−
∫ t

t0

a(u)du

)
B(t).

Equations d’ordre 2.
Elles sont du type

y′′(t) = a(t)y′ + b(t)y + c(t).

Contrairement au cas de l’ordre 1, il n’existe pas en général de méthode systématique pour
résoudre l’équation homogène. Si on a su (par les moyens du bord) trouver deux solutions
linéairement indépendantes u et v, on cherche alors une solution particulière sous la forme

ỹ(t) = λ(t)u(t) + µ(t)v(t),

c’est à dire en faisant varier les deux constantes. Sous forme vectorielle, l’équation devient

Y ′ = A(t)Y +B(t),

avec Y = (y, y′), B(t) = (0, c(t)) et

A(t) =

(
0 1
b(t) a(t)

)
.

Une base des solutions de l’équation homogène est donc U = (u, u′), V = (v, v′) et la variation
des constantes se ramène à résoudre le système

{
λ′(t)u(t) + µ′(t)v(t) = 0
λ′(t)u′(t) + µ′(t)v′(t) = c(t).

dont on sait déja qu’il est de Cramer. Notons au passage que le Wronskien

W (t) =

∣∣∣∣
u(t) v(t)
u(t)′ v(t)′

∣∣∣∣ ,

vérifie dans ce cas précis pour tout t, t0 ∈ I

W (t) = W (t0) exp

(∫ t

t0

a(u)du

)
,

relation utile dans de nombreux sujets de concours.

4.2.2 Equations à coefficients constants

La méthode de variation des constantes s’appliquant quel que soit le second membre, on
décrira la méthode specifique de résolution dans le cas homogène, c’est à dire pour les équations
du type

Y ′ = AY,

où Y : R → R
n et A ∈ Mn(R). La théorie est résumée dans le résultat suivant.
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Théorème 4.2.3 Soit Y0 ∈ R
n, t0 ∈ R. L’unique solution Y de Y ′ = AY vérifiant Y (t0) = Y0

est donnée pour tout t ∈ R par

Y (t) = exp ((t− t0)A)Y0.

L’intéret de la formule ci-dessus est surtout théorique. Décrivons la méthode de résolution
en pratique si A est diagonalisable (a priori sur C). On note λ1, λ2, . . . , λk ∈ R les valeurs
propres réelles de A (répétées avec multiplicité), et V1, V2, . . . , Vk ∈ R

n les vecteurs propres
associés. Soient µ1, . . . , µp, µ1, . . . , µp ∈ C les valeurs propres complexes conjuguées de A, dont
les vecteurs propres associés seront notés W1, . . . ,Wp,W1, . . . ,Wp ∈ C

n. On a donc n = 2p+ k.
On a l’observation suivante.

Proposition 4.2.2 Une base des solutions réelles de l’équation Y ′ = AY est donnée par les
n fonctions de la variable t

etλ1V1, . . . , e
tλkVk;<

(
eµ1tW1

)
,=
(
eµ1tW1

)
, . . . ,<

(
eµptWp

)
,=
(
eµptWp

)
.

Pour résoudre le problème de Cauchy Y (t0) = Y0, on cherche une combinaison linéaire Y des
fonctions ci-dessus vérifiant Y (t0) = Y0, ce qui se ramène à résoudre un système. Voir les
exercices pour des exemples de calcul concret.

Terminons cette section en décrivant le cas important des équations linéaires d’ordre 2 à coef-
ficients constants, c’est à dire des équations du type

(E) y′′ + ay′ + by = 0.

Cette classe d’équations se ramène à une équation linéaire vectorielle d’ordre 1. On préfère
cependant traiter le problème directement à l’aide du critère suivant.

Proposition 4.2.3 Posons P (X) = X2 + aX + b. Alors
– Si P a deux racines distinctes r1, r2 réelles, les solutions de (H) sont les fonctions t 7→
λer1t + µer2t, λ, µ ∈ R.

– Si P a une racine double réelle r, les solutions de (H) sont les fonctions t 7→ (λ+µt)ert,
λ, µ ∈ R.

– Si P a deux racines complexes conjuguées α± iβ, les solutions de (H) sont les fonctions
t 7→ λeαt cos(βt) + µeαt sin(βt), λ, µ ∈ R.

4.3 Equations non linéaires, théorie de l’existence

On reprend les notations du §1, où p est un entier, I est un intervalle ouvert de R, U est un
ouvert de R

p, et F : I × U → R
p est une application. On notera ‖.‖ une norme sur R

p. On se
limite aux équations dórdre 1, en vertu du principe de réduction expliqué au §1. On dira que
F est localement lipschitzienne en la seconde variable ssi pour tout (t0, x0) ∈ I × U , il existe
un voisinage V de (t0, x0) et une constante C > 0 telle que pour tout (t, x) et (t, x′) dans V,

‖F (t, x) − F (t, x′)‖ ≤ C‖x− x′‖.

On a le théorème suivant (dit de Cauchy-Lipschitz).



36 CHAPITRE 4. EQUATIONS DIFFÉRENTIELLES

Théorème 4.3.1 On suppose que F : I × U → R
p est continue et localement lipschitzienne

en la seconde variable. Alors pour tout (t0, x0) ∈ I ×U , il existe une unique solution maximale
(J, y) de l’équation différentielle

y′ = F (t, y)

avec J intervalle ouvert contenant t0 et y(t0) = x0.

L’unicité est riche de conséquences : deux solutions maximales prenant la même valeur en
un point t0 ∈ I sont égales. En particulier les courbes des solutions (appelées aussi courbes
intégrales, orbites intégrales) ne peuvent se croiser. Cette remarque rigidifie considérablement
la structure des orbites en petites dimensions (p ≤ 2).

L’hypothèse “localement lipschitzienne en la seconde variable” se vérifie en pratique à l’aide
de la remarque suivante.

Proposition 4.3.1 Si F : I × U → R
p est de classe C1, alors F est localement lipschitzienne

en la seconde variable.

Si F est de classe C1, alors en fait un résultat plus précis est valable, et montre en plus la
régularité des solutions par rapport aux conditions initiales.

Théorème 4.3.2 On suppose que F : I ×U → R
p est de classe C1. Alors pour tout (t0, x0) ∈

I × U , il existe ε > 0, un ouvert V ⊂ R
p contenant x0 tel que pour tout x ∈ V, il existe une

unique solution (J, yx) de l’équation différentielle

y′x = F (t, yx)

avec J = [t0 − ε, t0 + ε] et yx(t0) = x. De plus, pour tout t ∈ J , la fonction x 7→ yx(t) est de
classe C1.

Le théorème ci-dessus prouve de plus que le temps d’existence est localement uniforme par
rapport aux données initiales (si x est proche de x0 alors la solution yx vivra au moins aussi
longtemps que yx0

). La question du temps d’existence des solutions est cruciale dans les appli-
cations. Comme on l’a vu au §1, même si I = R, les solutions maximales peuvent exploser en
temps fini. Le théorème suivant (appelé principe de majoration a priori, ou principe de sor-
tie de tout compact) précise le comportement des solutions maximales au bord de l’intervalle
d’existence.

Théorème 4.3.3 Sous les hypothèses du théorème de Cauchy-Lipschitz, soit y :]a, b[⊂ I → R
p

une solution maximale avec b < sup I. Alors pour tout compact K ⊂ U , il existe un voisinage
V de b dans ]a, b[ tel que pour tout t ∈ V, y(t) 6∈ K.

Un conséquence immédiate est que si U = R
p alors la solution maximale vérifie

lim
t→b

‖y(t)‖ = +∞

si b < sup I. On a des résultats analogues pour la borne inf. a. En pratique, pour prouver
l’existence en tout temps des solutions maximales, on combine souvent le principe de sortie
de tout compact avec des estimées a priori des solutions obtenues avec le fameux lemme de
Gronwall.
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Théorème 4.3.4 Soient ϕ,ψ, y, 3 fonctions continues sur [a, b], à valeurs réelles positives.
On suppose que pour tout t ∈ [a, b],

y(t) ≤ ϕ(t) +

∫ t

a
ψ(u)y(u)du.

Alors pour tout t ∈ [a, b],

y(t) ≤ ϕ(t) +

∫ t

a
ϕ(s)ψ(s) exp

(∫ t

s
ψ(u)du

)
ds.

Voir les exercices et la section suivante pour des applications de ce lemme. Il est à noter que la
technique de preuve du lemme est à retenir (plus que le lemme lui même).

4.4 Equations autonomes et flots, complétude

On s’interesse ici au cas particulier et important des équations différentielles du type

y′ = F (y),

où F : R
p → R

p est de classe C1. On dit qu’un “champ de vecteurs” F : R
p → R

p est complet
ssi les solutions maximales de y′ = F (y) sont définies sur R. On a le théorème suivant.

Théorème 4.4.1 Supposons qu’il existe C1, C2 > 0 tel que ‖F (x)‖ ≤ C1‖x‖ + C2 pour tout
x ∈ R

p, alors F est complet.

Le théorème ci-dessus est un cas typique d’application de Gronwall+principe de sortie de tout
compact. Pour certains types de champs de vecteurs particuliers (cas hamiltoniens), on peut
obtenir la complétude sans hypothèses aussi restrictives de croissance, voir le problème 2. Si la
croissance du champ de vecteur F est “plus que linéaire”, on a pas en général complétude : si
on considére l’équation scalaire

y′ = yα

où α > 1, alors toutes les solutions non identiquement nulles explosent en temps fini. Soit
F : R

p → R
p un champ de vecteur C1 et complet. Pour tout x ∈ R

p et t ∈ R, on pose

Φt(x) := yx(t),

où yx est l’unique solution de y′ = F (y) vérifiant y(0) = x. On a le théorème suivant (dit des
flots).

Théorème 4.4.2 Pour tout x ∈ R
pet t, s ∈ R, on a Φt(Φs(x)) = Φt+s(x). Pour tout t ∈ R,

Φt : R
p → R

p est un C1-difféomorphisme.

Ce théorème est le point de départ de la théorie moderne des systèmes dynamiques continus,
appelés flots. Il reformule l’étude des solutions d’une équation différentielle autonome en termes
de l’étude de l’action d’une famille à un paramètre de difféomorphismes, le flot du champ de
vecteur F .
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4.5 Exercices

Exercice 1.
Résoudre les équations différentielles suivantes, préciser l’intervalle d’existence des solutions.
Existe-t-il des solutions définies sur R ?

1. y′ + y = sin(t).

2. (1 + t2)y′ = ty + 1 + t2.

3. (1 − t2)y′ + ty = 0.

Exercice 2.
Résoudre l’équation différentielle suivante.

y′′ + 2y′ + y = tet.

Exercice 3.
Résoudre, en fonction de α ∈ R, l’équation différentielle suivante

y′′ + y = sin(αt).

Exercice 4.
Soit ω ∈ R

+
∗ et f : R → R continue. Résoudre l’équation différentielle sur R

y′′ + ω2y = f(t).

Exercice 5.
Résoudre les systèmes différentiels suivants.

1.

{
x′ = 4x− 2y
y′ = x+ y

2.

{
x′ = x+ 8y + et

y′ = 2x+ y + e−3t

3.





x′ = x+ z

y′ = −y − z

z′ = 2y + z

Exercice 6.
Soit q : I → R une fonction continue. On considère l’équation différentielle

(E) y′′ + q(t)y = 0.

– Montrer que les zéros des solutions (non identiquement nulles) de (E) sont isolés dans I.
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– Soit y une solution non identiquement nulle de (E), et a < b deux zéros consécutifs de y
dans I. Montrer que ∫ b

a
|q(t)|dt > 4

b− a
.

Exercice 7.
Soit q : R

+ → R de classe C1. On suppose de plus que q est strictement positive et croissante.
Utiliser le lemme de Gronwall pour montrer que toutes les solutions de y′′ + q(t)y = 0 sont
bornées sur R.

Exercice 8.
Décrire les solutions de y′ = F (y) où F : R → R est définie par

F (x) =

{
0 si x < 0√
x si x ≥ 0.

Le théorème de Cauchy-Lipschitz s’applique-t-il ?

Problème 1.

On considère dans R
2 l’équation différentielle suivante :

(E)

{
x′ = −y + x(x2 + y2)
y′ = x+ y(x2 + y2)

Soit (x0, y0) un point distinct de l’origine et on note γ :]t−, t+[→ R
2 la solution maximale de

(E) vérifiant γ(0) = (x0, y0).

1. Justifier l’existence et l’unicité de γ.

2. On pose N(x, y) = x2 + y2 et h = N ◦ γ. Exprimer h′(t) en fonction de γ(t). En déduire
que t− = −∞.

3. Quelle équation différentielle (F ) vérifie h ? Expliciter les solutions maximales de (F ).

4. Montrer que t+ est fini et que limt→t+ ‖γ(t)‖ = +∞. Montrer aussi que γ(t) → (0, 0)
quand t→ −∞. Donner l’allure des solutions de (E).

Problème 2.

On considère l’équation différentielle

(H)

{
p′ = −∇V (q)
q′ = p

où (q, p) ∈ R
n × R

n, V ∈ C2(Rn,R) et ∇V = ( ∂V
∂x1

, . . . , ∂V
∂xn

) ∈ R
n est le gradient de V . Dans

tout ce qui suit, ‖.‖ désigne la norme euclidienne sur R
n. On suppose dans la suite que le

“potentiel” V est positif sur tout R
n.

1. Soit γ0(t) = (q0(t), p0(t)) la solution maximale de (H) vérifiant γ0(0) = (x0, y0), définie
sur son intervalle maximal d’existence noté I0 =]t−, t+[. Justifier son existence et son
unicité.
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2. Pour tout (q, p) ∈ R
2n, on pose H(q, p) = 1

2‖p‖2+V (q). Notons h0(t) = H◦γ0(t). Calculer
pour tout t ∈ I0, h′0(t). En déduire que h0 est une constante, que l’on notera E0 sur I0.

3. Montrer qu’il existe C0 ≥ 0 tel que pour tout t ∈ I0,

‖γ0(t)‖R2n =
(
‖q0(t)‖2 + ‖p0(t)‖2

)1/2 ≤ C0|t| + C0.

4. En déduire que I0 = R, i.e. que les solutions maximales sont définies sur R.

5. Montrer que si V (q) → +∞ quand ‖q‖ → +∞, alors toutes les solutions (maximales) de
(H) sont bornées sur R.

6. Si t 7→ γ(t) = (q(t), p(t)) est une solution de (H), on appelle “énergie” E la constante
E = H ◦γ(t). Une solution t 7→ γ(t) = (q(t), p(t)) est dite “captive” ssi elle est bornée sur
R. Montrer que si V admet un minimum local strict en z0 ∈ R

n, alors il existe ε > 0 tel
que pour tout E ∈ [V (z0), V (z0) + ε[, il existe une solution captive d’énergie E. Illustrer
ce résultat par un dessin.

Indication : Poser E0 = V (z0). Montrer par des raisonnements topologiques qu’il existe
ε > 0 tel que la composante connexe Vε de V −1([0, E0 + ε[) contenant z0 soit bornée
et l’on ait V (Vε) = [E0, E0 + ε[. Remarquer alors que les solutions γ de (H) vérifiant
γ(0) = (q, 0) avec q ∈ Vε sont bornées.

Problème 3.

On considère l’équation différentielle

(∗) x′ = α(t) cos2(x)

où α : R → R
+
∗ est continue.

1. Justifier que pour tout (t0, x0) ∈ R
2, il existe une unique solution maximale x : I → R de

(∗) telle que x(t0) = x0.

2. Determiner les solutions maximales constantes de (∗).
3. Soit y une solution maximale non constante de (∗), définie sur I. Déduire de la question

précédente qu’il existe un unique k ∈ Z tel que pour tout t ∈ I, (k− 1
2)π < y(t) < (k+ 1

2 )π.

4. Montrer que y est donc définie sur R = I et est strictement croissante. On notera donc
l− = limt→−∞ y(t) et l+ = limt→+∞ y(t).

5. On suppose ici que α admet une limite non nulle en +∞. Montrer que l+ = (k + 1
2 )π.

6. Montrer de même que si α admet une limite non nulle en −∞, alors l− = (k − 1
2)π.

7. On suppose dorénavant que α(t) = et. Que peut-on dire sur l−, l+ ?

8. Soit y0 ∈ R \ (Z + 1
2)π. Expliciter la solution maximale y de (∗) vérifiant y(0) = y0.

Calculer limt→−∞ y(t). Conclusion ?


