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Chapitre 1

Outillage

1. Langage mathématique

Les mathématiciens se sont récemment dotés d’'une langue symbolique
pour noter certaines constructions grammaticales de base, d'un usage im-
portant dans leur science. Nous allons passer en revue ces constructions, leur
notation, et leurs propriétés. La science étant 1’étude ce qu’on peut réfuter
(K. Popper), nous insisterons sur la notion de négation.

On appellera proposition un énoncé susceptible d’étre vrai ou faux. On
dit d’une proposition P qu’elle possede une valeur de vérité, notée V (vrai)
ou F (faux). On pourrait aussi noter 1 ou 0. On parle de logique binaire.

L’activité mathématique consiste a s’assurer que des propositions sont
vraies, sachant que d’autres — les hypotheses — le sont.

1.1. Connecteurs logiques. Ils permettent de combiner des proposi-
tions afin d’en fabriquer une nouvelle. Celle-ci est définie par sa table de
vérité, qui exprime sa valeur de vérité en fonction de celle des propositions
initiales.

Le premier exemple est la négation. Si P est une proposition, sa négation,
notée non P, est donnée par la table de vérité suivante :

P | non P
Vv F
F \%4

La premiere ligne de ce tableau dit que si la valeur de vérité de P est V, celle
de non P est I'; autrement dit, si P est vraie, non P est fausse. De méme,
quand P est fausse, non P est vraie.

Etant donnés deux propositions P et (), on définit leur conjonction
P et Q et leur disjonction P ou () par leurs tables de vérité :

P Q‘PetQ‘PouQ

Vv |4 V
V F F Vv
F VvV F V
F F F F

Le « et » est celui du langage usuel. Le « ou » mathématique est toujours
inclusif : « P ou Q) est vraie » signifie que 'une des deux propositions, au
moins, est vraie; elles peuvent étre vraies toutes les deux.

Enongons quelques propriétés de base, utiles pour nier les propositions.
— P et non(non P) ont méme valeur de vérité;

— non(P et Q) et (non P) ou (non @) ont méme valeur de vérité;

— non(P ou Q) et (non P) et (non @) ont méme valeur de vérité.
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2 1. OUTILLAGE

Ces affirmations se vérifient en établissant les tables de vérité de chacune
des propositions mentionnées. Par exemple, pour voir la deuxiéme propriété,
on établit la table suivante.

P Q|nonP nonQ | (nonP) ou(nonQ)

Vv F F F
V F F V V
v V F V
FF Vv V V

Et on observe que la derniere colonne est exactement I’opposée de celle de
Pet Q.

La base de tout raisonnement est la modélisation du « si..., alors... ».
Si P et @ sont deux propositions, on note leur implication P = Q (« P
implique Q », ou « si P alors Q »), définie par la table

P Q|P=Q
vV Vv %4
vV F F
F Vv \%4
F F |4

REMARQUES 1.

— L’implication n’est pas la déduction. Quand on dit « P est vraie, donc Q est
vraie », on sous-entend en fait le syllogisme suivant : « A est vraie; or je sais
que P = @ est vraie; donc Q est vraie ». L’implication modélise le transfert
de la véracité de P a celle de Q. Cela explique d’ailleurs pourquoi les deux
dernieres lignes de la table sont ce qu’elles sont : le fait que I'implication
P = @ soit vraie n’apporte aucune information quand P est fausse. Quand
on dit « s’il pleut, je vais au cinéma », on ne s’interdit quand méme pas d’y
aller quand il fait beau!

— Certains aiment écrire le symbole = a toutes les lignes d’un raisonnement :
c’est mal. Déja, c’est laid. Et puis, ce symbole = a une signification précise,
qui n’est pas celle qu’on veut parfois lui préter : il ne signifie pas « donc ».
Si on pense « donc », pourquoi ne pas écrire « donc » 7

On peut vérifier que P = @ a la méme valeur de vérité que (non P) ou @
(exercice : dresser les tables de vérités de ces propositions pour le voir). Et
en effet, « n’avancez pas ou je tire » veut bien dire « si vous avancez, je
tire ».

Les négations de ces propositions ont donc la méme valeur de vérité :
non(P = Q) a la méme table de vérité que P et non ). Ainsi, pour nier une
implication, on montre que P peut étre vraie sans que Q soit vraie.

DEFINITION 1 (contraposée, réciproque). Soit P = @ une implication.
— Sa contraposée est (non Q) = (non P).
— Sa réciproque est QQ = P.

On peut voir que I'implication et sa contraposée ont la méme table de
vérité. Cela débouche sur la méthode de démonstration par contraposée :
pour démontrer P = (@, il est parfois plus facile de démontrer non Q =
non P, et cela revient pourtant au méme.
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EXEMPLE 1. Soit n un entier. On veut montrer que si n? est pair, n est
pair. La contraposée, plus naturelle, s’énonce ainsi : si n est impair, n? est
impair. On la vérifie en remarquant que le nombre impair n s’écrit n = 2p—+1,
avec p entier, de sorte que n? = 4p® +4p+ 1 est manifestement impair. Cela
prouve que si n? est pair, n est pair.

Par contre, une implication et sa réciproque ne sont pas reliées entre
elles : il n’y a aucun lien entre leurs valeurs de vérité.

Un dernier pour la route : I’équivalence. Si P et () sont deux propositions,
on note leur équivalence P < @Q (« P équivaut a Q », ou « P si et seulement
si Q »), définie par la table

P Q|P&Q
VvV 1%
vV F F
F Vv F
F F 1%

On voit que P < @ est vraie lorsque P et (Q ont méme valeur de vérité.
On dit alors que P et Q sont équivalentes. Et ainsi, P et @ sont équivalentes
si, et seulement si, leur équivalence est vraie.

On voit aussi que P < @ est vraie si et seulement si P = Q et Q = P
sont vraies. Démontrer une équivalence revient donc a prouver une implica-
tion et sa réciproque. On parle de raisonnement par double implication.

EXEMPLE 2. Soit n un entier. On veut montrer que n? est pair si et
seulement si n est pair. On a vu 'implication = dans ’exemple précédent.
Reste & voir I'implication réciproque : si n est pair, n? est pair. A nouveau,
si n est pair, on écrit n = 2p avec p entier, de sorte que n? = 4p? est manifes-
tement pair. Cela prouve 'implication <, et donc finalement 1’équivalence
voulue.

Parfois, on peut raisonner par équivalence, c’est-a-dire passer de ’hy-
pothese a la conclusion par une chaine d’équivalences. Mais il convient de
ne pas en abuser (surtout si on n’a besoin que d’une implication). D’abord,
ca ne marche pas si souvent. Et puis c’est périlleux, source d’erreur et diffi-
cile a rédiger. Le raisonnement par double implication est plus simple, plus
naturel, plus str.

Que retenir de tout ceci?

Enoncé indispensable 1 : négations

— La négation de « P et Q » est « (non P) ou (non Q) ».
— La négation de « P ou Q » est « (non P) et (non Q) ».
— La négation de « P implique Q » est « P et (non Q) ».
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Enoncé indispensable 2 : sur implication

— L’implication « P implique Q » est équivalente a sa contraposée
« (non Q) implique (non P) ».

— L’équivalence « P équivaut a Q » signifie une double implication :
« (P implique Q) et (Q implique P) ».

1.2. Avec des ensembles. Sans entrer dans les détails, un ensemble
E est une collection d’objets. Un objet  de E est un élément de F : on note
x € F (« x appartient a E »). Les connecteurs logiques ont une traduction
ensembliste assez claire.

Quand on dispose de deux ensembles A et B, on peut réunir tous leurs
objets dans un méme ensemble AU B, 'union de A et B. On peut aussi consi-
dérer ’ensemble AN B des objets qu’ils ont en commun : c’est I'intersection
de A et B. Par construction,

— x € AU B si et seulement six € Aouz € B;

— x € AN B si et seulement si x € A et x € B.

Si A est un ensemble dont tous les éléments appartiennent & un ensemble
E, on dit que A est une partie de E ou que A est inclus dans E, ce que 'on
note A C E. L’inclusion se traduit par une implication : z € A implique
rze k.

On dit que deux ensembles A et B sont égaux s’ils sont les mémes élé-
ments. Cela revient a dire que les éléments de A appartiennent a B et les
éléments de B appartiennent & A : égalité A = B traduit une double
inclusion, A C B et B C A. Au niveau des éléments, cela revient & une
double implication d’appartenance, c’est-a-dire & une équivalence : x € A si
et seulement si x € B.

Quand un objet x de E n’appartient pas a A, on note = ¢ A. Le com-
plémentaire de A dans F, noté E\ A, est

E\A={z € E|z¢ A},

cette notation désignant l'ensemble des = de E tels que z ¢ A. Quand
I’ensemble E est clair dans le contexte, on note simplement A€. Ainsi, pour
un objet x de E, x € A si et seulement si non (z € A) : la négation logique
se traduit par le passage au complémentaire ensembliste.

Les ensembles apparaissent dans les propositions mathématiques via
deux types de quantificateurs.

DEFINITION 2 (quantificateurs). Soit P(x) une proposition dépendant
d’un objet z de I'’ensemble FE.

«Vr € E, P(x) » est la proposition disant que tous les éléments de E
vérifient la propriété P.

« 3z € E, P(z)» est la proposition disant que l'un (au moins) des
éléments de E vérifie la propriété P.

L’expression Vx € E se lit « pour tout x de E », tandis que dx € E
se lit « il existe x dans E tel que ». La notation admet des variantes : on
note indifféremment Vz € E, P(z) ou Vo € E P(x) ou Vo € E : P(x) ou
(Vx € E)(P(x))...
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ExXEMPLE 3. Les quantificateurs permettent bien str d’indiquer qu’un
ensemble E possede au moins un élément ; il suffit d’écrire : « dx € E ».
Mais comment dire que E possede au plus un élément ?

Premier essai : « 3z1 € E, non(3xe € E) ». Incorrect. En effet quand
un mathématicien prend un objet 1, puis un objet xo méme avec un nom
différent, il a pu reprendre le méme sous un autre nom, comme dans : « Soient
k=2et £ =2 ». Donc cet énoncé est... toujours faux.

Deuxieéme essai : « dx; € E, non(Jzy € E, v # x1) ». Incorrect. Cet
énoncé affirme en particulier qu’il y a un z1 dans FE, donc il dit aussi que
FE possede au moins un élément, ce qui n’est pas la méme chose qu’au plus
un car E pourrait étre vide. En fait, il signifie que E posséde un et un seul
élément, ce qu’on note parfois « Iz € E (« il existe un unique... »).

Dire que F possede au plus un élément, c’est dire que si I’on en trouve
deux, c’est en fait le méme — sans prétendre qu’on peut en trouver un. La
solution est donc « Va1 € E Vry € E x99 = 1 ».

Les énoncés mathématiques font souvent intervenir plusieurs quantifica-
teurs a la suite. Quid de I'ordre? On se convainc rapidement que deux V
ou deux I peuvent se permuter : par exemple, Va € A, Vb € B, ... signifie
la méme chose que Vb € B,Va € A,.... Mais on ne peut pas impunément
permuter les quantificateurs ¥ et 3! Les échanger modifie drastiquement le
sens l'expression. Par exemple, la proposition

VeeNJye Nz <y

est vraie puisque, pour tout entier naturel x, on peut choisir y = x et on
aura bien z < y. Par contre, la proposition

Jye NV e Nx <y

est fausse puisqu’elle réclame un nombre y plus grand que tous les entiers
naturels x : il n’y en a pas (si on avait un tel y, en choisissant = = y + 1,
on trouverait = > y). Cet exemple est typique : le y dont on veut I'existence
est autorisé ou non & dépendre du x selon 'ordre des quantificateurs; et ca
change tout.

Il est tres important de savoir nier les expressions quantifiées. La néga-
tion de I'un des quantificateurs s’exprime avec 'autre :

Enoncé indispensable 3 : négation des quantificateurs

— La négation de « Vx € E, P(z) » est « 3z € E, non P(x) ».
— La négation de « 3z € E, P(z) » est « Vx € E, non P(x) ».

La premiere ligne dit simplement que le contraire de « tous les éléments
de E vérifient la propriété P » est « I'un des éléments de E ne la vérifie
pas »(au moins). C’est la notion de contre-ezemple.

Pour nier une expression mathématique, il reste a combiner tout ce qu’on
a vu. Une négation s’écrit a la volée en respectant les regles suivantes :

— tout « Vo € E » est changé en « 3z € E »;

— tout « dJx € E » est changé en « Vo € E »;

— tout « P et @ » est changé en « (non P) ou (non@) »;
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— tout « P ou @ » est changé en « (non P) et (non@) » ;
— tout « P = @ » est changé en « P et (non@) ».

EXEMPLE 4. L’énoncé formel
(Va € A)(Vby € B)(Yb2 € B)(((a,b1) €T) et ((a,b2) € T') = (ba = b1))
a pour négation :
(Ja € A)(Fby € B)(3by € B) (((a,b1) €T) et ((a,b2) € T) et (ba # b1)).

Son sens n’a pas d’importance ici, ’exercice est purement formel. On nie
I’énoncé « en propageant la négation » :

nonVa € A Vb, € B Vb, € B
Ja € A nonVb, € B Vb, € B
da€ A dby € B nonVby € B
da € A by € B dby € B non
Jae A b, € B dby, € B (a,b1) €T et(a,be) €T
Jdac A dby € B dby € B (a,b1) €T et(a,be) €T

Ca a l'air monstrueux quand on détaille tout, mais si [’énoncé est bien
construit, on le fait de téte sans difficulté. D’oti 'importance de bien écrire
ses énoncés, en écrivant les quantificateurs a gauche, dans lordre (!), en
mettant des parentheéses pour éviter toute ambiguité.

NN N N

g2 4y

Test : écrire la négation de...

— Ve eRi,Ing eN,VREN, n>ng = |u, — 4| <¢;
— Ve eRi, I e Ry, Vx € R, |z — x| <n=|f(x) = f(xo)| <e;

— Ve e R} ,3n e RY,Vx € R, 0<]$—x0\<n:>‘%igzo) <e.

1.3. Et des fonctions. On a l'intuition d’une fonction via son graphe.

<

Fonction Pas fonction

La différence entre les deux dessins est le test de la verticale : un dessin
est le graphe d’une fonction si et seulement si, quand on trace une droite
verticale, on coupe le dessin au plus une fois. Formalisons cela. La verticale
d’abscisse € R est I'ensemble des points de coordonnées (z,y), ou y varie
dans R mais x reste fixé. Que la verticale d’abscisse x coupe la courbe au
plus une fois signifie qu’il y a au plus un y € R tel que (z,y) soit sur la
courbe.

On peut considérer des fonctions de A dans B pour deux ensembles
quelconques. Ce qui était un « point du plan », est maintenant un élément
(a,b) du produit cartésien A x B, c’est-a-dire la donnée d’un élément a
de A et d’'un élément b de B. Et un « dessin » est juste un sous-ensemble
I'c AxB.

by = b1;
by = b1;
by = b1;
by = b1;
non(be = by);
by # by.
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DEFINITION 3. Un sous-ensemble I' C A X B est un graphe (fonctionnel)
si, pour tout a € A, il existe un unique b € B tel que (a,b) € I'. On lui associe
alors la fonction f : A — B qui envoie a € A sur I'unique b correspondant,
avec la notation usuelle b = f(a).

Tres souvent, on emploiera le mot « application » pour parler d’une
« fonction ». On note habituellement

f: A - B
a = £

et le graphe de f est I' = {(a, f(a)) | a € A}.

REMARQUES 2.

— Si b= f(a), on dit que b est I'image de a par f ou que a est un antécédent
de b par f.

— La donnée des ensembles A et B est indispensable. Changer I'un ou lautre
change la fonction.

— Si lon veut éviter de prendre deux lignes, on peut écrire : « f: A — B telle
que f(a) =... » (ou une formulation analogue).

— Bien noter la différence entre les symboles « — »et « — ». Les mathémati-
ciens sont sans doute ridicules, mais ici la confusion les agace.

Test : graphes

Associer a chacune des fonctions suivantes son graphe.
— f1:R = R telle que f(z) = 2?;

— fo: Ry = R telle que f(z) = 22;

— f3:R = R, telle que f(z) = 22;

— f1: Ry = Ry telle que f(z) = 22

REMARQUES 3.

— Si A’ C A, on peut considérer la fonction g : A” — B telle que g(z) = f(x).
C’est la restriction de f & A’ et on note parfois g = f|ar.

— Si A C A, il existe des fonctions h : A" — B telle que h(z) = f(z) pour
tout x € A. Ce sont des prolongements de f a A’

DEFINITION 4. Une fonction f : A — B est dite injective si elle vérifie :
VYai € A,VCLQ € A, f(az) = f(al) = as = aj.

Cela signifie que tout élément b de B admet au plus un antécédent. Par
contraposition, I'injectivité s’écrit aussi

Vay € A,\V/CLQ S A, as 7é a] = f(ag) 75 f(al).

Ainsi, deux éléments distincts de A ont deux images distinctes.
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NS

Pas injective Injective

DEFINITION 5. La fonction f : A — B est surjective si tout élément de
B admet un antécédent par f :

Vbe B,Ja € A, f(a)=0.

Test : injectivité, surjectivité

Lesquelles des quatre fonctions du test précédent sont injectives?
Surjectives ?

DEFINITION 6. Une fonction A — B est dite bijective si elle est a la fois
injective et surjective.

Ainsi, une fonction f : A — B est bijective si et seulement si tout élément
de B admet un unique antécédent par f. On dit aussi que f est une bijection
entre A et B.

EXEMPLE 5. Pour tout ensemble A, I’application identité de A est la
fonction id4 : A — A définie par id4(a) = a. C’est bien str une bijection !

DEFINITION 7. Soient f : A — B et g : B — C deux fonctions. On
appelle composée de f et g la fonction g o f telle que :

Va € A, (go f)(a) = g(f(a)).

Test : c’est quoi, ¢ga?

On reprend les notations de la définition et on note I'y (resp. I'y) le
graphe de f (resp. g). Qu’est-ce que

{(a,c) e AxC:3be B (a,b) €T'fet(bc)cly}

REMARQUES 4.

— L’application identité est toujours un élément neutre pour la composition :
pour toute fonction f: A — B, foidg =idgof = f.

— La composition se comporte bien : si 'on a des fonctions f : A — B,
g: B = Ceth:C — D,alors ho(go f) = (hog)o f (ce sont des
fonctions A — D). On dit que la composition est associative. Cela permet
de noter simplement h o g o f, sans parentheses. (C’est exactement comme
x4+ (y+2) = (z+y)+ 2, que on peut noter = + y + z.)

— Quand on écrit go f, 'ordre est important : fog n’a en général pas de sens
(il faut que C' = A) et méme si c’est le cas, il n’y a aucune raison pour que
go f et fogsoient égales. La composition n’est pas commutative.
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Test : stabilité par composition

Démontrer que la composée de deux fonctions injectives (resp. sur-
jectives, resp. bijectives) est injective (resp. surjective, resp. bijective).

PROPOSITION 1. Une fonction f : A — B est bijective si et seulement
s7il existe une fonction f~1: B — A telle que f ™o f =idy et fof~! =idp.

La fonction f~! est alors la réciproque de f. C’est également une bijec-
tion, de réciproque f.
Démonstration. Supposons d’abord f bijective. Tout élément b de B admet
alors un unique antécédent, qu’on baptise f~!(b). Cela définit une fonction
f~': B — A. Par construction, pour tout b € B, f~!(b) est un antécédent
de b, donc f(f~1(b)) = b et, pour tout a € A, a est un ('unique) antécédent
de f(a), donc f~1(f(a)) = a. Cela prouve que fof~! =idget flof =ida.

Réciproquement, supposons qu’il existe une fonction f~! : B — A telle
que f~lof=1idg et fo f~' =idp. Si a; et as sont deux éléments de A tels
que f(ar) = f(as), on a f~'(f(a1)) = f~'(f(az)); puisque f~ o f = ida,
cela veut dire que a; = ao. Donc f est injective. Pour tout b € B, puisque
fof~! =idp, on peut écrire b = f(f~1(b)). Donc f est surjective. Cela
prouve que f est bijective. O

2. Nombres réels

Commencons par une description sommaire des ensembles de nombres
qui vont nous occuper. Le but est essentiellement de fixer les notations, avant
de dégager des propriétés fondamentales.

L’ensemble N est celui des entiers naturels, familiers des étudiants d’école
maternelle :

0,1,2,3,4,5,6,...
A partir de N, on construit I’ensemble Z des entiers relatifs en ajoutant les
nombres négatifs :

., —6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6, . ..

L’ensemble @Q des nombres rationnels s’obtient en considérant maintenant
les fractions d’entiers : 2/3, —7/12, etc.

Ces ensembles sont tres concrets, on peut les expliquer a de jeunes en-
fants. La construction de I’ensemble R des nombres réels n’est pas aussi
simple, ni aussi algébrique.

Un moyen assez concret d’aborder les nombres réels est leur écriture
décimale : un nombre réel x est défini par son écriture décimale :

xz:l:ck...clco, dldzdn

Dans cette expression, les chiffres ¢; et d; sont des entiers naturels compris
entre 0 et 9. Les chiffres avant la virgule cg, ..., ¢ sont en nombre fini. Le
chiffre ¢y est celui des unités, ¢; celui des dizaines, etc. Les chiffres apres
la virgule, notés dj, sont en nombre infini; ils peuvent étre nuls & partir
d’un certain rang, ou pas. Par exemple, on peut écrire 1/2 = 0,5000000.. .,
—100/3 = —33,333333 ..., m = 3,1415926 . ..
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On notera :

— R I’ensemble des nombres réels;

— R, 'ensemble des nombres réels positifs, ¢’est-a-dire ceux qui s’écrivent
r=44cg...co,didy...dy...;

— R_ I’ensemble des nombres réels négatifs, c’est-a-dire ceux qui s’écrivent
Tr = —Ck...Co,dldQ...dn... 5

— R* I’ensemble des nombres réels non nuls, i.e. R* = R\{0};

— R% = R*N R, I'ensemble des nombres réels strictement positifs ;

— R* = R*NR_ ’ensemble des nombres réels strictement négatifs.

L’avantage de cette approche des nombres réels est qu’elle est intuitive,
usuelle. Mais il convient de remarquer ses limites. L’écriture décimale de x
sous-entend une somme infinie
1

1 1
—cn-10F ... 1 di-—+dy - — dg  —= + ...
T =c-10° + +c1-10+co+dy 10+ 2 + +ds 103+

102

a laquelle il faudrait donner un sens précis, ce que nous ne ferons pas ici.

On peut remarquer qu’un nombre réel peut avoir deux écritures décimales :

par exemple, les écritures décimales 0,999999... (avec une infinité de 9)

et 1,0000000... (avec une infinité de 0) désignent le méme nombre réel, 1.
L’idée est que la somme géométrique

N

10 10 1 — - 90N
n:110” 10 1—E 10

9 _9l-gv_, 1

vaut exactement 1 quand N = +oo. Enfin, cette présentation privilégie le
nombre 10. On pourrait choisir un autre nombre comme base, par exemple
2 (ga s’appelle 'écriture binaire, familiere des informaticiens). En fait, cela
fournit différentes fagons de décrire le méme ensemble, R.

Il existe plusieurs constructions rigoureuses de R : coupures de Dede-
kind, complétion de Q par ses suites de Cauchy... On renvoie aux cours de
deuxieme année pour plus de précision. Ici, nous supposons que le ecteur a
une certaine intuition de I’a droite réelle et nous allons rappeler quelques
éléments concernant [’ordre qui régit les nombres réels.

Les nombres réels sont ordonnés par les inégalités usuelles. Sans entrer
dans les détails, pour comparer deux nombres réels, on compare leurs écri-
tures décimales, chiffre par chiffre, depuis la gauche. Deux nombres réels x
et y vérifient toujours = <y ou > y (on parle d’ordre total) et la conjonc-
tion de ces deux inégalités caractérise I’égalité x = y. Le lecteur n’ignore pas
que ces inégalités sont compatibles avec les opérations algébriques : on peut
sommer les inégalités, les multiplier par un nombre positif... Attention aux
pieges usuels :

—six <yetaecR_, alors ar > ay;

— six <y, avec xz,y € R%, alors % > %

En particulier, pour majorer un quotient de nombres positifs, on magjore le
numérateur et on minore le dénominateur : si0 <z < a ety >b> 0, alors
T < a
y — b°

Dans ce texte, on notera les intervalles de la fagon suivante : étant donnés

deux réels a < b, on écrit l'intervalle ouvert Ja,b[= {z € R | a < = < b},
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le segment [a,b] = {x € R | a < x < b} et les intervalles semi-ouverts
la,b] ={z e R|a <z <b}, [a,b][={z € R|a <z < b}. Les bornes exclues
peuvent étre 400 ou —oo. Par exemple, une partie A de R est majorée si elle
incluse dans un intervalle du type | — oo, M| avec M € R; et A est minorée
si A C [m,+oo[ avec m € R.

Dans le chapitre sur les suites, on verra une propriété cruciale de 'en-
semble ordonné R : I'existence de bornes supérieures et inférieures (éventuel-
lement infinies) pour n’'importe quelle partie de R. Grossiérement, ce sont
les bornes du plus petit intervalle contenant cette partie.

Une conséquence tres intuitive est la « propriété d’Archimede » : pour
tout z € R, il existe un entier n € N tel que n > x. Cette propriété sert tout
le temps. Elle permet aussi de construire la partie entiere E(z) de chaque
réel z : c’est 'unique entier vérifiant I’encadrement

E(z) <z < E(xz)+1.

Autrement, dit, c’est le plus grand entier inférieur ou égal a = (cf. TD).
Une autre conséquence est que tout intervalle ]a, b[ non vide contient une
infinité de nombres rationnels, mais aussi une infinité de nombres irrationnels

(cf. TD).

Pour faire de I’analyse, on a besoin de mesurer la taille des choses : dans
R, la valeur absolue est I'outil de base, qu’il faut maitriser avec assurance.
Rappelons la définition de la valeur absolue : pour tout nombre réel z, |z| = x
siz>0et|z] =—xsiz<0.On a donc toujours —|z| < z < |z|. On voit
aussi que |z| = max(z, —z) et |z| = V22 en distinguant les cas ot le réel =
est positif ou négatif. De méme, l'inégalité |z| < R signifie exactement que
x appartient a l'intervalle [—R, R].

La proposition suivante indique le lien entre la valeur absolue et les
opérations algébriques : c’est tres important en pratique.

Enoncé indispensable 4 : propriétés de la valeur absolue

Pour tous z,y € R :
(1) lzy| = || x [yl;
(2) |z +y| <|z|+|y] («inégalité triangulaire »);

(3) |z +y| > |lz| — |yl| («inégalité triangulaire a Penvers »).

Démonstration.

(1) La premiere propriété se voit en discutant sur les signes de = et y,
ou bien en observant que I'égalité (zy)? = x?y? entraine /(xy)? =
Va2y/y?, done |zy| = =[]yl

(2) Puisque 27y < 2|z||y|, on a 22 + y* + 22y < 2% + y? + 2|z[|y|. En
factorisant, il vient (z+y)? < (|z|+|y|)?. En prenant la racine carrée,
on obtient I'inégalité triangulaire |z + y| < |z| + |y|.

(3) Par inégalité triangulaire, on obtient

lz| = |z +y—yl| < |z +yl+ |-yl = |z +y|+ |yl
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d’out |z| — |y| < |z + y|. En échangeant les roles de x et y, on trouve
aussi |y| — |z|] < |z + y|. On en déduit

[l = [yll = max([z] = [y], [y| — [=]) < | +y].
¢

REMARQUE 1. Une récurrence facile étend 'inégalité triangulaire a un
n n

d_wi| <) lail.

i=1 i=1

REMARQUE 2. On dit qu’une partie A de R est bornée si elle est majorée
et minorée. Cela revient a dire que la valeur absolue des éléments de A est
majorée : il existe R > 0 tel que pour tout a € A, |a] < R.

En effet, si on a un majorant M et un minorant m de A, tout élément
a de A vérifie

nombre arbitraire de termes :

—|m| <m<a<M<|M|
donc a € [—|m|,|M]], donc |a| < R avec R = max(|M|, |m]|). Réciproque-
ment, si on a un nombre R tel que pour tout a € A, |a| < R, c’est-a-dire
—R < a < R, on voit que R est un majorant de A et que —R est un minorant

de A.

Pour aller plus loin 1 : coupures de Dedekind

Indiquons brievement comment Richard Dedekind construit R.
L’idée est qu’un réel doit couper I’ensemble Q en deux morceaux : ceux
qui sont plus petits et ceux qui sont plus grands. Une coupure est par
définition un couple (A1, Az) de parties non vides de Q telles que :

- Al U A2 = Qu

— Ya; € Al,VQQ € Az, a; < az,

— A; n’a pas de plus grand élément.

L’ensemble R est défini comme I’ensemble de toutes les coupures. Au
premier coup d’oeil, on ne reconnait pas tout a fait notre bonne vieille
droite réelle, mais au deuxieme...

Par exemple, pour comprendre ou sont les rationnels dans ce truc,
il suffit de suivre cette idée de couper Q en deux : tout élément r de
Q donne une coupure (A;,A2) en posant Ay = {z € Q | z < r} et
Ay ={z € Q| z > r}. Cela permet de voir I'inclusion Q C R.

L’ordre est simple & décrire : si x = (A1, A2) et y = (B1, Ba), on
décide que x < y si A1 C Bj. De ce point de vue, on peut facilement ex-
pliciter la borne supérieure d’une partie majorée A de R (qu’on définira
au chapitre 2) : c’est (S, Q\S), ou S est 'union de tous les A; tels que
(Al, AQ) e A.

Reste a voir que ¢a marche bien, qu’on peut prolonger les opérations
algébriques de Q...

3. Nombres complexes

A partir de I’ensemble des réels R, on construit ’ensemble C en intro-
duisant un nouvel élément i, racine du polynéme X2 + 1 : i2 = —1. Tout
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nombre complexe z € C s’écrit de maniére unique z = a + ib ol a et b
sont des réels. Le réel a est la partie réelle de z, noté Re(z). Le réel b est la
partie imaginaire de z, notée Im(z). Une opération utile est la conjugaison :
le conjugué de z est par définition z = a — ib. Par exemple, les parties réelle
et imaginaire de z sont données par Re(z) = 252 et Im(z) = %2
L’ensemble C n’est au fond que R?, puisqu’on peut identifier z = a + ib
au couple de réels (a,b). Le point important est qu’on peut additionner et

multiplier les nombres complexes entre eux par les formules

(a+1ib) + (c+id) = (a+c)+i(b+d),
(a+1ib) - (c+1id) = (ac—bd)+i(ad+ bec).

Ces opérations sont compatibles avec la conjugaison au sens ou, pour tous
zaweC:iz+Fw=zZ+wWetzZ-w=2- 0.

On définit le module d’un complexe z comme suit : si a = Re(z) et
b =1Im(z), |z| = Va? + b%. Autrement dit, c’est la longueur euclidienne du
vecteur du plan de coordonnées (a,b). Le module permet donc de mesurer
la taille d’un nombre complexe, comme la valeur absolue mesure la taille des
nombres réels.

L’inégalité a? < a4 b2 (pour a,b € R) implique | Re(z)| < |z| pour tout
nombre complexe z. De méme, | Im(z)| < |z|.

L’égalité (a+1ib)(a—ib) = a®+b? établit un lien entre produit complexe,
conjugaison et module : zz = |z|%. En particulier, on voit que tout nombre
complexe z # 0 admet un inverse donné par 1/z = z/|z|2.

Le nombres réels sont les nombres complexes de partie imaginaire nulle.
A ce titre, on peut calculer le module d’un nombre réel et ce n’est autre que
sa valeur absolue (donc il n’y a pas de conflit de notation!). La proposition
suivante étend les propriétes de la valeur absolue au module.

Enoncé indispensable 5 : propriétés du module

Pour tous z,w € C :
(1) |zw| = [2| x |wl;
(2) |z +w| <|z| +|w| («inégalité triangulaire »);

3) |lz+w| >||z| — |lw « inégalité triangulaire a l'envers »).
( g g

Démonstration.
(1) La premiére propriété se voit bien en utilisant la conjugaison :
|zw|? = 2wZ0 = 2wz W = |2|? x |w|?.
1l suffit alors de prendre la racine carrée pour trouver I’égalité voulue.
(2) On développe |z +w|? = (z + w)(z + w) :
lz+w?=C+w)E+D) = |2]* + |w? + 27 + Zw.

Or zw = zw, donc 2w + zw = 2Re(2w) < 2|zw| = 2|z||w| = 2|2||w].
On en tire

|2+ wl? < [z + [wl + 2]zl |w| = (2] + w])?
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et on prend la racine carrée pour conclure.
(3) Par inégalité triangulaire, on obtient
2l =z +w—w|| < |z4+w|+ |- w| = |z 4w+ |w],

d’ott |z| — |w| < |z + w|. En échangeant les roles de z et w, on trouve
aussi |w| — |z| < |z + w|. On en déduit

[|2] = |wl] = max(|z] — |w], [w] = [2]) <[z + w].

&

REMARQUE 3. Il est intéressant de chercher dans quel cas 'inégalité tri-
angulaire est une égalité. Or la preuve présentée ci-dessus n’utilise que des
égalités, a part une seule inégalité : Re(zw) < |zw]|. Si celle-ci est stricte,
Iinégalité triangulaire est stricte. Sinon, c¢’est une égalité. La condition d’éga-
lité est donc Re(zw) = |2w]|, ce qui signifie que zw est un réel positif. Si w
(ou z) est nul, c’est vrai. Sinon on divise par |w|? et on voit que ce critére
est z/w € R4. Géométriquement, cela veut dire que les vecteurs du plan
représentés par z et w sont colinéaires de méme sens.

REMARQUE 4. Dans C, il n’existe pas de relation d’ordre total qui soit
compatible avec les opérations algébriques (comme le sont les inégalités dans
R). On n’écrira donc pas d’inégalités entre nombres complexes !

Et si on a vraiment trop envie, on travaille avec les parties réelle et
imaginaire, ou avec le module.



Chapitre 2

Analyse

1. Suites

Une suite de nombres complexes est la donnée de nombres complexes
uy, indexés par un entier naturel n. Autrement dit, c’est une application
u: N — C, qui & chaque indice n associe le nombre complexe u,, = u(n).
On note généralement une telle suite sous la forme (uy,)nen, ou parfois (uy)
pour faire plus court.

Le nombre u,, est appelé le n-iéme terme de la suite (uy,). Il arrive qu’il
ne soit défini qu’a partir d’un certain rang ng > 0 : on parlera alors de la
suite (up,)n>no- Comme on s’intéressera aux propriétés de u,, pour les indices
n tres grands, cela n’a pas beaucoup d’importance.

Pour définir une suite, on peut donner une formule. Par exemple, on
peut poser u, = n + isin(n) pour tout n € N ou bien u,, = 1/n pour tout
n € N*. On peut aussi donner un procédé de construction par récurrence,
comme dans les exemples suivants.

Typiquement, une suite géométrique est déterminée par sa valeur initiale
ug et par sa raison A via la relation de récurrence u,11 = Au, pour tout
n € N. Ainsi, u; = Mg, us = A\u; = A\2ug... et on obtient méme une formule :
Uy = A"ug pour tout n € N.

Un autre exemple est donné par la suite de Fibonacci : on pose ug =
uy = 1 et upyo = upt1+uy pour tout n € N. Ainsi, chaque terme de la suite
est la somme des deux précédents : puisqu’on se donne les deux premiers,
on peut tous les calculer. On verra plus tard dans ce cours comment donner
une formule générale dans ce type de situation.

Les suites de Syracuse sont aussi définies par récurrence. On se donne
une valeur initiale entiere et strictement positive : ug € N*. Ensuite, pour
tout n € N, on demande que up4+1 = Uy /2 si u, est pair et uy11 = 3up, + 1 si
uy, est impair. Par exemple, si on part de ug = 3, les termes successifs de la
suite sont : 3, 10, 5, 16, 8,4, 2,1,4,2,1,4,2,1, 4,2, 1, etc. Si on s’amuse
a prendre d’autres valeurs de ug, on retrouvera un comportement similaire :
au bout d’'un moment, la suite arrive a 1 et donc se met a boucler : 4, 2, 1,
4,2, 1, etc. Enfin... c’est ce qu’on croit. Personne n’a jamais réussi a prouver
que les suites de Syracuse finissent toujours par retomber sur 1... Défi ?

1.1. Convergence des suites complexes. Quand on étudie une suite,
la question centrale est celle de son comportement asymptotique : comment
décrire les valeurs prises par u, quand n est trés grand 7 On va donner une
définition précise décrivant les suites qui se rapprochent asymptotiquement
d’une valeur donnée ¢ € C.

Dans la suite, on notera D(a,r) le disque de rayon r centré en un point
a du plan complexe : D(a,r) ={z€ C: |z —a| < r}.

15
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Enoncé indispensable 1 : convergence d’une suite

Une suite (uy,) est dite convergente s’il existe £ € C tel que, pour
tout rayon € > 0, il existe un rang N € N a partir duquel la suite reste
dans le disque D(4,¢). Autrement dit :

A eC,Ve >0,IN e N,V > N,  |u, —{| <e.

Le nombre complexe ¢ apparaissant dans cet énoncé est unique (s’il
existe), comme on va le démontrer ci-dessous. On dit que (u,) converge
(ou tend) vers [, que [ est la limite de la suite (u,) et on note :

¢ = lim(uy,), (= ngl}}oo Up, (up) — L.

EXEMPLE 6. La suite (1/n) converge vers 0. En effet, si on se donne
e > 0, on peut trouver un entier N > 1/¢ et alors pour n > N :

1 0 1<1<
——0==—<—=x<e=
n n_- N

PROPOSITION 2. La limite d’une suite, quand elle existe, est unique.

Démonstration. On raisonne par l'absurde en supposant que la suite (uy)
converge vers £ et ¢/, avec £ # ¢'. Ainsi, le nombre e = [{—{'| /4 est strictement
positif. La définition de la convergence donne des rangs N et N’ tels que
Vn > N, |u, — | <e et vn > N’ |u, — '] <e.
Pour n > max(N, N’), on peut utiliser 'inégalité triangulaire pour trouver
=0 = |l —up) — (0 —up)| < —up| + |0 —uy| < 2e.

Or |¢ — ¢'| = 4e. C’est donc contradictoire : il n’est pas possible que (uy)
converge vers £ et ¢/, avec £ # (. O

REMARQUE 5. Dans la définition de la convergence d’une suite, on peut
remplacer € par 17¢ ou £/2 : ¢a ne change rien, il suffit de baptiser &’ = 17¢
ou £/2 et on aura I’énoncé initial pour tout ¢ > 0. Dans le méme ordre
d’idée, on peut aussi écrire < € au lieu de < € dans la définition et cela ne
change rien.

Ne pas converger, c’est diverger.

DEFINITION 8. Une suite (uy,) est dite divergente si elle ne converge pas :
Ve C,3e>0,YN eN,In >N, |u, —{| >e.

EXEMPLE 7. Vérifions que la suite (i) est divergente. On se donne
¢ € C, quelconque, et on suppose par l'absurde que (i) converge vers .
Fixons € = 1 dans la définition de la convergence : cela nous donne un entier
N € N tel que pour n > N, |i" —¢| < 1. Pour n = 4N et n = 4N + 2, cela
donne respectivement |1 — /| < 1 et | —1—/¢| < 1. Par inégalité triangulaire,

2= (1= = (-1— )| <1l +|-1-f <2,

absurde. Donc la suite (i) ne converge pas : elle diverge.
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Qui peut le plus peut le moins.

DEFINITION 9. Une suite (u,,) est dite bornée si le module de ses termes
est majoré :
IMER,, VneEN, |u,| <M.

Géométriquement, cela signifie ques les termes de la suite sont tous situés
dans un certain disque (centré en I'origine 0 du plan complexe C).

REMARQUE 6. Une suite (u,) est bornée si et seulement si les suites
(Re(uy)) et (Im(uy,)) le sont, c’est-a-dire si ces deux suites a valeurs réelles
sont majorées et minorées. Le sens = vient des inégalités |Re(u,)| < |uy| et
[Tm(up,)| < |uy|. Le sens <= découle de la formule |u,,| = /Re(uy,)? + Im(uy, )2

PROPOSITION 3. Une suite convergente est bornée.

Démonstration. Supposons que la suite (u,) converge vers ¢ € C. En prenant
€ = 1 dans la définition de la convergence, on trouve un rang N tel que pour
n > N, |u, — € < 1etdonc |uy| = |up — 0+ < |uy, — €+ €] <1414
Cette borne convient pour les termes a partir du rang N. Afin d’englober les
premiers termes, on pose M = max(|ugl,...,|un—1],1 + |¢]) et on observe
que |u,| < M, pour tout n € N.

Par contraposée, on déduit de cette proposition qu’une suite non bornée
est divergente. Par exemple, les termes de la suite (ne’ %) sont de module
n, donc prennent des valeurs arbitrairement grandes : cette suite n’est pas
bornée, donc divergente.

REMARQUE 7. L’inégalité triangulaire ||u,| — |¢|| < |u, — ¢| montre
immédiatement que si (u,) converge ¢, alors (|u,|) converge vers |/|.

Quand on se donne deux suites (u,) et (v,), on peut en produire deux
autres en sommant et en multipliant leurs termes : (u,+vy,) et (u, X vy,). Ces
opérations sont compatibles avec la notion de convergence : la proposition
suivante dit qu’une somme (resp. un produit) de suites convergentes converge
vers la somme (resp. le produit) des limites.

PROPOSITION 4. Si (u,) — £ et (vy,) — k, alors (u, +v,) — £+ k et
(upvyn) — L k.

Démonstration. Somme. Soit £ > 0. Il existe des rangs N1 et Ny tels que
|up, — €] < €/2 pour n > Ny et |v, — k| < €/2 pour n > Na. On se place
au-dela du rang N = max (N1, N3) : pour n > N,

[(up +vp) — (U+E)| = |up—LC4v, — k| < |up—L|+ v, —k| <e/24¢/2=c¢.

Cela prouve que la suite (u,, + v,) converge vers ¢ + k.
Produit. Commencgons par écrire, pour n € N :

[unvn, — Ck| = [(un, — £)vy + L(vy — k)| < |un — £)|vn| + [€]|vn — K.

(vp,) est convergente donc bornée : on peut trouver R > 0 tel que pour tout
n € N, |v,] < R. Etant donné ¢ > 0, on peut (comme ci-dessus) trouver
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un rang N tel que pour n > N, |u, — ¢| < Rim et v, — k| < Rim' En

combinant ces inégalités, on trouve, pour n > N :
€ €

I R+l _
[tnv < mr e —e

Cela prouve que la suite (u,v,) converge vers (k. O

Test : convergence de ’inverse

Soit (uy) une suite convergeant vers ¢ # 0. Prouver que la suite
(1/uy) converge vers 1/¢.

COROLLAIRE 1. Une suite compleze (uy,) converge vers ¢ si et seulement
si (Re(uy)) tend vers Re({) et (Im(uy,)) tend vers Im(£).

Démonstration. Le sens < découle de I'écriture u, = Re(uy,) + iIm(uy) et
de la proposition précédente. Pour le sens =, on écrit I'inégalité

VneN, [Re(un) — Re(0)] = [Re(un — )| < |up — ¢

Si (up) — £, pour tout € > 0, on a un rang N & partir duquel le membre
de droite est < e, de sorte que le membre de gauche l'est aussi : (Re(uy))
converge vers Re({). De méme pour la partie imaginaire. O

En particulier, si les termes d’une suite convergente (u,,) sont tous dans
R, la suite (Im(uy)) est identiquement nulle et donc tend vers 0. Ainsi, la
limite de (uy,) est de partie imaginaire nulle : ¢’est un nombre réel.

Pour étudier le comportement asymptotique des suites, les notions sui-
vantes sont utiles.

DEFINITION 10. Soient (u,) et (v,) deux suites complexes telle que v,
ne s’annule pas a partir d’un certain rang. On note

— up = o(vy,) si (Z—”) tend vers 0;

n

— Uy, ~ Uy S (ZL—") tend vers 1;
n

— up, = O(vy,) si (%—Z) est bornée.
Ces trois propriétés se lisent respectivement « (uy,) est un petit o de (vy,) »,
« (up) est équivalente a (vy,) » et « (uy) est un grand o de (vy,) ».

Par exemple, en prenant (v,) constante a 1, on voit que u, = o(1) ssi
(up) tend vers 0, uy, ~ 1 ssi (uy,) tend vers 1 et u, = O(1) ssi (uy,) est bornée.

Ces trois notions sont liées entre elles. On voit bien que les relations
Up, = o(vy) ou uy, ~ v, impliquent u,, = O(vy,). On vérifie aussi que u,, ~ vy,
si et seulement si w, — v, = o(vy), ce qu’on note aussi u,, = vy, + o(vy).

Les développements limités usuels, vus au premier semestre, sont utiles
pour apprécier le comportement asymptotique des suites. Par exemple, le
développement limité In(1 4+ z) = = + o(z), quand & — 0, assure la relation
In(1+1/n) = 1/n+o0(1/n) quand n — +o0o. Cela revient a In(14+1/n) ~ 1/n.
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Pour calculer des limites, il peut étre utile d’avoir les comparaisons sui-
vantes en téte.

— Inn = o(n*) pour tout a > 0.

— n® = o(r") pour tout b € Ret r > 1.

— 2" = o(n!) pour tout z € C.

— n! =o(n").
Elles seront démontrées en TD.

1.2. Bornes supérieure et inférieure. Dans le prochain paragraphe,
nous allons nous concentrer sur les suites réelles afin d’obtenir des critéres de
convergence puissants. Cela passe par un approfondissement des propriétés
des nombres réels. Si A une partie de R, on dit que

— le nombre réel M est un majorant de A si, pour tout a € A, a < M ;

— le nombre réel m est un minorant de A si, pour tout a € A, a > m;

la partie A est majorée (resp. minorée) si elle admet un majorant
(resp. minorant).
Bien siir, une partie majorée n’admet pas qu’un majorant : si M est un ma-
jorant, M + 1 aussi... Il peut étre intéressant d’avoir un majorant optimal,
le plus petit possible. L’ensemble ordonné R possede une propriété remar-
quable : toute partie non vide et majorée possede un plus petit majorant,
qu’on appelle sa borne supérieure.

Enoncé indispensable 2 : borne supérieure

Toute partie non vide et majorée A de R admet une borne supérieure
sup A : c’est le plus petit des majorants, c’est-a-dire I'unique nombre réel
vérifiant les deux propriétés suivantes.

— VYae A, a<supA;

—Ve>0, Jace A, a>supA—c.

La premieére propriété exprime le fait que sup.4 est un majorant. La
seconde dit que c’est le plus petit des majorants, puisque tout nombre plus
petit (sup.A — €) n’est pas un majorant.

Nous ne démontrerons pas ce théoreme : il est intimement lié a la
construction de R (dans la construction par coupures de Dedekind, c’est
presque par définition vrai).

L’énoncé analogue sur les minorants est bien sir vrai : toute partie non
vide et minorée de R possede un plus grand minorant, qu’on appelle sa borne
inférieure.

Enoncé indispensable 3 : borne inférieure

Toute partie non vide et minorée A de R admet une borne inférieure
inf A : c’est le plus grand des minorants, c’est-a-dire I'unique nombre
réel vérifiant les deux propriétés suivantes.

—VYae A, a>infA;

— Ve>0, Jac A a<infA+e.
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Par convention, on étend parfois les bornes supérieures et inférieures a
toutes les parties A de R en autorisant des valeurs infinies :

— si A n’est pas majorée, sup A = +00;

— si A n’est pas minorée, inf A = —oc.
Si A est vide, on peut méme poser sup A = —oo et inf A = +o00.

REMARQUE 8. On dit qu'un réel ag est le plus grand élément (ou maxi-
mum) d’une partie A de R si :

ap € A et Vae A, a<ap.

Un tel ag, s'il existe, est la borne supérieure de A : sup A = ag (en effet,
c’est un majorant et, pour tout € > 0, on peut choisir a = a¢ dans la
seconde propriété). Mais attention ce n’est pas du tout le cas général! La
borne supérieure n’est pas forcément un élément de A, comme on le voit
dans 'exemple suivant.

EXEMPLE 8. Soient deux réels a < b. On considere 'intervalle ouvert
I =la,b[={r €R|a <z <b}.

Il admet comme borne supérieure b . En effet, b est un majorant de I puisque
tout = de I vérifie z < b. Et pour tout € > 0, on peut trouver = €|a, b tel
que z > b—¢ (prendre x = b —¢/2 si € < b — a, et n’importe quel élément
de lintervalle sinon). Cela prouve que sup I = b. On montre de méme que
la borne inférieure de [ est a.

On peut remarquer que les intervalles [a, b[, ]a, b] et [a, b] ont aussi comme
borne supérieure b et comme borne inférieure a, avec le méme argument.

Avant de donner un autre exemple, revenons sur la « propriété d’Archi-
mede » : pour tout z € R’ , il existe un entier n € N tel que n > z. On peut
la voir comme une conséquence de 'existence de la borne supérieure : par
I’absurde, si tous les entiers naturels n € N vérifient n < z, ensemble N est
une partie non vide et majorée (par ) de R, donc admet une borne supé-
rieure 0 € R;or pour tout n € N,n+1 € N, doncn+1<o,iee.n<o—1,ce
qui prouve que o — 1 est un majorant de N; c’est une contradiction puisque
c—1<o=supN.

EXEMPLE 9. Soit A = {1/n | n € N*}. On voit que 0 est un minorant de
A. Et pour tout € > 0, on peut trouver un entier n tel que n > 1/¢, de sorte
que 1/n < 0+ e. Donc inf A = 0. Par ailleurs, 1 est le plus grand élément
de A, donc 1 = sup A.

REMARQUE 9. Faisons une remarque pratique sur la manipulation des
inégalités avec des bornes supérieures. Si A est une partie de R et M un
nombre réel, on dispose de I’équivalence suivante :

supA<M & Vac A, a<M.

= est clair parce que le sup est un majorant (et donc tout nombre plus grand
aussi). Pour <, on suppose en fait que M est un majorant de A, et donc,
puisque la borne supérieure est le plus petit des majorants, sup A < M.

On appelle cela « passer a la borne supérieure » : si tous les éléments
d’une partie de R vérifient une majoration, la borne supérieure la vérifie
aussi. De méme, si les éléments a de A vérifient une minoration a > m, on
peut la passer a la borne inférieure : inf A > m.
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Test : inclusion et bornes

Prouver que si A C B, alors sup A < sup B et inf A > inf B.

L’existence de bornes supérieures et inférieures est cruciale en analyse.
C’est elle qui permet de démontrer rigoureusement certains résultats fonda-
mentaux comme le théoreme des valeurs intermédiaires ou I'existence d’une
limite réelle pour les suites croissantes majorées. Essentiellement, dans ces
énoncés, on a besoin de construire un réel et on le définira comme la borne
supérieure ou inférieure d’un ensemble de réels bien choisi.

REMARQUE 10. Cela impose de travailler spécifiquement avec des nombres
réels. Il n’y a pas d’équivalent dans Q : une partie majorée de Q n’admet
pas de borne supérieure rationnelle en général. Par exemple, l'irrationnalité
de V2 (cf. TD) fait que A = {z € Q | # < v/2} n’a pas de borne supérieure
dans Q.

1.3. Résultats spécifiques aux suites réelles. Dans ce paragraphe,
on se focalise sur les suites (uy,) & valeurs réelles : pour tout indice n, u, est
supposé étre un nombre réel. L'intérét, c’est qu’on dispose dans R d’inéga-
lités, ce qui donne lieu a des résultats particuliers.

Précisons d’abord la condition de convergence d’une suite réelle (u,,) vers
un nombre ¢ (réel, comme on ’a vu). Elle signifie que, pour tout € > 0, il
existe un rang N tel que pour n > N, u, € D({,¢), i.e. |u, —£| < . Comme
ici u, et £ sont des réels, le module n’est qu’une valeur absolue et donc en
fait |u, — ¢ < & veut dire —¢ < u,, — ¢ < € ou encore £ —e < u, < {+¢. Ou
encore uy, €0 —e, l +¢.

THEOREME 1. Les inégalités larges passent a la limite : si on considére
des suites réelles telles que (un) — £, (v,) = k et u, < v, pour tout indice
n, alors £ < k.

Dans cet énoncé, on ne peut pas remplacer les inégalités larges < par des
inégalités strictes <. Par exemple, si u, = 0 et v, = 1/n pour tout n € N*,
on a u, < v, pour tout n, (u,) = 0, (v,) — 0 et certainement pas 0 < 0.

Démonstration. Soit € > 0. La convergence des suites dit que pour un indice
n assez grand, on aura {—e < u, < £+cet k—e < v, < k+¢. Avec 'inégalité
Uy < vy, on en tire £ — e < k4 ¢e. Donc ¢ < k + 2¢, et ce pour tout € > 0.
Cela implique ¢ < k. En effet, si au contraire £ > k, on peut trouver € > 0
tel que £ — 2e > k (par exemple, ¢ = (¢ — k) /4 convient), contradiction. <

Un célébrissime critere de convergence découle des mémes idées.

THEOREME 2 (Théoréme des gendarmes). Soient (uy), (v,), (wy,) trois
suites réelles telles que u, < v, < wy, pour tout n € N. On suppose que (uy,)
et (wy) convergent vers une méme limite £. Alors (v,) converge aussi vers

‘.

Démonstration. Soit € > 0. Comme (u,) — ¢ et (wy,) — ¢, on peut trouver
un rang N tel que pour n > N, —e<u, <l+cetl—c<w, <l+cet
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donc £ — e < up < v, <w, < l+¢e, dou |v, —¢| < e. Cela prouve que (vy,)
converge vers £. O

EXEMPLE 10. Etant donné un réel x, définissons u, = E(nz)/n pour
n € N*. Rappelons que F(a) désigne la partie entiere du réel a, l'entier
caractérisé par l'encadrement F(a) < a < E(a) + 1. En faisant a = nz, on
en déduit pour tout n € N* : u, <z < u, + 1/n, ie. z —1/n < u, < z.
Donc la suite de rationnels (u,) converge vers le réel .

Explicitons une caractérisation des bornes supérieure et inférieure avec
des suites. Elle sert tout le temps, que ce soit pour calculer un sup en pratique
ou pour produire des suites intéressantes.

PROPOSITION 5. Soit A une partie non vide de R.

(1) On suppose que S est un majorant de A et qu’il existe une suite (ay,)
d’éléments de A telle que (ay) converge vers S. Alors S = sup A.

(2) Réciproquement, si A est majorée, il existe une suite (a,) d’éléments
de A telle que (ay) converge vers sup A.

L’énoncé analogue pour les bornes inférieures est bien sur aussi vrai.

Démonstration. (a) S est un majorant par hypothese. Soit ¢ > 0. Pour n
assez grand, S —e < ap, < S + . Comme a, € A, cela indique que S — ¢
n’est pas un majorant. Donc S = sup.A. (b) Posons S = sup.A. Pour tout
n € N*, la définition de la borne supérieure donne un élément a,, de A tel
que a, > S —% (puisque S —1/n n’est pas un majorant). Comme S est aussi
un majorant de A, on en déduit : Vn € N*, S — % < a, < S. Donc (ay,) est
une suite d’éléments de A qui converge vers sa borne supérieure S. O

Une suite réelle (uy,) peut étre croissante (si p < ¢, up < u,) ou décrois-
sante (si p < ¢, up > uq), ce qui n’aurait juste pas de sens dans C.

THEOREME 3. Toute suite réelle croissante et majorée (resp. décrois-
sante et minorée) est convergente.

Une suite réelle (u,) est majorée s’il existe M € R tel que, pour tout
n € N, u, < M. Cela revient a dire que ’ensemble des valeurs prises par
la suite (u,) admet une borne supérieure finie : sup{u, : n € N} est un
nombre réel bien défini. De méme, une suite réelle (u,) est minorée s’il
existe m € R tel que, pour tout n € N, u, > m. Cela revient a dire :
inf{u, : n € N} > —c0.

On va voir dans la preuve ci-dessous que la limite d’une suite croissante
(resp. décroissante) est précisément la borne supérieure (resp. inférieure) de
ses valeurs.

Démonstration. Soit (u,) une suite croissante majorée. On considere sa
borne supérieure ¢ = sup{u, : n € N} € R. Ainsi, on a l'inégalité u, < ¢
pour tout indice n. De plus, par définition de la borne supérieure, si on se
donne € > 0, il existe un élément uy de ensemble {u, : n € N} tel que
uy > ¢ — e. Par croissance de (u,), on en déduit que pour tout n > N,
Uy > uy > £ —e. Pour n > N, on peut donc écrire £ — e < u,, <l </l+e¢,
ce qui implique |u, — ¢| < e. Cela prouve que (u,) converge vers £.
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Si (uy) est décroissante minorée, (—u,) est croissante majorée, donc
converge vers une limite £. Alors (u,) converge vers —/. &

On peut renforcer cet énoncé en introduisant la notion de limite oo,
pour les suites réelles. On dit qu’une suite réelle (u,,) tend vers +oo si

VAeR,IN e NNVn > N,  wu, > A;
on dit qu’elle tend vers —oo si :
VAeR,IN e N,Vn > N, u, <A.

Attention au vocabulaire : si une suite réelle tend vers +oo, elle n’est pas
bornée, donc elle est divergente. La notion de convergence requiert une limite
finie.

ExEMPLE 11. Complétons la proposition [} Si A est une partie non
majorée de R, on peut trouver pour tout n € N* un élément a,, de A tel que
a, > n (sinon, n serait un majorant). La suite (ay) tend alors vers +oo.

On peut retenir que, pour toute partie non vide A de R, il existe une
suite (a,) d’éléments de A qui tend vers sup.A, que cette borne supérieure
soit finie ou non. De méme, il existe toujours une suite (b,) de A qui tend
vers inf A.

Si on considére une suite (uy) croissante mais non majorée, on peut
trouver pour tout A € R, une valeur uy telle que uy > A (sinon, A serait
un majorant de la suite) ; alors la croissance donne u,, > A pour tout n > N.
Donc une suite croissante non majorée tend vers 4+oco. Et on voit de la méme
fagon qu’une suite décroissante non minorée tend vers —oo.

PROPOSITION 6. Toute suite réelle croissante et non majorée (resp. dé-
croissante et non minorée) tend vers +00 (resp. —o0).

Donc une suite monotone (i.e. croissante ou décroissante) admet toujours
une limite dans R = R U {£o0}.

REMARQUE 11. Soit (u,) une suite de nombres positifs. Si on pose, pour
n

tout n € N, S, = Z ug, on obtient une suite croissante (S),), puisque, pour

tout n, Sp41 — Snkzounﬂ > 0. Ainsi, (S,) admet toujours une limite .S, qui

est soit un nombre réel positif, soit +o0o. On la note S = JFZO:O uy. Cela donne

un sens a n’importe quelle somme infinie de nombres pos?t:i(f)'s. Par exemple,
400 1 +00 1

on peut montrer que kz:% ok =2et kz::l % = 4-00.

Mentionnons enfin un joli critere de convergence découlant des résultats
précédents.

THEOREME 4 (Théoréme des suites adjacentes). Soient (uy,) et (vy,) des
suites réelles telles que (uy,) est croissante, (vy,) est décroissante et (vy, —uy)
tend vers 0. Alors (uy) et (v,) convergent vers une méme limite £.
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Comme le nom du théoréeme le suggere, deux suites (uy,) et (v,) comme
dans ’énoncé sont dites adjacentes.

Démonstration. Ecrivons (uy,) = (up —vy+vy,). La suite (u, —vy,) est conver-
gente donc bornée, et en particulier majorée. La suite (vy,) est décroissante
donc majorée (par son premier terme vp). En sommant, on voit donc que
(uy,) est majorée. Comme (u,,) est croissante, (u,) converge vers une limite /.
On voit de méme que (v,) est décroissante minorée, donc convergente, vers
une limite ¢'. Alors (u,, — v,,) tend vers £ — ¢'. Or, par hypothese, (u, — vy,)
tend vers 0. Par unicité de la limite, £ — ¢/ = 0, soit £ = /'. O

On peut remarquer que les suites (u,) et (v,) de I’énoncé vérifient au-
tomatiquement u, < v, pour tout n. En effet, les hypotheéses du théo-
rémes assurent que (v, — u,) est une suite décroissante tendant vers 0. Donc
0 = inf{v, — up, | n € N} : v, — u,, > 0 pour tout n.

1.4. Sous-suites.

DEFINITION 11. Soit (uy) une suite. Une sous-suite de (u,,) est une suite
(vpn) de la forme (v5) = (Up(n)), ot ¢ : N — N est une fonction strictement
croissante.

On dit aussi que (vy,) est une suite extraite de (uy,) et que la fonction
i est une extractrice. L’idée est ne pas prendre en compte tous les termes
de la suite (uy), mais d’en effacer certains et de ne garder que ceux qui
sont indicés par ¢(0),¢(1),¢(2),.... En pratique, on va chercher & extraire
une sous-suite qui a de meilleures propriétés : typiquement, on va s’arranger
pour sélectionner des termes qui donnent une sous-suite convergente.

EXEMPLE 12. Partons de la suite divergente (u,) = (i"), dont les termes
successifs sont : 1,4, —1,—4,1,4,—1,—4,1,4,—1,... A Daide de I'extractrice
¢ : n > 4n, on obtient la sous-suite (u4,) = (4") = (1), qui est constante &
1 (donc convergente). Dans la liste des termes de (uy), on a ici sélectionné
exactement les 1, en oubliant trois termes sur quatre.

REMARQUE 12. Une sous-suite d’une sous-suite est une sous-suite : si
(wy,) est une sous-suite de (vy, ), qui elle-méme est une sous-suite de (uy, ), alors
(wy,) est une sous-suite de (u,). En effet, dans ce cadre, on a des extractrices
p1 et @ telles que (wn) = (Vgy(n)) €6 (Vm) = (Uy, (m)). En posant m = @a(n),
on obtient donc pour tout n : wy = Uy, (py(n)) = Upops(n)- Bt la fonction
w102 : N = N est strictement croissante comme composée de fonctions
strictement croissantes : c’est bien une extractrice.

Quand on manipule des suites extraites, il est bon d’avoir la petite re-
marque suivante en téte.

LEMME 1. Toute extractrice ¢ vérifie : ¥n € N, p(n) > n.

Démonstration. On montre cette inégalité par récurrence sur ’entier naturel
n. Initialisation ? Puisque ¢ est a valeurs dans N, ¢(0) est dans N, donc
©(0) > 0. Hérédité ? Supposons que ¢(n) > n pour un certain entier naturel
n. Puisque ¢ est strictement croissante, 'entier p(n+ 1) est strictement plus
grand que lentier p(n) : p(n+1) > ¢(n)+1. Avec ’hypothese de récurrence
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©(n) > n, il vient donc p(n + 1) > n + 1. Cela montre le résultat, par le
principe de récurrence. &

On en déduit qu'une sous-suite d’une suite convergente est convergente,
de méme limite.

PROPOSITION 7. Si(un) converge vers £, toute sous-suite (Uy(y,)) converge
ausst vers £.

Démonstration. Soit € > 0. La convergence de (u,) donne un rang N tel
que pour tout k > N, |ug — €| < e. Pour tout entier n > N, le lemme permet
de voir que ¢(n) > n > N, donc on peut poser k = ¢(n) dans I'inégalité
ci-dessus et on trouve |u,,) — £| < €. o

Le théoreme suivant est fondamental en analyse. Il permet de batir des
sous-suites convergentes de fagon tres générale, sans avoir & expliciter une
extractrice particuliere.

Enoncé indispensable 4 : théoréeme de Bolzano-Weierstrass

Toute suite bornée admet une sous-suite convergente.

La preuve repose sur le principe des tiroirs : si deux tiroirs contiennent
en tout trois chaussettes, I'un des tiroirs contient au moins deux chaussettes.
De méme, si deux tiroirs contiennent en tout une infinité de chaussettes, I’'un
des tiroirs (au moins) contient une infinité de chaussettes!

Démonstration.

Etape 1. Traitons dans un premier temps le cas d’une suite réelle bornée
(up) : il existe un intervalle [—R, R] de R qui contient tous les termes wu,,.

Dans ce cadre, on va définir par récurrence deux suites adjacentes (a,)
et (b,) telles que tous les intervalles [ay,b,| contiennent une infinité de
termes de la suite (u,). On initialise les deux suites en posant ag = —R
et bp = R, de sorte que [ag, bo] contient tous les termes. On suppose ensuite
[an, by] construit convenablement pour un certain n et on note m,, le milieu
de [ap, by]. Puisque [a,,b,] contient une infinité de termes de la suite (par
construction), 'un des intervalles [a,,m,| ou [m,, b,] contient une infinité
de termes de la suite : on le baptise [an11,bp+1] (si on a le choix, disons
qu’on prend le premier par exemple).

On peut alors vérifier que les suites (a,) et (b,) sont adjacentes. En
effet, pour tout n, a,41 est soit a,, soit m,, qui est dans [ay, b,], donc dans
les deux cas ap+1 > ap. Cela montre que (ay) est croissante. On voit de
méme que (b,) est décroissante. Enfin, la construction fait que la longueur
des intervalles considérés est divisée par deux a chaque étape : (b, — a,) est
une suite géométrique de raison 1/2, donc elle tend vers 0. On déduit du
théoreme |4 que (ay,) et (b,) convergent vers une méme limite /.

On batit maintenant par récurrence une extractrice ¢ telle que, pour
tout n, Uy (n) € [an, bp]. Comme [ag, bo] contient tous les termes de la suite,
on peut choisir ¢(0) = 0. Supposons ¢(n) construit convenablement pour un
certain n € N. Puisque l'intervalle [a,,11, by,+1] contient une infinité de termes
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de la suite, il contient des termes uy dont 'indice k vérifie k > ¢(n) + 1.
On choisit par exemple le plus petit k qui convient et on pose p(n+1) = k.
Ceci définit une application ¢ : N — N telle que p(n + 1) > ¢(n) + 1 pour
tout n : ¢ est une extractrice. De plus, par construction, on a pour tout
0 Uy € [an, bp], 1. ap < Ug(n) < by. Puisque (an) — Cet (by) — £, le
théoreme des gendarmes montre que (u,(,)) converge vers £.

Etape 2. Traitons maintenant le cas général, celui d’une suite bornée
(un), & valeurs complexes. Les suites réelles (Re(uy,)) et (Im(uy,,)) sont alors
bornées. On peut appliquer I'étape 1 a la suite réelle (Re(uy,)) : cela nous
donne une extractrice o1 telle que (Re(uy, (,))) converge. Considérons main-
tenant la suite (vy,) = (uy, (n)), dont la partie réelle converge par construc-
tion. Sa partie imaginaire est bornée, donc on peut lui appliquer ’étape 1 :
cela nous donne une extractrice @2 telle que la partie imaginaire de (v, (n))
converge. La partie réelle de (1)@2(”)) converge aussi, puisque c’est une sous-
suite de la suite convergente (Re(vy)). Donc la suite complexe (vg,(,)) est
convergente. OT (Vg,(n)) = (Up ops(n)) €St une sous-suite de (uy), comme
sous-suite d’une sous-suite. &

REMARQUE 13. Quid des suites non bornées? On peut parfois extraire
d’une suite non bornée une sous-suite convergente. Par exemple, si on pose
u, = 0 si n est pair et u, = n si n est impair, on voit que la suite (u,) n’est
pas bornée et que sa sous-suite (ugy,) est constante donc convergente.

Le lecteur pourra d’autre part démontrer qu’une suite non bornée admet
toujours une sous-suite de module tendant vers +oo.

REMARQUE 14. Le théoreme de Bolzano-Weierstrass s’étend aux suites
vectorielles bornées, c¢’est-a-dire aux suites d’éléments de R% dont toutes les
composantes sont bornées. La preuve est la méme que dans le cas complexe :
on extrait une sous-suite pour faire converger la premiere composante, puis
on extrait une sous-suite de cette sous-suite pour faire converger la deuxieme
composante, etc. En d extractions successives, on obtient une sous-suite dont
toutes les composantes convergent.

Pour aller plus loin 1 : valeurs d’adhérence

Quand une suite (u,) admet une sous-suite convergeant vers ¢, on
dit que ¢ est une valeur d’adhérence de (u,). Par exemple, les valeurs
d’adhérence de la suite ((—1)" + 1/n) sont 1 et —1. Celles de la suite
(¢") sont 1, i, —1 et —i. Le théoreme de Bolzano-Weierstrass dit qu'une
suite bornée a toujours au moins une valeur d’adhérence. Mais il n’y en
a pas toujours : si |uy| tend vers +oo, ses sous-suites tendent aussi vers
+00, donc (uy) n’a pas de valeur d’adhérence.

On peut formuler un critere de convergence a l’aide des valeurs
d’adhérence : une suite bornée est convergente si et seulement si elle
admet une unique valeur d’adhérence.

Le sens direct est clair : si (uy) converge vers ¢, il en va de méme
de toutes ses sous-suites, donc £ est l'unique valeur d’adhérence de
(up,). Considérons maintenant une suite (u,) bornée et divergente. Par




1. SUITES

27

Bolzano-Weierstrass, (u,) a une valeur d’adhérence ¢. Puisqu’elle est di-
vergente, on peut trouver € > 0 tel qu’une infinité de termes de la suite
se trouvent hors du disque D(/,¢). Ceci permet de batir une sous-suite
(vn) de (up) telle que |v, — ¢| > e pour tout n. Comme (vy,) est bornée
(comme sous-suite d’une suite bornée), elle admet une sous-suite conver-
gente (wy,). La limite ¢ de (wy,) vérifie alors |¢/ — £| > € par passage & la
limite. Donc £ et ¢ sont deux valeurs d’adhérence distinctes de (u,,), ce
qui acheve de prouver le critere.
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2. Continuité et dérivabilité

2.1. Limites et continuité. Dans toute cette section, on va s’intéres-
ser a des fonctions définies sur un intervalle I de R, & valeurs dans R. On
commence par définir ce qu’est la limite de la fonction en un point a. Pour
définir la continuité, on pourrait se contenter de prendre a dans I. Néan-
moins, il est aussi intéressant de prendre pour a 'une des bornes de I, méme

si elle n’est pas dans I. On choisira en fait a dans I, le plus petit intervalle

fermé contenant I. Par exemple, si I =]a, 3], I = [a,m.

Enoncé indispensable 5 : limite

Soit une fonction f : I — R. Soient a € I et £ € R. On dit que f
tend vers £ en a si
Ve>0,Ip >0,V el, |z—al<n = |f(x)—4{<e.

Dans ce cas, on note lim f = /.
a

On dit aussi que f a pour limite ¢ en a, ou bien que f(x) tend vers ¢
quand x tend vers a et on note aussi lign flx)=1¢.
T—ra

REMARQUE 15. La définition donnée admet des variantes utiles ou la
limite est infinie (¢ = +00) ou bien est prise a l'infini (a = £o00). Il suffit
d’adapter I’énoncé... On dit ainsi que f tend vers +o0o en a si

VAeR, >0,V el, |zx—al<n = f(z)>A
et que f tend vers —oo en a si
VAeR,In>0Vzel, |z—a|<n = f(z)<A
Quand la borne supérieure de I est +o0o, on dit que f tend vers £ en o0 si
Ve >0,3B>0,Vre€l, x>B = |f(x)—/{| <e,
on dit que f tend vers +o00 en +o00 si
VAeR,AB>0,Vexel, z>B = f(z)> A,
on dit que f tend vers —oo en —+o00 si
VAeR,IAB>0,Vxel, x>B = f(z)<A.

Le lecteur est invité & écrire les expressions quantifiées traduisant les limites
analogues en —o0.

REMARQUE 16. On parle de limite & gauche (resp. droite) en a quand
on ne regarde f qu’a gauche (resp. droite) de a. Plus précisément, on dit
que f admet £ comme limite & gauche en a et on note lim f = ¢ si

pes

Ve>0,In>0,Veel, a—n<zx<a = |f(z)—{ <e.
Bien sir, pour la limite & droite, on note ligl f =/ quand
Ve>0,Ip>0,Vxel, a<z<a+n = |f(z)—/{|<e.

1. Le lecteur pointilleux observera que I sera parfois autorisé a étre, non un intervalle,
mais une réunion d’intervalles, auquel cas I contiendra les bornes de tous ces intervalles.
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On peut définir de méme des limites infinies a gauche ou a droite.

Il est important de savoir que ces limites de fonctions se ramenent a des
limites de suites : faire tendre = vers a, c’est regarder toutes les suites qui
convergent vers a. C’est ce qu’on appelle la caractérisation séquentielle des
limites.

PROPOSITION 8. Soient f : I — R une fonction, a € I et ¢ € R. Alors
f(x) tend vers € lorsque x tend vers a si et seulement si, pour toute suite
(zp) d’éléments de I qui converge vers a, la suite (f(zy)) converge vers £.

En adaptant ’argument ci-dessous, on voit que cet énoncé est également
vrai pour des limites infinies, ou prises a l'infini.

Démonstration. Pour le sens direct, on se donne une suite (z,,) qui converge
vers a. Soit € > (. Par hypothese, il existe n > 0 tel que

Veel, |zt—al<n = |f(z)—{<ec.
Comme il existe N tel que pour tout n > N, |z, —a|] < n, on a ainsi
Vn >N, |f(zn) —4| <e.

Donc (f(xy,)) converge vers /.

Pour le sens réciproque, on raisonne par contraposée : on suppose que f
ne tend pas vers £ en a et cherche & montrer qu'il existe une suite (z,) — a
telle que (f(xy,)) ne converge pas vers £. En niant la définition d’une limite,
on trouve qu’il existe € > 0 tel que

Vn>0,3x€l, |x—a|l<net|f(z)—L >c¢

Pour tout n € N*, on peut prendre en particulier n = % et on dispose ainsi
d’'un z,, € I tel que

1
\xn—a|<ﬁet |f(zn) — 4] > ¢

Puisque 1/n tend vers 0, la suite (z,,) tend vers a. Par contre, la suite f((x,,))
reste a distance au moins € de £, donc elle ne converge pas vers {. &

Enoncé indispensable 6 : continuité

Soit une fonction f : I — R. On dit que f est continue en un point
a de I si elle tend vers f(a) en a. Cela signifie :

Ve>0,Ip >0,V €I, |z—al<n = |f(zx)— fla)] <e.

On dit simplement que la fonction f est continue (sur I) si elle est
continue en tout point de I.

Test : un usage typique

Soit f : R — R une fonction continue telle que f(0) = 1. Prouver
qu’il existe a > 0 telle que f soit minorée par 1/2 sur U'intervalle | —a, .
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REMARQUE 17. La continuité, en lien avec la proposition [8, est un outil
important pour calculer des limites : si f est continue en a et si (z,) — a,
alors la suite (f(x,)) tend vers f(a). C’est la continuité de la fonction exp
qui permet d’écrire (exp(1/n)) — exp(0) = 1.

Par propriétés sur les limites (de suites), on obtient des résultats sur la
somme, le produit ou l'inverse des fonctions continues.

PROPOSITION 9. Soient f et g deux fonctions de I dans R.

(1) Si f et g sont continues en un point a de I, leur somme f+ g et leur
produit f X g sont continus en a.

(2) On suppose que f ne s’annule pas, de sorte que 1/f est bien définie
sur I. Si f est continue en a € I, 1/f est aussi continue en a.

Par exemple, on vérifie sur la définition que les fonctions constantes et
la fonction f : x — x sont continues sur R. Avec la proposition, on en dé-
duit que les polynomes (réels) définissent des fonctions continues sur R. Par
quotient, les fractions rationnelles définissent donc des fonctions continues
aux points ou elles sont définies (la ou leur dénominateur ne s’annule pas).

PRrROPOSITION 10. Soient I et J deux intervalles de R. Soient deux fonc-
tions f: 1 — J etg:J— R. On suppose que [ est continue en un point a
de I et que g est continue en f(a). Alors la fonction go f est continue en a.

Démonstration. Comme les valeurs de f sont bien prises dans J, ou g est
définie, la fonction go f : I — R est bien définie. Soit (x,) une suite de I
tendant vers a. Par continuité de f en a, la suite (f(x,)) converge vers f(a).
Par continuité de g en f(a), on en déduit que la suite (g(f(zy))) converge
vers g(f(a)). Cela prouve que go f tend vers go f(a) en a, par la proposition

&

EXEMPLE 13. Soit f : R — R définie par f(z) = 1siz > 0et f(z) =0si
x < 0. Cette fonction n’est pas continue en 0 : en effet, la suite (z,) = (—1/n)
tend vers 0 et (f(x,)) est constante a 0, donc tend vers 0, qui n’est pas
f(0) = 1. La discontinuité en 0 est die au « saut » que le graphe de f
effectue en z = 0 : les valeurs sautent de 0 a 1.

REMARQUE 18. On dit que f est continue & droite en a si liglrlf = f(a)
a
et continue & gauche en a si lim f = f(a). La continuité en a équivaut a la
e

continuité a gauche et a droite. Dans I'exemple précédent, f est continue a
droite en 0, mais pas a gauche.

REMARQUE 19. Supposons que f :]a,b[— R est une fonction continue
et que f admet une limite £ en a. Il est naturel de prolonger f par la valeur
( en a : on définit f : [a,b[— R par f(z) = f(z) si z €]a,b| et f(a) = L.
Par construction, cette nouvelle fonction est continue sur [a, b[ tout entier.
On dit que la fonction f est le prolongement par continuité de f & [a, b]. Par
exemple, la fonction f : 2 — xIn(z), définie et continue sur R*, tend vers 0
en 0 : elle se prolonge par continuité & R, en posant f(0) = 0.
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2.2. Propriétés globales des fonctions continues. On dit souvent
que le graphe des fonctions continues se trace sans lever le crayon. C’est le
contenu du théoreme fondamental suivant.

Enoncé indispensable 7 : théoréme des valeurs intermédiaires

Soit f : [a,b] — R une fonction continue. Alors pour tout y compris
entre f(a) et f(b), il existe ¢ € [a, b] tel que f(c) = y.

Démonstration. Quitte a changer f en —f, on peut supposer par exemple
f(a) > f(b). L’énoncé est clair si y = f(a) ou y = f(b) donc on considere
un réel y tel que f(b) <y < f(a). On pose

C={zxela,b|f(z) <y}

C’est une partie de [a,b] non vide (elle contient b), donc ¢ = infC est un
nombre réel bien défini. Par définition de la borne inférieure, il existe une
suite (¢,,) de points de C qui converge vers c. Alors pour tout indice n :

a<c, <b et flen) <.

Par continuité de f en ¢, la suite (f(c,)) converge vers f(c). Donc en passant
a la limite, on trouve :

a<c<b et fle) <.

Comme on a supposé y < f(a), on trouve f(c) < f(a), donc ¢ # a. Ainsi
a < ¢ < b. Pour n assez grand, ¢ — % est donc dans [a,b] mais pas dans C
(puisque c¢ est la borne inférieure de C). Donc

f(c—:) >y,

ce qui donne a la limite, toujours par continuité de f :

fle) = y.
On en conclut que f(c) =y. &

Si f est une fonction continue sur un intervalle I, le théoréme des valeurs
intermédiaires montre que I’ensemble des valeurs prises par f est aussi un
intervalle J. Les bornes de J sont bien sir :

inf J =inf{f(x) | z € I'} et sup J = sup{f(x) | x € I}.
On les note respectivement irllf f et sup f. Ces bornes sont éventuellement
I

+o0 si f n’est pas minorée ou pas majorée sur I.

Méme si ces bornes sont finies, ce ne sont pas forcément des valeurs
atteintes par la fonction f : l'intervalle J peut étre ouvert ou semi-ouvert.
Par exemple, si on considere f : ¥ — 22 sur I'intervalle I =] —1,1[, on trouve
J = [0,1[; 0 = f(0), mais 1 n’est pas une valeur atteinte. Le théoréme
suivant précise la situation quand I est un segment [a,b] : il dit qu'une
fonction continue sur un segment est bornée et atteint ses bornes.
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Enoncé indispensable 8 : théoréme des bornes atteintes

Soit f une fonction continue sur un segment [a,b]. Alors f atteint
une valeur maximale M et une valeur minimale m sur [a, b].

On dit que M est le maximum de f, que m est son minimum et on note

m = min et M = max f.
[a,b] ! [a,b] !

La notation max (resp. min) au lieu de sup (resp. inf) sous-entend que ce sont
des valeurs atteintes : il existe T, et Tpmq, dans [a, b] tels que m = f(Zmin)

et M = f(Tmaz)-

Démonstration. Soit M = sup{f(x) | = € [a,b]}, un nombre réel ou bien
+00. Il existe une suite (z,,) de points de [a, b] telle que (f(zy,)) tend vers M
(cf. exemples[5|et[11]). La suite (z,,) est bornée donc le théoréme de Bolzano-
Weierstrass permet d’en extraire une sous-suite (xw(n)) qui converge, vers
r € [a,b]. D'une part, comme sous-suite de (f(r,)), (f(7,(n))) tend vers
M. D’autre part, par continuité de f en x, (f(7,(,))) tend vers f(x). Donc
M = f(x). Cela veut dire M est une valeur atteinte par f et donc, en
particulier, un nombre réel (fini).

On procede de méme pour la borne inférieure. &

COROLLAIRE 2. Soit f : [a,b] — R une fonction continue. Alors l’en-
semble J des valeurs prises par f est un segment : J = [m, M].

Démonstration. Le théoreme des valeurs intermédiaires a montré que J était
un intervalle. Le théoreme des bornes atteintes montre que m = inf J et
M = sup J sont dans J. Donc J = [m, M]. &

2.3. Fonctions dérivables. La définition usuelle de la dérivée consiste
a la voir comme la limite du taux de variation.

Enoncé indispensable 9 : dérivabilité

Soient un intervalle I et une fonction f : I — R. On dit que f est
f(x)—f(a)

dérwable en un point a de I si =—— -~ admet une limite finie quand x

tend vers a. Cette limite est notée f'(a), c’est la dérivée de f en a.

On dit simplement que la fonction f est dérivable (sur I) si elle est
dérivable en tout point de I.

Géométriquement, la dérivée en a est la pente de la tangente au graphe
de f au point (a, f(a)).

La dérivabilité en un point est équivalente a l’existence d’'un dévelop-
pement limité d’ordre 1 : c’est le contenu du prochain théoreme. Dans son

énoncé, la notation o(xz — a) désigne n’importe quelle quantité qui tend vers
o(z—a)

0 plus vite que  —a quand x tend vers a. Cela signifie que le quotient = —



2. CONTINUITE ET DERIVABILITE 33

tend vers 0. On peut aussi penser que o(z — a) désigne n’importe quelle ex-
pression du type (x — a)e(x) avec lim,_,, e(x) = 0. On suppose le lecteur
familier des manipulations usuelles de développements limités.

THEOREME 5. Soient un intervalle I et une fonction f : I — R. Pour
tout a € I, il y a équivalence entre les deux assertions suivantes.

(1) f est dérivable en a.
(2) f admet en a un développement limité d’ordre 1 :
f(z) = f(a) + a(z —a) + o(x — a) quand T — a.
Dans ce cas, a = f'(a).

Démonstration. C’est au fond une simple reformulation. Si on suppose (2),
en faisant tendre x vers a, on trouve

f@)=fl@) _  oz=a)

r—a r—a

— Q.

Donc f est dérivable en a et f'(a) = a. Réciproquement, si on suppose (1),

le taux de variation W

f(z) = f(a)

Tr—a

tend vers une limite o € R, ce qui s’écrit :

=a+o(1) quand T — a,

puisque o(1) désigne par définition une quantité tendant vers 0. En multi-
pliant par x — a, il vient

f(x) = fla) = a(z — a) + o(z — a),
d’ou le développement limité. O
En particulier, la dérivabilité implique la continuité : non seulement f(x)

tend vers f(a) quand z tend vers a, mais le développement limité & l'ordre
1 précise a quelle vitesse.

COROLLAIRE 3. Si f est dérivable en a, f est continue en a.

Démonstration. Le théoreme ci-dessus donne le développement limité
f(x) = f(a) + f'(a)(z — a) + o(z — a) quand = — a.
Les termes f'(a)(z —a) et o(z — a) tendent vers 0 quand x tend vers a, donc

f(x) tend vers f(a). &

Le développement limité & 'ordre 1 éclaire bien la compatibilité de la
dérivation avec sommes et produits.

PROPOSITION 11. Soient f et g deux fonctions dérivables en un point a.
Alors f 4+ g et f x g sont dérivables en a et

(f+9)(a) = f(a)+d'(a)
(f9)'(a) = f'(a)g(a)+ fla)g'(a).
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Démonstration. Quand  — a, on dispose des développement limités :
fz) = fla)+ f'(a)(z —a)+o(z - a),
g9(z) = g(a) +d'(a)(z —a) +o(z — a).
La somme donne
f(@) +g(x) = f(a) + g(a) + (f'(a) + ¢'(a))(z — a) + o(z — a).
Le produit donne
f(@)g(z) = f(a)g(a) + (f'(a)g(a) + ¢'(a) f(a))(z — a) + o(z — a).

Et le théoréme permet de conclure. &

PROPOSITION 12. Soit f une fonction ne s’annulant pas sur un intervalle
I. Si f est dérivable en un point a de I, alors 1/f est dérivable en a et

(1) (@ =~k

Démonstration. Commengons par remarquer que 1/f est bien définie sur I
parce que f ne s’annule pas sur I. Le taux de variation de 1/f en a s'écrit

- f@ . f@)—fa) 11
a

f'(a)

donc tend vers — Fa)? quand x — a. Dans le membre de droite, le premier

facteur est en effet le taux de variation de f, qui tend vers f'(a), et le

deuxieme tend vers T}I)Q par continuité de f en a. &

En combinant les formules pour la dérivée d’un produit et d’un in-
verse, on obtient ’expression bien connue pour la dérivée d’un quotient :
5 = fe=tg
g g2 A~ . . . .
résultats que les polynomes et fractions rationnelles définissent des fonctions
dérivables.

. Comme pour la continuité, on déduit par exemple de ces

PROPOSITION 13. Soient I et J deux intervalles de R. Soient deux fonc-
tions f : I — J et g: J — R. On suppose que f est dérivable en un point a
de I et que g est dérivable en f(a). Alors la fonction g o f est dérivable en
a et

(gof)(a) =g'(f(a)) x f(a).

Démonstration. Posons b = f(a). L’idée est de composer les développements
limités de f(z) quand x — a et g(y) quand y — b, en posant y = f(z). On
peut le faire puisque, si = tend vers a, f(x) tend b = f(a) par continuité de
f en a. On part donc des développements

fx) = fla)+ (z —a)(f'(a) +ef(x)),
g(y) = gb) + (y—b)(g'(b) + eg(y)),
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ol ef(x) (resp. e4(y) ) tend vers 0 quand  — a (resp. y — b). Avec y = f(x)
et b= f(a), on en déduit :

g(f(x)) = g(b)+ (z —a)(f'(a) + e(2))(g'(b) + eg(f(2)))
= g(0) + (z—a)f'(a)g'(b) + o(z — a)
= g(f(a)) + (z —a)f'(a)g'(f(a)) + o(z — a).
Cela montre que g o f est dérivable en a, de dérivée f'(a)g'(f(a)). &

REMARQUE 20. On dit que f est dérivable & gauche (resp. droite) en a si

le taux de variation £ a)? /() admet une limite finie en a~ (resp. en a™). On
parle de dérivée a gauche ou & droite pour désigner ces limites a gauche ou
a droite.Une fonction est dérivable en a si et seulement si elle est dérivable
a gauche et a droite avec des dérivées a gauche et a droite égales.

Par exemple, en 0, la valeur absolue admet une dérivée a gauche égale a
—1 et une dérivée a droite égale a 1. Cette fonction n’est donc pas dérivable
en 0. C’est un exemple de fonction continue mais pas dérivable en 0.

2.4. Propriétés globales des fonctions dérivables. La dérivée four-
nit un moyen pratique pour trouver les endroits ot une fonction est maximale
ou minimale. Le résultat de base est le suivant.

Enoncé indispensable 10 : dérivée et extrema

Soit f :]a, B[— R une fonction dérivable. On suppose que f atteint
un maximum ou un minimum en un point a de I'intervalle ouvert |« 3.

Alors f/(a) =

Géométriquement : en un point de maximum ou minimum, la tangente
au graphe est de pente nulle, c’est-a-dire horizontale.

Attention : ce n’est vrai que sur un intervalle ouvert. Par exemple, re-
gardons la fonction f : [0, 1] — R définie par f(z) = x. Elle est maximale en
a =1 et pourtant f’(1) =1 # 0. Le critere ne vaut que si la fonction prend
des valeurs plus grandes (ou plus petites) a gauche et a droite de a; on le
verra dans la preuve ci-dessous. En pratique, si on n’est pas sur un intervalle
ouvert, il faudra toujours traiter & part les bornes de l'intervalle d’étude.

Insistons sur le fait que ce théoréme ne donne qu'une condition néces-

saire : la fonction f : x +— 23 est dérivable sur | — 1, 1], sa dérivée s’annule
en 0 et la fonction n’y atteint ni maximum, ni minimum.
Démonstration. Supposons f maximale en a : f(z) — f(a) < 0 pour tout
x €], B]. Puisque a < a < 3, on peut trouver des suites (z;7) et (z;,)
convergeant vers a, avec a < x,, < a et a < xﬁ < 8 pour tout indice n
£ = a+1/n pour n assez grand). Alors :

(prendre x
) — f(a
xn —a
et le membre de gauche est négatif, donc f’(a) < 0. De méme,
f(xn)_f(a’) —>f,((1)

Tn — Q
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avec un membre de gauche positif cette fois : f’(a) > 0. Donc finalement
f'(a) = 0. Le cas d’'un minimum est similaire. &

Un probléme courant consiste a chercher la valeur maximale (ou mini-
male) que peut prendre une fonction dérivable f : [, 5] — R. Le théoréme
des bornes atteintes dit qu’il existe un point a du segment [a, 5] ol f est
maximale. Si ce point a est dans l'intervalle ouvert Jo, 5], il vérifie I’équation
f'(a) = 0. Le maximum de f est donc atteint en «, en 3 ou en I'une des
solutions a de cette équation. Pour conclure, il reste a comparer les valeurs
que prend f en ces différents points (notamment aux bornes du segment !).

EXEMPLE 14. Considérons la fonction f : [-1,1] — R définie par f(x) =
x2. Elle est dérivable et sa dérivée ne s’annule qu’en 0. Pour la maximiser,
on compare donc : f(—1) =1, f(1) = 1 et f(0) = 0. On conclut que le
maximum est 1, atteint uniquement aux bornes —1 et 1 du segment. Le
minimum est quant & lui atteint en 0 et il vaut 0.

Cette discussion meéne naturellement au théoreme de Rolle, qu’on per-
fectionnera légerement pour obtenir un outil tres important : le théoréeme
des accroissements finis.

THEOREME 6 (théoreme de Rolle). Soit f : [a,b] = R, avec a < b. On
suppose que f est dérivable sur ]a,b[, continue sur [a,b] et que f(a) = f(b).
Alors il existe un point ¢ €]a, b tel que f'(c) = 0.

Démonstration. Le théoreme des bornes atteintes affirme que f atteint un
minimum m et un maximum M sur le segment [a, b].

Si 'un d’entre eux est atteint en un point ¢ de Ja,b[, on a f'(c) = 0 par
le résultat précédent.

Sinon, c’est qu’ils sont tous les deux atteints aux bornes du segment.
Comme f prend la méme valeur en a et b, le maximum M et le minimum m
sont alors égaux. Puisque par construction, on a m < f(x) < M pour tout
x € [a,b], on voit que la fonction f est constante a la valeur m = M dans
ce cas. Donc sa dérivée est nulle en tout point ¢ de 'intervalle ]a, b[. &

REMARQUE 21. En pratique, ce théoreme (et les suivants) s’applique a
une fonction qui est dérivable sur un intervalle contenant le segment [a, b].
Comme la dérivabilité implique la continuité, les hypotheses sont vérifiées.

Enoncé indispensable 11 : égalité des accroissements finis

Soit f : [a,b] — R, avec a < b. On suppose que f est continue sur
[a, b] et dérivable sur ]a, b[. Alors il existe ¢ €]a, b[ tel que

f®) = f(a) = (b—a) f'(c).

Démonstration. Soit g la fonction affine telle que g(a) = f(a) et g(b) = f(b).
Explicitement, elle est donnée par
b) —
Vr € R, g(:n):‘f(l))M(:E—a)%—f(a).
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La fonction h = f — g est dérivable et le choix de g donne h(a) = h(b) = 0.
Le théoreme de Rolle s’applique donc, donnant 'existence de ¢ €]a, b[ tel
que h/(c) = 0. Or la dérivée de h se calcule immédiatement :

Vz €la, b, b (z) = f'(x) — W.

On en déduit : f'(c) = W o

COROLLAIRE 4. Soit f une fonction dérivable sur un intervalle I.
Si f' est positive, f est croissante.
Si f' est strictement positive, f est strictement croissante.
Si f' est négative, f est décroissante.
Si f est strictement négative, f est strictement décroissante.
Si f' est identiquement nulle, f est constante.

Démonstration. Si a < b sont deux points de I, 1égalité des accroissements
finis donne un point ¢ €a,b] tel que f(b) — f(a) = (b — a) f'(¢). Donc
f(b) — f(a) est >0, >0, <0, <0 ou=0 si et seulement si f'(c) l'est. Le
corollaire en découle. &

Plutot que 1’égalité, on utilise souvent 'inégalité des accroissements finis.
Elle dit qu’une borne sur la dérivée controle 'ampleur des variations de
la fonction sur un segment donné. Concretement, si on court a moins de
21km/h entre 9h et 11h du matin, on parcourt moins de 42km.

Enoncé indispensable 12 : inégalité des accroissements finis

Soit f : [a,b] — R une fonction continue sur [a,b] et dérivable sur
la,b[. Alors :
|£(6) = f(a)] < (b—a)sup|f'].

Ja,b

Démonstration. 1’égalité des accroissements finis f(b) — f(a) = (b—a) f'(c)
donne en valeur absolue

£(0) = f(a)| = (b—a) |f'(c)]

et la majoration suit, par définition de la borne supérieure. O

Pour que 'inégalité ait un intérét, il faut que la borne supérieure dans le
membre de droite soit finie. Typiquement, ce sera vrai si la fonction dérivée
f” est continue sur le segment [a,b] (par le théoréme des bornes atteintes),
c’est-a-dire si la fonction f y est de classe C*.

REMARQUE 22. Si la dérivée de f est majorée en valeur absolue par x
sur l'intervalle I tout entier, I'inégalité des accroissements finis donne :

V$7y617 |f(y)_f($)|§l<‘|y_$|7

On dit alors que f est x-lipschitzienne. Pour une telle fonction, les variations
de f(z) sont au plus proportionnelles a celles de z. Ce controle uniforme
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peut s’averer utile en pratique, par exemple dans la théorie des équations
différentielles.

2.5. Fonctions réciproques, nouvelles fonctions usuelles. Dans
ce paragraphe, on s’intéresse aux fonctions continues qui sont strictement
monotones, ¢’est-a-dire strictement croissantes ou strictement décroissantes,
sur un intervalle de R. On peut les voir comme des bijections entre intervalles,
ce qui permet de définir une fonction réciproque aux propriétés intéressantes.

Soit f une fonction continue et strictement monotone sur un intervalle
1. Notons J I'ensemble de ses valeurs :

J=A{f(z) |z el}

C’est un intervalle d’apres le théoreme des valeurs intermédiaires. Par défini-
tion de J, la fonction f : I — J est surjective. La stricte monotonie de f fait
qu’elle est aussi injective : si x < y sont deux points de I, on a f(z) < f(y)
(resp. f(x) > f(y)) si f est strictement croissante (resp. décroissante), et en

tout cas f(z) # f(y).

Ainsi, f: I — J est une bijection.

REMARQUE 23. Dans le programme officiel de terminale, « on convient
que les fleches obliques d’un tableau de variation traduisent la continuité et
la stricte monotonie de la fonction sur I'intervalle considéré ». Pour chacune
de ces fleches obliques, on obtient donc une bijection.

REMARQUE 24. On peut préciser les bornes de l'intervalle J (un dessin
I'indique assez clairement). Notons a = inf I, b =sup I, « = inf J, 5 = sup J
(on autorise les valeurs infinies). On suppose f strictement croissante pour
fixer les idées (si f est strictement décroissante, la discussion s’adapte en
changeant 1’ordre des bornes de J).

Montrons dans ce cas que f tend vers 5 en b. On écrit la preuve dans le
cas ou (3 est fini. Etant donné £ > 0, par définition du sup, on peut trouver
xze € I tel que f(x.) >  — e. Par définition de 8 et croissance de f, si
e <z <bonaf—e< f(x) <pB. Cela prouve que f tend vers 8 en b. Si
8 = 400, f n’est pas majorée et le méme argument montre que f tend vers
+o0 en b. De méme, f tend vers « en a. Donc les bornes de J sont

a:liglf et ,B:lilljnf.

Sib e I, f est continue en b, donc § = lil{nf = f(b), et en particulier

B € J. Siau contraire la borne supérieure b de I n’est pas dans I, 8 n’est pas
une valeur atteinte : si on avait 5 = f(c) pour un certain ¢ € I (donc ¢ < b),
n’'importe quel = €]c, b[ vérifierait f(z) > f(c) = B par stricte croissance, ce
qui contredirait la définition de 8. Donc 8 € J si et seulement si b € I. Il en
est de méme pour « et a. Bref :

— si I =a,b], J = [a, B], avec o = f(a) et = f(b);

— si I =[a,b[, J = [a, B[, avec o = f(a) et zliinf;

— si I =la,b], J =]a, f] avec o = li(rlnf et B=f(b);
— si I =a,b[, J =|a, f] avec a = lim f et 5 = lil{nf.
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Puisque f : I — J est une bijection, on dispose d’une fonction réciproque
f~':J — I : tout point y de l'intervalle J admet un unique antécédent
dans I, que l'on note x = f~1(y). Ainsi, équation y = f(z), avec = € I,
équivaut & x = f~1(y), avec y € J. Géométriquement, cela signifie que le
graphe de f~! s’obtient & partir de celui de f en échangeant le réole des
coordonnées x et y, c’est-a-dire en effectuant une réflexion par rapport a la
premiere bissectrice (la droite d’équation y = x).

L’énoncé suivant résume ce qu’on vient de voir et précise les propriétés
de cette fonction réciproque f~1.

Enoncé indispensable 13 : théoréme de la bijection

Soit f une fonction strictement monotone et continue sur un inter-
valle I. On note J ’ensemble de ses valeurs. Alors

(1) la fonction f : I — J est une bijection entre les intervalles I et
J;

(2) la réciproque f~!: J — I est strictement monotone, de méme
sens de variation que f;

(3) la réciproque f~! est continue sur I'intervalle .J ;

(4) si f est dérivable en un point a de I et si f’(a) # 0, la réciproque
f~1 est dérivable en b = f(a), avec
N, 1 1
b) = = .
U O=7w= 7w

Démonstration. Le point (1) est expliqué ci-dessus. Pour le point (2), on
suppose par exemple que f est strictement croissante (on peut s’y ramener en
considérant — f). Soient y < 3’ deux points de .J. On note x = f~!(y) et 2/ =
f~Yy'). Si on avait x > 2/, la croissance de f donnerait y = f(z) > f(z') =
y', contradiction. On a donc z < 2’. Et cela prouve la stricte croissance de
.

Passons au point (3). Soient b € J et a = f~1(b) € I. On suppose que
a n’est pas une borne de l'intervalle I et que f est strictement croissante
pour simplifier la rédaction (le cas général se traite de méme). Soit € > 0
suffisamment petit pour que Ja — €,a + £[ soit entierement inclus dans I.
Comme f est strictement croissante, on a f(a—e) < f(a) =b < f(a+¢). On
peut fixer n > 0 assez petit pour que f(a—e) <b—n <b<b+n< fla+e).
Pour tout y €]b—n,b+ 7|, on a alors

fla—g) <y < flate)
et, par stricte croissance de f~!, on en déduit :
a—c=f(fla=e) < fy) < U (flate) =a+e.

Ainsi, comme a = f~1(b), on vient de prouver que |y — b| < 7 implique
|f~1(y) — f~1(b)| < &. D’ou la continuité de f~! en b.
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Pour le point (4), on écrit le taux de variation de f~! au point b = f(a),
en fonction de la variable y = f(x) :

W) w-a
y—b F@) ~ fla)
(v

1

Quand y tend vers b, x = f~!(y) tend vers f~1(b) = a par continuité de

f~! en b. Par dérivabilité de f en a, la quantité % tend donc vers
f'(a). Et comme cette limite n’est pas nulle par hypothese, on peut passer
a 'inverse et voir que le membre de droite de 1’égalité ci-dessus tend vers

1/f'(a). Cela prouve que f~! est dérivable en b, de dérivée 1/f'(a). O

REMARQUE 25. Géométriquement, si la dérivée de f s’annule en a, la
tangente au graphe de f au point (a, f(a)) est horizontale. Par réflexion par
rapport a la premiere bissectrice, le graphe de f~! admet une tangente verti-
cale au point (f(a),a), c’est-a-dire de pente infinie : f~! n’est pas dérivable

en f(a).

EXEMPLE 15. On peut définir le logarithme népérien comme la primitive
de la fonction inverse qui s’annule en 1E1 Par construction, cette fonction
est dérivable sur RY , de dérivée strictement positive, donc strictement crois-
sante. Par le théoreme de la bijection, on peut définir ’exponentielle comme
la fonction réciproque du logarithme sur cet intervalle. Et on peut prouver
les propriétés usuelles de ’exponentielle... En particulier, la formule ci-dessus

donne exp’ = 7 Olexp = exp.

Pour définir de nouvelles fonctions comme fonctions réciproques, on peut
donc étudier les fonctions dont on dispose déja et chercher les plus grands
intervalles sur lesquels elles sont strictement monotones. Pour les fonctions
trigonométriques, par périodicité, il y a une infinité de tels intervalles : il
faut faire un choix et c’est arbitraire. Les définitions ci-dessous présentent
les choix standards. Ces fonctions sont & connaitre! Les graphes présentés
s’obtiennent a partir de ceux des fonctions trigonométriques (sinus, cosinus,
tangente, sur les domaines précisés), en effectuant une symétrie par rapport
a la premiere bissectrice.

Enoncé indispensable 14 : arcsinus

La fonction sinus est continue et strictement croissante sur l’in-
tervalle I = [-7,7]. Elle y prend toutes les valeurs de l'intervalle
J = [-1,1]. C’est donc une bijection entre I et J et on peut définir
une fonction réciproque, appelée arcsinus :

T T
arcsin : [—-1,1] — [—,] .
22
Pour z € [—1, 1], arcsin(x) est I'unique angle compris entre —7m/2 et 7 /2
dont le sinus est z.

2. On montrera que toute fonction continue admet une primitive dans le chapitre sur
Pintégrale.
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La fonction arcsinus est strictement croissante et continue sur [—1, 1].
Elle est dérivable sur | — 1, 1], avec
1
Ve el —1,1 arcsin’(z) = ——.
s
2
-1

N

FIGURE 1. Le graphe de la fonction arcsinus

Démonstration. Tout découle du théoreme de la bijection. Pour la dériva-
bilité, observons que la dérivée de sinus s’annule aux points +7/2, et en
aucun autre point de I. Comme sin(£m/2) = +1, cela prouve que arcsin est
dérivable sur | — 1,1[. La formule donne pour tout x €] — 1, 1] :

1 1

arcsin’(z) = sin’(arcsin(x)) B cos(arcsin(z))

On peut observer que arcsin(z) est dans | — 7, 5[, donc cos(arcsin(x)) > 0.
Cela permet d’écrire

cos(arcsin(z)) = /(cos(aresin(x)))2 = /1 — (sin(arcsin(x)))2 = V1 — 22.

D’ou la formule pour la dérivée. &

REMARQUE 26. Attention au domaine de définition ! Par définition d’une
réciproque, on dispose bien sir des formules :

Vz € [-1,1], sin(arcsin(x)) = x,
T
272
Ces formules sont-elles vraies pour un réel x quelconque ? Déja, si x n’est pas
dans [—1, 1], arcsin(x) n’est pas défini, donc la premiere formule n’a aucun
sens. Et la seconde ? L’expression arcsin(sin(z)) a un sens pour tout réel x
puisque la fonction sinus est définie sur R et prend ses valeurs dans [—1, 1],
ou la fonction arcsinus est définie. La seconde formule est donc diablement
T T

tentante... mais fausse. En effet, arcsin(sin(z)) est toujours dans [—7F, 5] ; si

on prend x en dehors de cet intervalle, la formule est forcément fausse.

Vo € [— ] , arcsin(sin(z)) = x.
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Enoncé indispensable 15 : arccosinus

La fonction cosinus est continue et strictement décroissante sur
l'intervalle I = [0,7]. Elle y prend toutes les valeurs de l'intervalle
J = [=1,1]. C’est donc une bijection entre I et J et on peut définir
une fonction réciproque, appelée arccosinus :

arccos : [—1,1] — [0, 7].

Pour x € [—1,1], arccos(x) est 'unique angle compris entre 0 et 7 dont
le cosinus est .
La fonction arccosinus est strictement décroissante et continue sur

[—1,1]. Elle est dérivable sur | — 1, 1], avec
1

Ve el —1,1], arccos' (z) = ———.
)=l W=

™

T

2

0

-1 1

F1GURE 2. Le graphe de la fonction arccosinus

Démonstration. C’est totalement similaire au cas de sinus. Le signe - dans
la formule vient simplement de cos’ = — sin (versus sin’ = cos). o

Enoncé indispensable 16 : arctangente

La fonction tangente est continue et strictement croissante sur l’in-

tervalle I =] — 7, §[. Elle y prend toutes les valeurs de I'intervalle J = R.

On peut donc définir une fonction réciproque, appelée arctangente :

arctan:R%]—W,w{.

22

Pour z € R, arctan(x) est I'unique angle compris entre —m/2 et /2
dont la tangente est x. En outre,

I tan(z) = ~ et I tan(z) = —
xj)IJIrlooarC an(xr) = ) € x_l)l}looarc an(xr) = 2
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La fonction arctangente est strictement croissante et dérivable sur R,
avec ]

1422

Vo € R, arctan’(r) =

ol

R

FIGURE 3. Le graphe de la fonction arctangente

Démonstration. La fonction arctangente est bien définie par le théoreme de
la bijection. Comme la fonction tangente tend vers +00 en +7 /2, I'intervalle
J est bien R et cela donne les limites indiquées. Pour la dérivabilité, on
observe que tan’ = 1 + tan? ne s’annule pas. Et la formule de dérivation
donne pour tout z € R :

1 1 1

- tan’ (arctan(z)) T 1+ tan(arctan(z))? T 1422

arctan’(z)
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3. Suites récurrentes

Dans cette partie, on s’intéresse aux suites définies par récurrence, comme
évoquées dans la partie [I. On va se concentrer sur le cas réel afin de tirer
parti de notre étude des fonctions continues/dérivables sur des intervalles
de R. On travaillera donc avec une fonction f : I — R, dont le domaine de
définition I est un intervalle de R. Les suites (u,) qu’on considérera seront
définies par leur premier terme ug et une relation de récurrence

Un+1 = f(u’rl)v

vérifiée pour tout indice n.

Par exemple, en prenant pour fonction f : z — Az, avec A € R, on
obtient exactement les suites géométriques de raison A. En prenant f affine
(i.e. f:x+— ax+b), on obtient les suites arithmético-géométriques.

Nous allons donner des réponses générales a quelques questions natu-
relles. La suite (uy,) est-elle bien définie ? Par exemple, si on prend ug dans
I, la fonction f est certes définie en wug, mais pas forcément en u; = f(ug),
ce qui empéche de définir le terme us... Peut-on visualiser le comportement
de la suite (u,) a l’aide du graphe de f? Quelles propriétés de la fonction
f peuvent garantir que la suite (u,) est monotone ? Qu’elle converge ? Vers
quelle limite ?

3.1. Bien définie ? Pour éviter le gag évoqué ci-dessus, on va imposer
que, si f est bien définie en z, alors f est encore bien définie en f(z).

DEFINITION 12. Soit f une fonction définie sur un intervalle 7. On dit
que I est stable ou stabilisé par f si

Veel, f(x)el.

EXEMPLE 16. L’intervalle [0, +oo[ est stabilisé par la fonction x — z2,
alors que l'intervalle | — 0o, 0] ne l'est pas.

PropoSITION 14. Soit I un intervalle stabilisé par une fonction f. St
ug est un point de I, alors la relation de récurrence

VneN, upi1= f(uy)

définit une suite (uy). De plus, pour tout n € N, u,, est dans I.

Démonstration. On démontre par récurrence sur n € N la propriété
P, : wu, est bien défini et se trouve dans I.

Initialisation : par hypothese, ug € I. Hérédité. Soit n € N tel que P, est
vraie. Puisque u, est dans I, ou f est bien définie, u,t1 = f(uy,) est bien
défini. Puisque I est stabilisé par f, up+1 = f(uy) est dans I, ce qui prouve
Py, %

A partir de maintenant, on se donne un intervalle I stabilisé par f, ainsi
que ug € I. Et on note (u,) la suite définie par

VneN, uppr = f(un).
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3.2. Représentation graphique. On note G le graphe de la fonction
f, D la droite d’équation y = = (appelée la premiere bissectrice). On peut
représenter graphiquement les termes successifs de la suite (u,),de la fagon
suivante.

On commence par placer le point Py d’abscisse ug sur la courbe G. Par
définition, ses coordonnées sont (ug,uy).

Ensuite, pour n > 0, on itere les deux étapes suivantes.

(1) On trace le segment horizontal reliant P, a la droite D, et on note

P} . le point de D ainsi obtenu. Ses coordonnées sont (U1, Un1).

(2) On trace le segment vertical reliant P ; & la courbe G, et on note
P,+1 le point de G ainsi obtenu. Ses coordonnées sont (41, Unt2)-

Pour tout entier naturel n, le terme u,, de la suite est donc ’abscisse du point
P, du graphe G de f. Les exemples suivants montrent des comportements

typiques.

EXEMPLE 17. On consideére la fonction f : R — R définie par f(z) = 2.

Le premier dessin correspond & ug = 2 = 0, 75.
p p 1=0,

Up+1 = f(uu,)

uy ~ 0.562

uy ~ 0.316

3 uy = 0.75

Le second dessin correspond a ug = 1, 05.
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Up+1 = f(un)
P3
Py
2
P, P
uz =~ AATT
Py 2
P’ =~
Py 1.216
1~ 1.103
1
uy = 1.05
T Z 3

EXEMPLE 18. On considere la fonction f :] — 1, +oo[— R définie par
flz) = z—il, avec ug = 3.

tn1 = f(un)

wy A~ 2

P .
2 Py

& 0.75

P3

P Py

Uy A0

uy = —0.5
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3.3. Sens de variation. Nous allons énoncer deux résultats prédisant
une forme de monotonie pour la suite récurrente (u, ). Ils font des hypotheses
différentes sur la fonction f : le premier demande que son graphe reste soit
au-dessus, soit au-dessous de la premiere bissectrice ; le second traite du cas
ou la fonction f elle-méme est monotone.

PROPOSITION 15.
(1) Si pour tout x € I, f(x) > x, alors (uy,) est croissante.
(2) Si pour tout x € I, f(x) <z, alors (uy) est décroissante.

Démonstration. On suppose que pour tout x € I, f(z) > x (resp. f(z) > x).
Alors, pour n € N, upq1 = f(un) > up (resp. up+1 = f(un) > uy), d'ou le
premier point. Le second est similaire. &

On peut aussi obtenir de la stricte monotonie. Par exemple, si le graphe
de f est strictement au-dessus de la premiere bissectrice (f(z) > x), on voit
de méme que (uy) est strictement croissante.

Les dessins tracés au début de ce chapitre illustrent bien cette premiere
proposition. Ils annoncent aussi que le lien entre le sens de variation de f et
celui de (uy,) est plus subtil.

PROPOSITION 16.

(1) Si f est croissante sur I, alors (uy,) est monotone; elle est croissante
sur uj > ug, décroissante si up < ug.

(2) Si f est décroissante sur I, alors les sous-suites (uay) et (uzn+1) sont
monotones de sens contraires.

Démonstration.

(1) On raisonne par récurrence sur n. Supposons que uj > ug. Soit n €
N tel que upy1 > un. Puisque f est croissante, on en déduit que
f(up+1) = f(upn), ce qui se réécrit upi1o > up41. Le principe de
récurrence assure donc que pour tout n € N, up11 > uy,, donc la
suite (uy,) est croissante. Le second cas est exactement similaire.

(2) Puisque f est décroissante, la fonction f o f est croissante (si z <y,

£(a) = £(y), puis F(F(2)) < F(/(w)- Or la suite (ua,) veriti

Vn €N,  uypqr) = uani2 = fluzni1) = f(f(u2n)),
donc c’est une suite récurrente associée a la fonction croissante f o f.
Par le point (I, la suite (ug,) est monotone. La suite (ugn41) est
aussi une suite récurrente associée a la fonction croissante fo f, donc
elle est aussi monotone. Si on suppose par exemple (ugy,) croissante,
on a :

Vn €N, uguq2 > ugy,

donc en appliquant la fonction décroissante f, on obtient

Vn e N, wugpys = f(uant2) < f(uon) = uanyi,

ce qui montre que la suite (ugn+1) est décroissante. Le cas ou (uay)
est décroissante est similaire.

&
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3.4. Convergence et points fixes. Dans ce paragraphe, on cherche
a comprendre la convergence de la suite récurrente (u,) en termes des pro-
priétés de la fonction f.

D’abord, quelles sont les limites possibles ? L’énoncé suivant donne une
réponse générale quand l'intervalle stable I est un intervalle fermé, c’est-a-
dire de la forme [a,b], ou | — 00, b] ou [a, +oo] ou | — 0o, +00].

Enoncé indispensable 17 : limites possibles

On suppose que la fonction f est continue sur un intervalle I, stable
et fermé, et que la suite récurrente (u,) converge vers une limite ¢. Alors
¢ est dans I et c’est un point fize de f : f(£) = £.

Démonstration. Comme [ est fermé, il est défini par des inégalités larges
(c’est ’ensemble des réels x vérifiant > a et/ou x < b, ou rien du tout).
Puisqu’il est stable, tous les termes u, de la suite vérifient ces inégalités
larges. En passant a la limite, on voit que £ les vérifie aussi : £ € I.
Ensuite, la fonction f est continue en I, donc la caractérisation séquen-
tielle de la continuité (proposition [§)) assure que (f(uy,)) converge vers f(£).
Or par définition la suite (f(uy)) est la sous-suite (u,+1) de (uy,), donc cette
suite converge aussi vers . Par unicité de la limite, on a donc f(¢) =¢.

En pratique, pour trouver les limites possibles d’une suite récurrente, on
cherche donc les points fixes de la fonction f. Il est bon de savoir qu’il y en
a toujours dans le cas ou 'intervalle stable I est fermé et borné, i.e. de la
forme |a, b].

PROPOSITION 17. On suppose que la fonction f est continue sur un
intervalle stable de la forme I = [a,b]. Alors f posséde au moins un point

fize.

Démonstration. On considére la fonction continue g : I — R définie par
g(z) = f(x) — x. Puisque I = [a,b] est stable, tous ses éléments x vérifient
a < f(z) <b. En prenant x = a puis z = b, on obtient g(a) = f(a) —a >0
et g(b) = f(b) — b < 0. Le théoreme des valeurs intermédiaires (théoreme (7))
assure alors que g s’annule : il existe x € I tel que g(x) = 0, ce qui signifie
exactement que x est un point fixe de f. &

Considérons maintenant ’exemple suivant.

EXEMPLE 19. On considere la fonction continue f : z — 22 sur l'inter-
valle I = [0,1]. On voit que I est stable et fermé, et que f admet exacte-
ment deux points fixes sur I, a savoir 0 et 1. La proposition [I5] assure que la
suite récurrente (u,) est décroissante. Puisque (u,) est minorée par 0, elle
converge vers une limite [, qui est 0 ou 1 par la proposition Si on part
de uyp = 1, la suite (u,) est constante a la valeur 1 (puisque c’est un point
fixe) ; en particulier, elle converge vers 1. Si on choisit plutét ug € [0,1], la
décroissance de la suite I’empéche de converger vers 1 : c’est donc qu’elle
converge vers 0 (voir aussi les dessins au début de ce chapitre).
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Il semble donc que les deux points fixes de f ne jouent pas un role
symétrique : 1 a tendance a repousser les termes de la suite (sauf si on part
exactement de 1), alors que 0 a tendance & les attirer. Les résultats qui
suivent vont expliquer ce comportement.

Nous allons faire des hypotheses supplémentaires de régularité sur la
fonction f. Si k est un entier naturel, on dira que f est de classe C* si f
est k fois dérivable de dérivée k-ieme continue. Cela revient a dire que les
dérivées successives f/, (f') = f”,..., f¥) existent et sont continues.

PROPOSITION 18. On suppose que f est de classe C' sur Uintervalle
stable I et que £ € T est un point fize de f tel que |f'(£)| > 1. Dans ce cas, si
la suite récurrente (uy,) converge vers €, elle y est forcément stationnaire :
il existe N € N tel que pour tout n > N, u, = £.

Démonstration. Puisque |f'(¢)| > 1, la continuité de | f’| donne un réel n > 0
tel que |f’| > 1 sur Vintervalle J =TI NJ¢ —n, ¢ + 1.

Puisque la suite (u,) converge vers ¢, il existe un rang N tel que pour
tout n > N, |un, — ¢| < n. Comme l'intervalle I est stable, on en déduit que
pour tout n > N, u, est dans J.

On va maintenant montrer que la suite est constante a partir de ce rang
N. Pour n > N, observons que 1’égalité des accroissements finis donne un
point ¢, entre £ et u, tel que

flun) = f(0) = (un = £)f (cn).

Par hypothese, le membre de gauche n’est autre que u, 1 — £. Par ailleurs,
le point ¢, est entre les points £ et u,, de l'intervalle J, donc ¢, est aussi
dans J : |f'(¢y)] > 1. On en déduit :

|unt1 — €] > |un, — £
Donc, par récurrence immédiate, pour tout n > N et tout p € N :
|unsp — €] = Jun —£].

Fixons n > N et faisons tendre p tend vers +oo : par convergence de la suite
vers ¢, on trouve 0 > |u, — £|, i.e. up, =¥, et ce pour tout n > N. &

C’est un résultat négatif : sauf si par chance la suite tombe exactement
sur le point fixe £ au bout d’un nombre fini d’itérations, elle ne peut pas
converger vers £. La preuve montre méme que si la suite passe pres de £,
sans y étre tout a fait, elle va s’en éloigner. Ce point fixe est dit répulsif.

On cherche maintenant a trouver un critere positif, permettant de conclure
que la suite récurrente converge vers une limite bien identifiée. On peut
s’inspirer du cas des suites géométriques : ce sont les suites récurrentes (u,,)
associées a des fonctions du type f, : £ — ax, pour une constante a € R.
Ce sont des suites explicites : u, = a"ug pour tout n € N. Si |a| > 1, la
suite diverge, sauf si on part de ug = 0 (auquel cas elle reste nulle) : c’est la
situation de la proposition précédente , le point fixe 0 de f, est répulsif. Dans
le cas |a|] < 1, par contre, la suite converge toujours vers le point fixe 0 de
fa : ce point fixe est attractif, il attire toutes les suites récurrentes associée
a f,. On va généraliser cette situation.
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DEFINITION 13. Une fonction f : I — R est dite contractante s’il existe
k € [0,1] tel que, pour tout x,y € I,
[f(@) = f(y)l < klz =yl

Parfois, pour préciser la valeur de la constante k, on dit que f est k-
contractante.

Test : propriétés des fonctions contractantes

— Prouver qu’'une fonction contractante est continue.
— Prouver qu’une fonction contractante admet au plus un point
fixe.

Le critere suivant est tres utile pour montrer qu’une fonction est contrac-
tante.

PROPOSITION 19. Soit f une fonction dérivable sur un intervalle I telle
que sup | f'| < 1. Alors f est contractante.
I

Démonstration. Notons k = sup |f’|. Alors k < 1 par hypothese, et Iin-
I

égalité des accroissements finis dit que |f(x) — f(y)| < k|lx — y| pour tous
x,y € 1. %

REMARQUE 27. Si f est de classe C! sur un segment [a, b], le théoreme
des bornes atteintes assure que I'hypothese sup,c;|f'(z)] < 1 équivaut a
I’hypothese :

pour tout x € I, |f'(z)] < 1.
Attention, ce n’est pas vrai sans ces hypotheses!

REMARQUE 28. Soit f une fonction de classe C'! sur un intervalle stable
I contenant un point ¢ tel que f(¢) = £ et |f'(¢)| < 1. Soit k un réel tel que
|f'(0)] < k < 1. Par continuité de f’, il existe n > 0 tel que |f’| < k sur
Iintervalle J = I N]¢—mn, £+n|. Alors f est contractante sur I'intervalle J. On
peut noter que l'intervalle J est lui-méme stable : si x € J, |f(x) — f(£)] <
k|x —£] < n; puisque f(¢) = ¢, cela veut dire que f(z) est dans |¢ —n, L+ 1],
donc dans J (I étant supposé stable).

Enoncé indispensable 18 : théoréme du point fixe contractant

On suppose que f est une fonction k-contractante sur un intervalle
stable I, contenant un point fixe £. Alors la suite récurrente (u,,) converge
vers £. De plus, pour tout n € N,

lun, — €] < K™ |ug — |

Outre le résultat de convergence, on remarquera l'inégalité, qui mesure
la vitesse de convergence. C’est un aspect important quand on veut évaluer
numériquement la limite en calculant les termes successifs de la suite. Dans ce
cas, la suite tend vers sa limite au moins aussi vite qu'une suite géométrique
de raison k. C’est assez rapide, d’autant plus rapide que k est petit.
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Démonstration. On prouve l'inégalité par récurrence sur n. Elle est immé-
diate pour n = 0 Et si elle est vraie au rang n, on peut écrire

unt1 =€ = [f(un) = f(O)] < Klun — €] < k- K" uo — 1],

ce qui prouve 'inégalité au rang n + 1.

Ceci montre que pour tout n € N : |u, — ¢| < k™ug — ¢|. Puisque
0 < k < 1, la suite (k™) converge vers 0. On en déduit que |u,, — ¢| tend vers
0 : la suite (uy,) converge vers /. &

EXEMPLE 20. Soit a un réel strictement positif. On considere la fonction
f définie sur R% par f(z) = § (z + 2). Alors f(v/a) = v/a. En outre, f est

de classe C! et pour tout = € I, f'(z) = % (1 — J%) On voit donc que f

est %—contractante sur Uintervalle I = [\/a,+o0] et on peut vérifier que cet
intervalle est stable (puisque (A — B)? > 0, on a A% + B2 > 2AB pour tous
réels A et B : prendre ici A = /z et B = %) Donc le théoreme assure que

la suite (u,,), définie par ug € I quelconque et u, 41 = f(u,) = % (un + ﬁ),
converge vers y/a & une vitesse exponentielle.

Cela fournit un algorithme efficace pour calculer des valeurs appro-
chées de la racine carrée d’'un nombre réel positif. Par exemple, si a = 2
et ug = 2, on obtient u; = 1,5, uo = 1,41..., ug = 1,41421..., uy =
1,41421356237 ..., us = 1,414213562373095048801688 .. . , ou les décimales
écrites avant les points de suspension sont exactes. On voit donc que le
nombre de décimales exactes semble doubler & chaque itération (ce qui est

encore meilleur que 'estimation donnée par le théoréme : cf. TD).

La méthode de Newton est une technique générale permettant d’appli-
quer le théoreme du point fixe contractant pour calculer des solutions ap-
prochées d’équations de la forme

F(z)=0,

oll F est une fonction de classe C? sur un intervalle ouvert I. Pour ce faire,
on se donne ug € I et on construit une suite récurrente de la fagon suivante :
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Géométriquement, si u, est construit, on trace la tangente au graphe de F
au point de coordonnées (un, F'(uy,)), et on note u,4+1 l'abscisse du point
d’intersection entre la tangente et ’axe des abscisses.

On voit vite qu’il peut y avoir un souci si la tangente qu’on trace est
horizontale, donc ne rencontre pas ’axe des abscisses. Mais passons la-dessus
pour le moment.

Algébriquement, 1’équation de la tangente au graphe au point de coor-
données (uy, F'(uy)) s’écrit : y = F(uy) + F'(up)(x — uy). L'intersection de
cette tangente avec l’axe des abscisses est le point de coordonnées (uy41,0)
vérifiant 0 = F(up) + F'(un)(Unt1 — up), i.€.
_ F(up)

F'(uy)

Par conséquent, la suite (u,) est définie par ug € I et pour tout n € N,

Un+1 = f(uy), ou la fonction f est donnée par

flz)=z— 5,((?)

(1) Uptrl = Un

La fonction f est continue la ou elle est définie. Si la suite (u,) converge vers
¢, ce sera donc un point fixe de f : f(¢) = £. La formule donnant f montre
alors que F'(¢) = 0. Donc la limite ¢ sera bien une solution du probleme
considéré.

Reste a assurer que la suite (u,) est bien définie et converge, ce qui
n’est pas garanti a priori. Manifestement, au vu de la formule donnant f,
il peut y avoir un probléme si F’ s’annule (c’est-a-dire 1a ou la tangente
est horizontale). Pour ne pas tomber dans ce pieége, on va supposer que
léquation F(z) = 0 admet une solution pour laquelle F’ ne s’annule pas, et
aussi que la suite est initialisée assez pres de cette solution.

PROPOSITION 20. Soit £ € I tel que F(£) = 0 et F'(¢) # 0. Alors
pour tout ug € I suffisamment proche de ¢, la suite (uy,) est bien définie et
converge vers L.

Démonstration. Puisque F(£) = 0, on a f({) = ¢. Comme F' est de classe
C? et F'(¢) # 0, la fonction f est de classe C! au voisinage de /, et on a

/ 2 /!
-1 PO FOF'Q)
F’(E)Q
En particulier, | f/(¢)| < 1. On peut donc utiliser la remarque 28 pour trouver
un intervalle stable J autour de £ sur lequel f est contractante.
On peut alors appliquer le théoréeme du point fixe contractant sur cet
intervalle : pour tout ug € J, la suite (uy) est bien définie et elle converge

vers /. &

EXEMPLE 21. Soient a € R} et I = R%. On considere la fonction F :
I — R définie par F(x) = 22 —a. La méthode de Newton consiste & regarder
la suite (u,) définie par u,+1 = f(uy), avec f : I — I définie par f(z) =
2(z + 2). La proposition [20] assure alors que (u,) converge vers /a si ug
est suffisamment proche de y/a. On retrouve donc exactement ’exemple
comme cas particulier de la méthode de Newton.
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4. Intégration

4.1. Introduction. Commencons par un rappel. Soit f une fonction
définie sur un intervalle I, a valeurs dans R. Une primitive de f est une
fonction F' dérivable sur I, de dérivée F' = f.

Une notion d’intégrale a été introduite au premier semestre, a ’aide des
primitives. Si F' est une primitive de f, on pose pour tous réels a et 5 de I :

[ sy at=F (@) - Pla).

Puisque toute autre primitive G de f s’écrit G = F + ¢ pour une constante
¢, la différence G(f) — G(a) vaudra aussi F(f) — F(a) et donc l'intégrale,
définie ainsi, ne dépend pas du choix de la primitive.

Les propriétés classiques de la dérivation (dérivée d’une somme, d’un pro-
duit, d’une composée, lien entre monotonie et signe de la dérivée) conferent
a cette intégrale des propriétés calculatoires riches : relation de Chasles, li-
néarité, positivité, intégration par parties, changement de variable... Nous
renvoyons le lecteur aux cours du premier semestre pour les énoncés et aux
travaux dirigés pour des révisions.

Dans ce cours, on présente un cadre théorique qui recouvre ce cas de
lintégrale définie par la primitive. En particulier on démontrera que les
fonctions continues admettent une primitive (théoréme admis au premier
semestre) et on définira l'intégrale de fonctions plus générales, non nécessai-
rement continues. L’idée générale est que l'intégrale d’'une fonction positive
doit étre « 'aire sous la courbe », si on donne un sens a cette expression,
ce qui n’est pas toujours facile. Qu’est-ce qu'une aire? Si la fonction qu’on
regarde est assez gentille, son graphe sera raisonnable et on va voir une
construction qui donne une sorte de formule pour 'aire sous le graphe, par
un procédé d’approximation. Mais il est bon de garder a 'esprit qu’il existe
des fonctions suffisamment vilaines pour qu’on n’arrive pas du tout a définir
I’aire sous leur graphe.

Nous conclurons ce chapitre par la preuve de quelques formules utiles —
notamment les formules de Taylor — et par quelques idées autour de l'ap-
proximation numérique des intégrales.

4.2. Intégrale des fonctions en escalier. Pour définir 'intégrale
des fonctions continues sur un intervalle borné [a, b], on va passer par les
fonctions en escalier, qui ne sont pas continues en général : essentiellement
on va casser [a,b] en plusieurs intervalles et regarder les fonctions qui sont
constantes sur chacune de ces petits intervalles. L’avantage de ces fonctions,
c’est la simplicité géométrique de leur graphe : « ’aire sous la courbe » est
une notion tres claire pour une fonction en escalier.

DEFINITION 14. Une subdivision o de [a,b] est un ensemble fini de [a, b]
contenant a et b. On notera o0 = {zp < 21 < 2 < -+ < Tp}, avec T9 = a
et x, = b. Le pas |o| est ’écart maximal entre deux points successifs de la
subdivision :

lo| = max{x; —x;—1,|1=1,2,...,n}.

ExXEMPLE 22. L’exemple typique de subdivision est celui ol cet écart

est constant : x;41 — x; = |o| = b_T“ pour tout i. Cela revient a dire que
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T, = a+ ib_Ta pour ¢ = 0,...,n. On dit alors que ¢ est une subdivision
réguliere.

On dira que la subdivision ¢’ est plus fine que la subdivision o si o C o :
on a plus de points dans la subdivision ¢/, chaque intervalle |z _,, [ délimité
par o’ et inclus dans un intervalle délimité par o et les pas vérifient |o’| < |o]|.
De facon générale, la réunion ¢ U 7 des deux subdivisions ¢ et 7 est une
subdivision plus fine que les deux subdivisions d’origine.

DEFINITION 15. Une fonction f : [a,b] — R est dite en escalier s’il existe
une subdivision 0 = {zg < x; < -+ < x,} de [a,b] telle que f est constante
sur chacun des intervalles ouverts |x;_1,2;[ pour i € {1,2,...,n}.

On notera € ou £([a,b]) 'ensemble des fonctions en escalier sur [a, b] et on
dira que la subdivision o est adaptée a la fonction en escalier f, ou bien que
f est associée a la subdivision o. Dans cette définition, on peut remarquer
que les valeurs prises par la fonction aux points x; sont completement libres :
on n’y impose rien.

FIGURE 4. Une fonction en escalier

Il est utile d’introduire la fonction indicatrice xyx d’une partie X de R :
c’est par définition la fonction qui vérifie

xx(z)=1sizeX et xx(x)=0 siz¢X.

Les fonctions indicatrices permettent de batir des exemples de fonctions en
escalier : X[o,1] ou 3X[1,2[ — Xj2,3[ + 17x{5) sont des fonctions en escalier sur
[0, 10], associées a la subdivision {0, 1,2, 3,5,10}.

De facon générale, considérons une fonction en escalier f associée a une
subdivision 0 = {zg < 71 < -+ < x,}. Pour i = 1,...,n, on définit les
milieux m; = (x;—1 + x;)/2 des intervalles |z;_1,2;]| et ainsi une nouvelle
fonction en escalier

=1

Alors les fonctions f et g prennent des valeurs identiques sur les intervalles
|zi—1,zi] pour i € {1,2,...,n}.
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En particulier, le graphe d’une fonction en escalier, avec ’axe des abs-
cisses, permet de délimiter un nombre fini de rectangles de la forme, pour
ie{l,2,...,n}: [zi—1,25] x [0, f(m;)] st f(m;) >0 ou [zi—1,2;] X [f(m;),0]
si f(m;) < 0; ces rectangles sont situés soit au-dessus de I’axe des abscisses,
soit au-dessous.

DEFINITION 16. L’intégrale d’une fonction en escalier est définie comme
la différence entre, d’une part, la somme des aires des rectangles délimités
par la fonction en escalier qui sont situés au-dessus de ’axe des abscisses et,
d’autre part, la somme des aires des rectangles qui sont situés au-dessous
de cet axe. Autrement dit, si f est une fonction en escalier associée a la
subdivision 0 = {xg < x1 < --- < x,} de [a, b], c’est la quantité

[ 5= =i m),
a i=1

oum; = (xi—1 +x;)/2, pour i =1,...,n.

C’est donc aire sous la courbe si la fonction en escalier est a valeurs po-
sitives. Sinon, c’est une aire « algébrique » : on compte positivement 1’aire si-
tuée au-dessus de ’axe des abscisses et négativement ’aire située au-dessous.

REMARQUE 29. Dans ’égalité précédente, pour tout 4, le point milieu
m; = (x;—1 +x;)/2 de Uintervalle |x;_1,2;[ peut étre remplacé par n’importe
quel point ¢; de cet intervalle (puisque f y est constante). De plus, les valeurs
de f aux points z; de la subdividision ¢ n’interviennent pas. De la sorte,
pour la fonction en escalier g = 1" f(1mi)Xz,_, 4,[ cOnstruite ci-dessus, on

aflf=/0g.

FIGURE 5. L’intégrale de cette fonction en escalier est la dif-
férence entre l’aire en orange et ’aire en rose.

Clairement, une fonction en escalier f peut étre associée a plusieurs
subdivisions (et méme une infinité). Typiquement, si la subdivision o est
adaptée & f, toute subdivision plus fine o’ 'est aussi : les intervalles qu’elle
délimite sont en fait inclus dans ceux de o, donc f y est constante. Graphi-
quement, cela revient & découper parallelement a ’axe des ordonnées chacun
des rectangles en une réunion finie de rectangles.
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ProPOSITION 21. La valeur de fé’f ne dépend pas de la subdivision
adaptée a la fonction en escalier f.

Démonstration. Soient ¢ et 7 deux subdivisions adaptées a f. Alors la sub-
division o U 7 est plus fine que les subdivisions ¢ et 7. En usant de cette
construction, il est suffisant de montrer ’égalité de la valeur de l'intégrale
calculée a partir de deux subdivisions dont I'une est plus fine que 'autre. Or
les rectangles associés au graphe de f et a la subdivision la plus fine peuvent
étre réunis pour reconstituer exactement les rectangles associés au graphe de
f pour 'autre subdivision, ce qui, en raisonnant en termes d’aires, permet
de conclure. &

Test : fonction en escalier constante

Montrer qu’une fonction f qui est constante sur l'intervalle [a,b] ap-
partient a I’ensemble £ et calculer son intégrale. Déterminer une pri-
mitive F' et montrer l'identité f:f = F(b) — F(a). Pour tout point
¢ €]a,b[, montrer que l'intégrale de f quand elle est associée a la subdi-
vision 0 = {a < ¢ < b} est identique a la valeur obtenue précédemment.

PROPOSITION 22 (propriétés de lintégrale des fonctions en escalier).
Soient f,g des fonctions en escalier sur [a,b].

(1) (Linéarité) Pour tout X € R, la fonction f + \g est en escalier et
i +29) = [0 f+ X7 g

(2) (Relation de Chasles) Pour tout c €|a,b|, f se restreint en des fonc-
tions en escalier sur [a,c| et sur [c,b] vérifiant : f; f=[r+ fcbf.

(8) (Croissance) Si f < g, f:f < f:g.

(4) (Lien avec la valeur absolue) La fonction |f| est en escalier et vérifie

< 2

Démonstration.

(1) Soient o et T des subdivisions adaptées respectivement a f et g. La
subdivision cUT = {zg < z1 < -+ < x,,} est plus fine que o et 7 donc
adaptée a f et ¢g. Et on voit que, pour tout indice ¢, la fonction f+Xg
est constante a la valeur f(m;) + A g(m;) sur Uintervalle |z;_1,2;[, en
notant m; le milieu de cet intervalle. Donc f 4+ A g est une fonction
en escalier et son intégrale vaut par définition

n
Y (@i = i) (f(ma) + Ag(my),
i=1
ce qu’on peut développer en
S (o = @) fm) + A Y- — wi0)g(mi) = [ 142 [
i=1 i=1 a a
(2) Soit o une subdivision de [a,b] adaptée a f. Soit 7 = {xp < 1 <
- < xn} la subdivision plus fine (dont adaptée a f) obtenue en
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ajoutant le point ¢ & ¢ : on xx = ¢ pour un indice k. Alors f est
constante sur chaque intervalle |z;_1,2;[, 7y = {z; | i < k} est une
subdivision de [a, c] et 7 = {x; | i > k} est une subdivision de [c, b].
Donc f est en escalier sur [a,c] et [c, b], avec les formules

/f Z —xi—1)f(m;) et /f_ " (z; — 1) f(mi),

i=k+1

d’ou 'on déduit :

/f Z i~ i) ml—/f+/f

(3) Avec les notations utilisées en (1), puisque f < g, on trouve

n

/f Z i — xi—1) f(mi) SZ —Ti-1)g mz’)Z/abg-

1=

—_

(4) Toujours avec les mémes notations, la fonction |f| est constante a la
valeur | f(m;)| sur chaque intervalle Jz;_1,z;[, donc c’est une fonction
en escalier et son intégrale est > 1 (x; — x;—1)|f(m;)|. Mais alors,
par inégalité triangulaire, on trouve :

[

4.3. Intégrales inférieure et supérieure. Dans ce paragraphe, on
considere une fonction f : [a,b] — R qu’on suppose bornée. On veut définir
son intégrale sur [a,b] en pensant que c’est une « aire algébrique sous la
courbe ».

Intuitivement, l'aire d’une figure géométrique peut étre calculée en la
remplissant le mieux possible par des figures simples (constituées de tri-
angles, rectangles,...), dont on connait bien laire. C’est ainsi qu’Archimede
calculait I'aire d’un disque, en I’approchant par des polygones réguliers avec
de plus en plus de cotés.

De facon analogue, on peut ici regarder les fonctions en escaliers ¢ dont
le graphe est sous celui de f : ¢ < f. Chacune de ces fonctions ¢ a une
intégrale, définie par le paragraphe précédent comme une aire algébrique.
Une maniere de concevoir l'intégrale de f est de penser que ce doit étre
la plus grande aire obtenue ainsi. Plus précisément, on définit [’intégrale
inférieure de f par une borne supérieure :

n

n b
S = aia) Fma)| < 3w — i)l fmi) | = [ 111,
i=1 @

=1

&

I°(f) = sup {/abso ] p € E([a,b]), ¢ < f}-

On parle d’intégrale inférieure parce qu’on approche le graphe de f par
dessous, par des fonctions ¢ < f.

On peut faire une construction similaire en travaillant avec des fonctions
en escalier dont le graphe est au-dessus de celui de f et en regardant la plus
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a b

FiGURE 6. Construction de l'intégrale inférieure : c’est la
plus grande aire orange qu’on peut obtenir ainsi.

petite aire obtenue. Cela définit [’intégrale supérieure de f :

Iﬁwwﬂm{éﬁwweaMM»wa}

a b

FiGure 7. Construction de l'intégrale supérieure : c’est la
plus petite aire orange qu’on peut obtenir ainsi.

REMARQUE 30. Selon le contexte, pour simplifier la notation, on s’au-
torisera & abréger Z°(f) en Zu.(f) ou Z9°.

Les quantités Z, (f) et Z_(f) sont des réels bien définis pour toute fonc-
tion bornée f sur [a, b], comme le montre la proposition suivante. On remar-
quera que, pour une fonction bornée f, 'ensemble {f(z) | x € [a,b]} est une
partie bornée de R, donc admet une borne supérieure et une borne inférieure
dans R, notées respectivement : M =supf et m= [inbf] I

[avb] a

La fonction constante a la valeur m (resp. M) est donc une fonction en
escalier inférieure (resp. supérieure) ou égale a f : on peut l'utiliser pour
estimer l'intégrale inférieure (resp. supérieure) de f.

PROPOSITION 23. On dispose des inégalités :

(b—aym < I°°(f) < T9°(f) < (b—a)M.
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Démonstration. Soit ¢y, la fonction constante a la valeur m sur [a, b]. Alors
©m € E([a,b]) et pm < f. La définition de Z%°(f) donne alors

[ om < 120,

Puisque | f ©m = m(b— a), cela donne I'inégalité de gauche.

L’inégalité de droite se démontre de la méme fagon, en considérant la
fonction constante ¥y, = M, qui vérifie Y > f.

Enfin, pour 'inégalité du milieu, on considere des fonctions en escalier ¢
et 1 sur [a, b] vérifiant ¢ < f < 1. Les propriété de 'intégrale sur £ donnent

/abso < /abw'

En prenant la borne inférieure sur toutes les fonctions v de ce type, on
trouve

b b
/a ¢ < IU°(f)-

En prenant la borne supérieure sur toutes les fonctions ¢ qui conviennent,
on arrive 4 Z*°(f) < Ii’b(f). o

4.4. Intégrabilité. Intuitivement, si on fait un dessin, on sent bien
qu’une fonction raisonnable va avoir des intégrales inférieure et supérieure
égales. Et cette valeur commune sera 1’aire sous la courbe.

Test : intégrales supérieure et inférieure de ¢ en escalier

Pour ¢ € £([a,b]) montrer que Ii’b(go) = Iﬁ’b(go) = ffgo

Cette situation n’est pas universelle : il existe des fonctions bornées dont
les intégrales inférieures et supérieures different. Considérons par exemple
la fonction indicatrice xg de I’ensemble des rationnels : xg(z) vaut 1 si x
est rationnel et 0 si x est irrationnel. On peut voir que, pour cette fonction,
Ig_’l = 1 tandis que % =0 (exercice!). L’idée est que dans chaque intervalle
d’une subdivision de [0, 1], il y a un rationnel et un irrationnel ; une fonction
en escalier au-dessus (resp. au-dessous) de xg a donc ses paliers au-dessus
de 1 (resp. au-dessous de 0).

Enoncé indispensable 19 : intégrabilité
Soit f une fonction bornée sur [a,b]. On dit que f est intégrable sur
[a, b] lorsque Ii’b( f) = Z%°(f). On note alors / ' f la valeur commune
de Ii’b(f) et Z%°(f) dans ce cas. ’

Ce qui précede dit que les fonctions en escaliers sont intégrables, tandis
que xg n'est pas intégrable sur [0, 1].
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REMARQUE 31. Par définition des bornes inférieure et supérieure, f est
intégrable si et seulement si, pour tout £ > 0, il existe ¢ et ¢ € &([a,b])

vériﬁantcpﬁfswet/abw—/absO—/ab(lb—w)Ss.

REMARQUE 32. Soit f une fonction intégrable sur [a, b]. Soit g une fonc-
tion égale & f, sauf en un nombre fini de points. Alors g est intégrable sur
[a,b] et [ f g=/ : f. C’est parce que l'intégrale d’une fonction en escalier ne
change pas quand on la modifie en un nombre fini de points (I’aire algébrique
sous la courbe ne change pas) : ainsi, les intégrales inférieure et supérieure
de f et g sont les mémes.

Afin de démontrer que les fonctions continues sont bien intégrables, on a
besoin d’une relation de Chasles pour les intégrales inférieures et supérieures.

LEMME 2. Soient f une fonction bornée sur [a,b] et c € [a,b]. Alors :
I2(f) = T2 () + Z2().
Démonstration. Soit ¢ € £([a,b]) telle que ¢ < f. Alors ¢ est en escalier

sur [a, c] et [e,b], de sorte que

[e<zew e | "o < T,

Par Chasles pour la fonction en escalier ¢, on en déduit en sommant :

b
[ e+,
a
En passant a la borne supérieure sur ce type de fonction ¢, on arrive a

I8 (f) < TE°(f) + I9°(f).

Pour démontrer 'inégalité opposée, on se donne 1 € &([a,c]) et p2 €
E([e,b]) telles que p1 < f et wa < f. On définit alors ¢ € &([a,b]) par
o(x) = p1(z) stz € [a,c] et p(z) = @a(x) si x €]c,b]. Puisque visiblement
¢ < f sur [a,b], on a

[lo< ),

Le relation de Chasles pour les fonctions en escalier donne aussi :
b c b c b
/<P=/90+/s0=/<p1+/s02-
a a (& a (&

c b ab
/ 901+/ w2 < IT7(f).
a C
En passant a la borne supérieure sur 1, puis @9, on trouve
IE(f) + IE°(f) < T2°()).

Et donc il y a égalité. On procede de méme pour les intégrales supérieures.

o

On en tire

Ce lemme a une conséquence importante, quoique naturelle, si on le
joint a 'inégalité centrale de la proposition Si f est intégrable sur [a, c|

et sur [¢,b], alors I3 = T et Z9* = % (on omet la dépendance en
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f pour simplifier la notation) donc, en sommant et en utilisant le lemme,
Ii’b = 7% . f est intégrable sur [a,b]. Par contre, si f n’est pas intégrable
sur [a,c], I < 9 et le lemme donne

700 = 7%+ 10 < 19 + 19 = 1YY,

de sorte que f n’est pas intégrable sur [a,b]. C’est similaire sur [¢,b]. Il y a
donc équivalence entre 'intégrabilité sur le grand intervalle et I'intégrabilité
sur les deux petits qui le constitue. On retiendra la proposition suivante, qui
étend ce phénomene a plusieurs sous-intervalles (par une récurrence facile).

PROPOSITION 24. Soient une fonction f bornée sur [a,b] et une subdi-
vision 0 = {xo,...,zp} de [a,b]. f est intégrable sur |a,b] si et seulement si
| est intégrable tous les intervalles [x;—1,z;], i =1,...,n.

L’énoncé suivant atteint le but visé : on démontre que toute fonction
continue admet une primitive.

Enoncé indispensable 20 : intégrabilité des fonctions continues
et primitives
Toute fonction continue f sur [a,b] est intégrable sur [a,b]. De plus,
T

la formule F(z) = / f(t)dt définit une primitive de f sur [a,b].

a

Démonstration. Comme f est continue sur [a,b], f y est bornée. On peut
donc définir, pour tout z € [a,b] :
Fy(z) =T9°(f).

Nous allons montrer que les fonction F} et F_ sont deux primitives de f.
Puisque Fi(a) = Z9*(f) = 0, ces deux primitives sont égales sur l'intervalle
[a,b], ce qui assure 'intégrabilité de f sur [a,x], pour tout = € [a,b], et en
particulier sur [a,b]. Et F' = F; = F'— est bien une primitive de f sur [a, b].

Montrons donc que F est une primitive de f (le cas de F_ étant simi-

laire). Soient x € [a,b] et € > 0. La continuité de f en x donne un nombre
n > 0 tel que, pour tout y € [a,b] :

ly—z|<n = [flx)—e<fly) < flz)+e.

Pour y € [a,b] tel que z < y < x + n, le lemme [2 donne (en omettant la
dépendance en f) :

Fi(y) =TI =19 + 17 = Fy(x) + 177,
de sorte que 'on trouve, avec la proposition [23| et la définition de 7 :

F —Fy(x AR
H 2B _ D ¢ ) e fle) + o]
y—x y—x
Le cas ou x — n < y < x se traite de méme (attention : y < x) :

Fy(a) = T9" = T8 + TV" = Fy(y) + T2,

donc -
Fy(y) —Fy(z)  IY
y—x =Y

€ [f(z) —&,f(z) +el.
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Fi(y) — Fi(z)

Cela prouve que lim = f(z). Autrement dit, F; est déri-
y

—T Yy—
vable, de dérivée f, sur [a,b]. On notera qu’en a (resp. b), il s’agit d’une
dérivée a droite (resp. gauche). O

REMARQUE 33. Ce théoreme donne deux moyens d’intégrer les fonctions
continues f sur [a,b]. Si a, B € [a,b] et a < B, puisque f est intégrable sur
[, B], on peut poser ff /= Ii’ﬁ (f). On peut aussi utiliser la primitive
F donnée par le théoréme et faire comme au premier semestre en posant
J. f f=F(B) — F(a). Ces deux définitions coincident grace a la relation de
Chasles :

F(B) — F(a) = I£°(f) — I2°(f) = I27(f).

Nous disposons de deux classes de fonctions intégrables : les fonctions
en escalier et les fonctions continues. On peut les inclure dans une famille
plus vaste, celle des fonctions continues par morceaux.

DEFINITION 17. Une fonction f : [a,b] — R est dite continue par mor-
ceauzx 8’1l existe une subdivision 0 = {zg < x1 < ... < x,} de [a, b] telle que
pourt=1,...,n,

— f est continue sur Uintervalle |x;_1, 2],

— f admet une limite finie a droite en z;_1,

— et f admet une limite finie a gauche en z;.

] (]
.\_/
a = X T i) I3 J}4—b

FI1GURE 8. Une fonction continue par morceaux

Cette définition signifie que, pour chaque indice i € [1,n], la restriction
de f & ]zj_1,x;] se prolonge en une fonction continue f; sur le segment
[€;—1,2;]. La fonction f; est définie explicitement en posant f;(x) = f(z)
pour  €|x;_1,x;[, puis fi(zi—1) = hmxﬁxﬁl f(z) et fi(z;) = limxﬁx; f(x).

En particulier, les fonctions f; sont bornées (puisque continues sur un
segment) et donc f aussi : si ’on appelle M; le maximum de chaque fonction
|fil, on a explicitement

?ug\fl = max(My, ..., My, [f(zo)l,. .., |f(zn)])-
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Enoncé indispensable 21 : intégrabilité des fonctions continues
par morceaux

Toute fonction continue par morceaux sur [a, b] est intégrable.

Démonstration. Soit f une fonction continue par morceaux sur [a, b], asso-
ciée & une subdivision o = {29 < ;1 < ... < z,}. La proposition [24] dit
que f est intégrable si et seulement si f est intégrable sur chaque segment
[€i—1,2;]. Or, sur chaque segment [x;_1,z;], f coincide avec la fonction f;,
sauf aux points x;_1 et z; : puisque f; est continue donc intégrable, on en
déduit que f est intégrable sur [z;_1, z;], par la remarque O

REMARQUE 34. L’intégrale définie pour les fonctions intégrables a toutes
les propriétés usuelles de U'intégrale des fonctions en escaliers (linéarité, re-
lation de Chasles, croissance, lien avec la valeur absolue). Précisément, on
peut remplacer « en escalier » par « intégrable » dans la proposition
La relation de Chasles, en particulier, découle directement du lemme
Les autres propriétés s’obtiennent aussi par des passages a la borne su-
périeure/inférieure, mais nécessitent réellement l'intégrabilité des fonctions
f et g en jeu. Par exemple, on réalise assez vite que Zy(—f) = —Z=(f) et
T (f)+T(9) ST (f+9) <To(f+9) < To(f) + Ty (g)- Bt Clest intégra-
bilité de f et g qui permet d’en déduire que —f et f + g sont intégrables.

Pour les fonctions continues, ces propriétés se voient facilement en écri-
vant les intégrales comme des différences de valeurs de primitives.

Pour aller plus loin 2 : intégrale de Lebesgue

La théorie de l'intégrale présentée ici est celle de [’intégrale de Rie-
mann. On a vu que la fonction indicatrice des rationnels n’est pas in-
tégrable dans ce cadre. La suite de la licence fera découvrir au lecteur
la théorie de ["intégrale de Lebesgue. Dans ce nouveau cadre, on pourra
intégrer la fonction indicatrice des rationnels sur [0, 1]! Et que vaut son
intégrale? 07 17 1/27

La réponse est 0. L’un des aspects fondamentaux de la théorie de
Lebesgue est la notion de mesure : on y mesure la taille des parties de
R. 1II se trouve qu’en ce sens les rationnels de [0, 1] forment une partie
de mesure nulle, donc la fonction indicatrice des rationnels est nulle sauf
sur une partie de mesure nulle : ¢’est pour ¢a que son intégrale est nulle.
C’est comme si on calculait I'intégrale de Riemann d’une fonction nulle
sauf en un nombre fini de points.

Il ne faudrait pas croire que la théorie de Lebesgue résout tous les
problemes et rend intégrables toutes les fonctions. Il y a des fonctions
bornées qu’on ne pourra toujours pas intégrer sur un segment. Mais elles
sont plus compliquées a construire.
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4.5. Compléments sur l’intégrale. Pour clore ce chapitre sur I'in-
tégrale, nous allons évoquer quelques résultats classiques qui donnent des
outils souvent utiles.

4.5.1. Formule de la moyenne. Si f est une fonction continue sur un
intervalle [a,b], elle y atteint un minimum m = mibn( f) et un maximum

)

M = max(f). Les inégalités

[a,b]
—ws/ﬂgﬂm—w

/ f, est dans le segment

montrent que la moyenne de f, c’est—z}—dire
[m, M]. Le théoreme des valeurs 1ntermed1a1res dlt alors que la moyenne est

/f fle

L’énoncé suivant généralise ceci au cas d’une moyenne ponderee par une
fonction g.

une valeur atteinte : il existe ¢ € [a, b] tel que 3

Enoncé indispensable 22 : formule de la moyenne

Soient f une fonction continue et g une fonction positive et continue
par morceaux sur un intervalle [a,b]. Alors il existe ¢ € [a,b] tel que

Lwyzﬂ@LZ-

Démonstration. En notant M (resp. m) le maximum (resp. minimum) de f,
on a par définition m < f(t) < M pour tout a < t < b et on peut multiplier
cette inégalité par g(t) > 0 pour obtenir mg(t) < f(t)g(t) < Mg(t). En
intégrant ces inégalités, on obtient

b b b
m/gé/fgéM/g
a a a

Cela montre que f: fg appartient a lintervalle [Lm,L M], ou L = f:g.
Puisque L M (resp. L'm) est le maximum (resp. minimum) de la fonction
continue L f sur [a b], le théoreme des valeurs intermédiaires dit qu'’il existe

ce[ab]telque/fg—Lf /g %

4.5.2. Formules de Taylor. La formule de Taylor avec reste intégral gé-
néralise la formule fondamentale liant une fonction et sa dérivée

1)~ fta) = [ P

en utilisant les dérivées d’ordre supérieur. L’idée est d’intégrer par parties
le membre de droite en

/abf’(t)dt: [f'(t)(t—b)] /f” )(t—0b)d



4. INTEGRATION 65

d’on, apres simplification :

10 = 1@ + @ -0+ [ 00

Et on peut recommencer... si f est assez dérivable.

Enoncé indispensable 23 : formule de Taylor avec reste intégral

Soit f une fonction de classe C™*! sur un intervalle I de R. Pour

tous a,b € I,
50) = f@+ 7 @ 0-a) -+ /@ Dy [y O g,

Si on préfere éviter les pointillés, on peut écrire cette formule sous la
forme

Zf’“) +/f(”+” n=D" .

n!
Démonstration. On procede par récurrence sur n.
Initialisation. Pour n = 0, la formule est f(b) = ) + f f/(t)dt. Elle

découle du lien entre primitive et intégrale : f est une prlmltlve de f’ .
Hérédité. Supposons la formule démontrée au rang n — 1 :

n—1
F(8) = F(a)+ £ (@)(b—a)+...+ F" D (a) +/f = 1) .
Pour prouver la formule au rang n, on mtegre par parties l'intégrale a droite

(en posant u(t) = f(t) et v/(t) = (b(nt)l), , de sorte que u/(t) = f (1)
et v(t) = — 0" )

frotetieee <>]/ A

En combinant cette égalité avec la formule donnée par la récurrence, on
obtient bien la formule recherchée au rang n . O

Grace a la formule de la moyenne, on en déduit une généralisation de
Pégalité des accroissements finis (n = 0 ci-dessous).

Enoncé indispensable 24 : formule de Taylor-Lagrange

Soit f une fonction de classe C™*! sur un intervalle I de R. Pour
tous a,b € I, il y a un réel c entre a et b tel que :

—a —a n+1
f(b)=f(a)+f’(a)(b_a)+,,,+f<n)(a)(bn> (b— )™+

(D) (2
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Démonstration. Quitte a considérer la fonction ¢ : ¢ — f(—t), on peut
supposer a < b. La formule de la moyenne donne un c € [a, b] tel que

/fn+1 ) dt = f(n+1)(c)/ (b_t) dt

a n!

" N . _fynt17b _g)nt1
et I'intégrale a droite vaut [— (b(n%)! L = (b(nj-)l)! . O
On en déduit rapidement la formule de Taylor-Young pour les dévelop-
pements limités de fonctions C™*1 :
(™) (g
f(x) = f(zo) + f'(xo)(x —0) +... + fn(lo)a:” + O((z — zo)"™)
quand x — xg.

Pour voir cette formule asymptotique, on pose a = xg et b = x dans la
(z—m0)? 1

(n+1)! >
¢ € [zg,z]. Par continuité, f+1) est bornée au voisinage de zg. On voit
donc que le reste est borné par une constante fois |z — 20" ! si = est proche

de xg.

formule de Taylor-Lagrange. Le terme de reste est f ("H)(C) avec

Il faut bien remarquer que la formule de Taylor avec reste intégral est
beaucoup plus forte que la formule de Taylor-Young. Son reste est explicite :
on a toute I'information, toute la précision voulue. Et elle a une portée bien
plus grande : elle est valable pour des points a et b pas forcément proches.

4.5.3. Sommes de Riemann.

DEFINITION 18. Une subdivision marquée (o,0) d'un intervalle [a, b] est
la donnée d’une subdivision 0 = {zg < z1 < ... < x,} de [a,b] et d'un
marquage 0 = {y1,y1,...,yn} ou chaque y; est dans l'intervalle [z;_1,x;].

Autrement dit, on choisit un point dans chaque intervalle défini par la
subdivision.

DEFINITION 19. Soit (0,0) une subdivision marquée de [a,b]. Soit f
une fonction définie sur [a,b]. La somme de Riemann de f associée a la
subdivision marquée (o, 6) est

n
S(f7 g, 9) = Z(‘TZ - xl—l)f(yl)
i=1

On peut voir S(f,0,0) comme l'intégrale d’une fonction en escalier qui
prend la valeur f(y;) sur Uintervalle |z;_1, z;[, pour i € {1,...,n}.

EXEMPLE 23. Soit 0 = {0, 1 n=1 1} la subdivision réguliere de

7n7n7"’7

[0,1] en n intervalles. Si on prend le marquage 0; = {0, %, %, e "T_l}, on
trouve  S(f,0,61) = Z f ( ) . Pour le marquage 6, = %, %, ceey "T_l,n},

n
Z ( > On peut aussi marquer au milieu de chaque

3\'—‘

cest S(f,0,02) =

intervalle, etc.
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Le théoreme suivant est vrai.

Enoncé indispensable 25 : somme de Riemann et intégrale

Soit f une fonction intégrable sur [a,b] et (o4, 6,) une suite de sub-
divisions marquées de [a, b] . Si on suppose que le pas de o, tend vers 0,
alors

b
S(f,Un,9n)ZEi§$u/ijTt)dt.

Nous montrerons plutot le théoreme plus précis qu’on obtient en suppo-
sant de plus que f est O,

THEOREME 7. Soient f une fonction de classe C1 sur [a,b] et (0,0) une
subdivision marquée de [a,b]. Alors :

/abf(t)dt—S(f,a,G)

< lo|(b — a)sup | f'],
[a,b]
ot |o| est le pas de la subdivision o .
Démonstration. Soit ¢ la fonction en escalier telle que ¢(x;) = f(z;) pour

i=0,...,n et dont la valeur sur chaque intervalle |z;_1,z;[ est f(y;), pour
i=1,...,mn.0na:

b b
/a(f—cp)(t)dt S/a If —o|(t)dt.

t[f@“—sﬁﬂﬂﬁ—

Montrons maintenant que [f — ¢| < |o|supy,, [f'| ce qui permettra de
conclure en intégrant entre a et b. L’inégalité est vraie aux points x;, puisque
f(x;) = p(z;) pour tout i. Reste a considérer un point = de I'un des inter-
valles de la subdivision, |z;_1,z;[. Alors on a |f(z) — p(x)| = | f(x) — f(vi)]
et, d’apres l'inégalité des accroissements finis, cette derniere grandeur est
elle-méme inférieure & |z — y;| supp, ) [f'| . Or y; et = sont dans le méme in-
tervalle de la subdivision o, donc |z — y;| < |o|. Ceci prouve qu’on a bien

/(@) = p(2)] < [o] supyey /] ¢

EXEMPLE 24. Typiquement, on peut considérer 'exemple de la subdi-
vision réguliere de [0, 1] en n intervalles, avec le marquage standard 6. Si f
est une fonction C! sur [0, 1],

L 132k sup(o 1y |.f']
’/ ftydt— =3 f()’g[’] .
0 n k—0 n n
1 n—1 k 1
donc — E f <> — / f(t)dt. Avec le marquage 62, on voit de méme

1 & k 1
que — Z f () — / f(t)dt. On peut ainsi calculer des limites qu’on
n = n/ n—oo Jj

ne saurait pas traiter autrement. Par exemple, en posant f(x) = H%’ on
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trouve

n 1
lim ZL:/ i21112.
n—>+ook:1n+k: o 1+t

4.5.4. Calculs approchés d’intégrales. Un probléeme important est de sa-
voir en pratique calculer des valeurs approchées d’intégrales. Dans ce but,
on peut approcher I'intégrande par des fonctions en escalier, ou affine par
morceaux, ou plus complexes... Le point de départ est le théoreme précédent
sur les sommes de Riemann : une somme de Riemann n’est pas forcément
difficile & calculer et peut fournir une approximation de l'intégrale. Dans
lexemple ci-dessus, on a vu que lerreur commise est « en 1/n », c’est-a-dire
majorée par une constante fois 1/n.

On peut, sans augmenter le nombre de calculs a faire (calculer n fois
une valeur de la fonction), obtenir une approximation en 1/n?, grace a la
méthode des points milieux. C’est ce que nous présentons maintenant pour
compléter cette section.

Soient n un entier strictement positif et f une fonction réguliere (de
classe C?) sur [a,b]. La méthode des rectangles consiste a utiliser la somme
de Riemann S(f,o,0) avec :

T, =a+1 et yi=uz;—1 pourie {l,...,n}.

Comme f est de classe O, cette somme de Riemann approche I'intégrale de
f en respectant ’estimation suivante

sup |f'].
fa.b]

/bf(t)dt—S(f,J,H) < (b_na)Q

REMARQUE 35. Pour f(z) = x sur [0,1], il est facile de vérifier que
fff(t) dt = S(f,0,0) + % Ainsi la vitesse de convergence en % ne peut
étre améliorée sans changer de méthode.

Test : deux calculs exacts de 1’erreur

Démontrer le résultat de la remarque |35/ et montrer que | (f f(t)dt =
S(f,0,0) lorsqu’on choisit y; = x;—1 + % pour i € {1,...,n}.

Plus généralement, la méthode des points milieuxr consiste a garder la
méme subdivision (les z;), mais en changeant le marquage : on choisit y; =
b—a __ Ti—1t+%; . . .
Ti1+ G5t = ~=5— pour i€ {1,...,n}. Au lieu de marquer avec le point
gauche de chaque intervalle, on marque au milieu. Dans ce cas, on va montrer
que la somme de Riemann approche l'intégrale avec une précision en 1/n2.

THEOREME 8. Si f est de classe C?, la méthode des points milieux
donne :

(b—a)?®
—F— sup f
24 n2 [a,b} |

//|.

/ (1) dt — S(f,0.)| <
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Démonstration. Soit ¢ une fonction en escalier dont la valeur sur 'intervalle
|zi—1, 2] est f(y;), pouri e {1,...,n}.Ona:

/f £y dt — S(f,,0) = /(f o)(1) dt = Z/m £)dt.

Pour tout i € {1,...,n} et pour tout ¢ € |x;_1,z;[, la définition de ¢ donne
(f —p)(t) = f(t) — f(yi). La formule de Taylor-Lagrange & 1’ordre 2 donne
alors un point ¢;; dans I'intervalle délimité par y; et ¢ tel que :

_ )2
(= @)(6) = FO) — Fl) = (t—yi) /() + 2 e,
de sorte que

2
[ Gawa=rw) [T a-pwdte g [7 - o

i—1 i—1
La point clef, c’est que la premiere intégrale est nulle. En effet, elle vaut
/ (t —yi)dt = (zi — yi) (Ti1 — yi) -0,
zi1 2

parce que y; est le milieu du segment [x;_1, x;], ce qui signifie que x; — y; =
Yi — Tij1 = I’Q_—n“. Ensuite, le second terme se majore par

; /x (t — i) " (ceq) dt| <

b—
fsup|f”|/ (t — i) 2dt = ( ) ?ug)]f”].

2 Sz [a,b] 243 ]
Lorsqu’on somme de ¢ = 1 & ¢ = n, on obtient finalement
b (b a)3
[, 1= 50000 < nSS T sl
a a

Et c’est bien le résultat annoncé. &






Chapitre 3
Algebre linéaire

1. Espaces vectoriels

1.1. Espaces vectoriels. A partir de I’ensemble R" et de ses opéra-
tions naturelles, nous allons dégager une liste de propriétés (ou axiomes)
décrivant la structure d’espace vectoriel, qui est un moyen de faire du calcul
vectoriel avec toutes sortes d’objets mathématiques. Nous donnerons rapi-
dement des exemples qui couvrent tout le spectre des mathématiques : la
géométrie (plan, espace), I’algebre (espaces de polynomes), I’analyse (espaces
de fonctions)... Les outils que nous allons développer ont donc une portée
universelle en mathématiques, et au-dela.

Rappelons d’abord que pour un entier n > 1, R™ désigne ’ensemble des
n-uplets de réels, c’est-a-dire

R" ={(z1,...,2n) | x1,..., 2y € R}.
Sur R” est naturellement définie une addition, construite a partir de celle
de R sur chacune des composantes :
(@1, mn) + Y1y Yn) = (T1 + Y1y T+ Yn).
Il est aussi possible de définir le produit d’un réel A par un élément de R" :
M1,y xn) = (A1, ..oy Ay,

Nous avons donc défini deux opérations sur R™. La premiere, [’addition,
associe a deux éléments x = (z1,...,2,) et ¥ = (y1,...,y) de R™ un
autre élément x + y de R™. On dit que c’est une loi interne. La seconde, la
multiplication par un réel, associe a un réel \ et un élément x = (x1,...,zy)
de R™ un nouvel élément Az de R™, on dit que c’est une loi externe.

Examinons maintenant les regles auxquelles obéissent ces lois. Nous n’en
retiendrons que celles qui, par 'usage, se sont montrées les plus pertinentes
en vue de la généralisation annoncée.

Les regles de ’addition. On vérifie facilement, & partir des propriétés
usuelles de ’addition des réels, que ’addition dans R™ vérifie les propriétés
suivantes :

(1) (x1,...,2n) +(0,...,0) = (21,...,2p),
(2) (x1,...,2n) + (—21,...,—x5) = (0,...,0),

(3) ((@1,---yxn)+ (Y1, Un)) + (215 -y 2n)
= (z1,.- ) + (W1, yn) + (215 20)),

(4) (1, xn) + W1y Yn) = WY1,y Yn) + (21, ..., T0),
71
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quels que soient les éléments (x1,...,2y), (Y1,...,Yn), (21,...,2,) de R™.
En vertu de (1), on dit que I’élément (0,...,0) est le neutre de 1’ad-
dition et, en vertu de (2) , que l’élément (—x1,...,—x,) est le symétrique

de (z1,...,zy,). La propriété (3) s’appelle I’associativité de I’addition, la (4)
s’appelle la commutativité de I’addition.

Les regles de la multiplication par un réel. On vérifie facilement, a
partir des propriétés usuelles de I'addition et de la multiplication des réels,
que la loi externe précédemment définie vérifie les propriétés suivantes :

(1) 1(z1,...,2n) = (T1,. .., Zn),
(2) (Ap)(1y.. oy xn) = ANz, ... 2],
3) A+ p)(x1, .. yxn) = Mo, .. xn) + p(xy, .o 2p),
(4) M1y xn) + (Yiy -y yn)] = M1, ooy zn) + A1, - Yn),
ceci pour tous réels A et p et tous (z1,...,2,) € R™ et (y1,...,yn) € R™.
Les deux premieéres propriétés expriment la compatibilité entre le produit

au sein des réels et la multiplication (externe) par un réel. Les deux autres
expriment la distributivité de la multiplication par rapport a ’addition.

Dans ce qu’on vient de décrire, on peut remplacer les nombres réels par
les nombres complexes : ¢a ne change rien. Dans la suite, le symbole K
désignera indifféremment R ou C. Nous travaillerons toujours avec des
nombres dans K, qu’on appelera parfois des scalaires.

Nous allons maintenant donner une définition générale de ce que 1'on
appelle un espace vectoriel, directement inspirée des propriétés que nous
venons d’énumérer.

Enoncé indispensable 1 : espace vectoriel

Un K-espace vectoriel est un ensemble E muni d’une loi interne +
(dite addition) et d’une loi externe - (dite multiplication par un scalaire).

L’addition + est une application de ¥ x E dans E qui vérifie les
propriétés suivantes :

1) il existe un élément de E, noté 0, qui vérifiez +0=0+z2z ==
q
pour tout x € F;

(2) pour tout z € E, il existe un élément 2’ de E, qui vérifie x + a2’ =
' +z2=0;

(3) pour tous z, y et z dans E, (x +y)+z=x+ (y + 2);

(4) pour tous z et y dans E, x +y =y + .

La multiplication par un scalaire - est une application de K x E
dans E qui vérifie les propriétés suivantes, pour tous A, u € K et tous
T,y €L :

(1) 1-z==x;

(2) (M) -2 = A (- 2);

B) A+p) z=Az+pu-z;
4) A-(z+y)=A-z+ Ay
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REMARQUES 5. — Au lieu de « K-espace vectoriel », on dit parfois « es-
pace vectoriel sur K » et trés souvent « espace vectoriel ». Les éléments
d’un espace vectoriel E' sont appelés vecteurs, par opposition aux scalaires,
qui sont les éléments de K (des nombres).

— Le lecteur pointilleux notera qu’un espace vectoriel serait plutét le triplet
(E,+,.), puisque les lois font partie de la notion. En fait, tout le monde
parle de l'espace vectoriel E et ca n’empéche pas la Terre de tourner.

— Dans la premier axiome de I'addition, 1’élément 0 est un élément de E et
pas le 0 de R ou C, donc on pourrait craindre un conflit de notation. En
pratique, ¢a n’est pas trop génant. Occasionnellement, on le notera Og.
On peut noter que ce 0 est unique : si un élément 0’ de E vérifie aussi
z+ 0 =0 +x =z pour tout = de E, on peut combiner les propriétés de
0 et 0’ pour écrire 0’ = 0’ + 0 = 0. On dit que 0 est I’élément neutre de
I’addition.

— De méme, on vérifie I'unicité de I’élément 2’ dans la deuxiéme propriété et
on dit que 2’ est le symétrique de x pour I'addition. On le note —z. Cela
donne une notion de soustraction : on notera x — y pour = + (—y).

— La commutativité de 'addition (4) donne la possibilité de simplifier I’écri-
ture des expressions en en intervertissant les termes de maniere arbitraire,
alors que l'associativité (3) permet de les regrouper arbitrairement, “sans
prendre garde aux parentheses”.

— Concernant la loi externe, on omet presque toujours le - dans les expressions,
si bien que I’élément A - x se note Az : en pratique, on peut de toute fagon
calculer « comme d’habitude », grace aux axiomes.

Test : calcul comme d’habitude

Vérifier que si z,y, z, u, v sont des éléments d’un C-espace vectoriel,

3z +5y+i((z+u)+v) =4z +i(z+v—1y) + 4y + iu — = + iu.

La propriété suivante est naturelle mais pas si anodine.

PROPOSITION 25. Soit x un élément d’un K-espace vectoriel E et A € K.
OnaX-x=0 siet seulement si A\=0 ouxz =0.

Démonstration. Pour le sens <, on suppose d’abord A = 0. Partons de
I’égalité 0 = 0 4 0 dans K et multiplions par x : par distributivité, 0 -z =
(0+0)-2=0-2+0-x. En soustrayant 0 - x, on arrive 4 0 = 0 - z. Si on
suppose z = 0, c’est pareil, en partant de ’égalité 0 = 0 + 0 dans F, qu’on
mulitplie par A : on trouve A-0 = A-0+ A-0. En soustrayant -0, on trouve
bien 0 = XA - 0.

Pour le sens =, on suppose A - x = 0. De deux choses 'une : soit A = 0,
soit A # 0. Dans le second cas, A a un inverse, donc on peut multiplier
I’équation par % pour trouver % c(A-x) = % - 0. Le membre de droite est
nul par le sens <. Grace aux axiomes vérifiés par -, le membre de gauche se
simplifie : - (A-2) = (§ x A\) -2 =12 = 2. On aboutit & z = 0. &

REMARQUE 36. On pourrait avoir peur de confondre le vecteur (—1) - =
avec le symétrique —x de x. Pas de probleme : ils sont égaux puisque

z+(-1)-z=1-24(-1)-2=(1+(-1) - 2=0-2=0.
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REMARQUE 37. Pourquoi K = R ou C? A vrai dire, on pourrait aussi
travailler avec les nombres rationnels (K = @Q)... mais pas avec les nombres
entiers. La notion d’espace vectoriel sur K nécessite de pouvoir additionner,
multiplier, soustraire et surtout diviser les éléments de K. Par exemple, dans
la preuve de la proposition, on a divisé par A. Presque tout ce qu’on va dire
restera vrai si K vérife une liste d’axiomes, ceux de la structure de corps,
notion étudiée dans un cours ultérieur. Si on veut vraiment se passer de
la division dans K, on peut... et cela conduit & la notion de module, une
structure plus générale que celle d’espace vectoriel, mais o par exemple la
proposition ci-dessus a tendance a étre fausse.

Les exemples suivants sont fondamentaux.

ExXEMPLE 25. R™ est un R-espace vectoriel. En particulier, la droite
réelle et surtout I'ensemble des vecteurs du plan (R?) ou de I’espace (R?)
sont des exemples géométriques modeles, qui permettent de faire des dessins.
C’est ce cadre visuel simple qu’on cherche a généraliser pour appréhender
des espaces plus compliqués.

Moins visuel, mais formellement analogue, C™ est un C-espace vectoriel.

EXEMPLE 26. L’ensemble M, ,(K) des matrices & n lignes et p colonnes
et a coefficients dans K, muni de ’addition usuelle des matrices et de la
multiplication d’une matrice par un nombre (réel ou complexe), est un K-
espace vectoriel. Ici, le neutre est la matrice nulle.

EXEMPLE 27. L’ensemble CN des suites complexes, muni de I’addition
usuelle et de la multiplication par un élément de C (terme a terme), est un
C-espace vectoriel. L’ensemble RY des suites réelles est un R-espace vectoriel.
Ici, le neutre est la suite constante a la valeur 0.

EXEMPLE 28. L’ensemble K[X]| des polynomes a coefficients dans K est
un K-espace vectoriel. Son neutre est le polynéme nul.

EXEMPLE 29. Soient A un ensemble quelconque, F un K-espace vectoriel
et E4 Pensemble des fonctions de A dans E. On peut mimer le cas des suites
et définir « terme & terme » des opérations : pour f,g € E4 et A € K, on
définit f+g: A— Fet A\-f: A— Evpar (f+9)(z) = f(z) +r g(z) et
X\-g f(x) = Af(z), pour tout € A. On vérifie alors que E4 est un espace
vectoriel sur K. Son neutre est la fonction nulle (constante a la valeur Og).

ExeEMPLE 30. Tout C-espace vectoriel est naturellement un R-espace
vectoriel, par restriction des lois, en utilisant I'inclusion R C C. En parti-
culier, on peut regarder I’ensemble C comme un C-espace vectoriel, mais
aussi comme un R-espace vectoriel. Cela offre deux regards différents sur un
méme ensemble, on y reviendra.

ExEMPLE 31. L’ensemble vide est-il un espace vectoriel ? Non, puisqu’un
espace vectoriel doit contenir un élément neutre 0! Le plus petit qu’on puisse
imaginer est le K-espace vectoriel trivial {0}, avec les seules lois auxquelles
il peut obéir (0+0=0et A-0 =0 pour tout A € K).

1.2. Sous-espaces vectoriels. Dans un espace vectoriel, il y a des
parties naturelles vis-a-vis des lois définissant la structure d’espace vectoriel.
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Par exemple, dans 1’espace vectoriel R?, considérons la droite F' passant par
Porigine et de pente 2 : F' = {(x,2x) | z € R}. Elle respecte les lois au sens
ol on peut additionner ses éléments, les multiplier par un réel, et obtenir
un nouvel élément de F'. Ainsi, cette partie F' est naturellement elle-méme
un espace vectoriel. Il en irait de méme de tout plan passant par 'origine.
Mais un cercle, ou une droite évitant 1’origine, ne conviendraient pas.

Enoncé indispensable 2 : sous-espace vectoriel
Soit E un K-espace vectoriel. Un sous-espace vectoriel de E est une
partie F' de E telle que
(1) F n’est pas vide;
(2) Ve,ye F, z+yeF,
B) VAeK,Vz e F, A-xzeF.

On retiendra qu’un sous-espace vectoriel est une partie non vide qui est
laissée stable par les lois.

REMARQUE 38. Le premier axiome dit qu’un sous-espace vectoriel F'
contient toujours un élément x. Par le troisieme, on en déduit que 0 -z =0
est dans F'. Ainsi, un sous-espace vectoriel contient toujours I’élément neutre
0. C’est d’ailleurs le moyen usuel de vérifier qu’il n’est pas vide : tester si 0
est dedans.

Un sous-espace vectoriel hérite naturellement d’une structure d’espace
vectoriel. Notons + et - les lois de I’espace vectoriel E et considérons un sous-
espace F' de E. On peut définir des lois +p : F X F — Fet .p : KX F — F
en posant simplement, pour z,y € F et A € K :

THry=x+y et Apr=XA-z.

La définition d’un sous-espace vectoriel fait que ces formules donnent bien
des éléments de F'. Et on peut vérifier que ces lois vérifient les axiomes d’un
espace vectoriel. Entre autres, 1’élément neutre de F' étant bien str celui de
E (qui est dans F' par la remarque ci-dessus), le symétrique de = € F est
(—1)-z € F, etc.

Donnons quelques exemples.

EXEMPLE 32. La droite F = {(z,2z) | * € R} est un sous-espace
vectoriel de R2. En effet, (0,0) est bien dans F et pour tous z,y,\ € R,
(CB,QJJ‘) + (3/7 Zy) = ((l’ + y),2(a: + y)) et )\(l’,Ql’) = ()\:E,Q)\l‘)

ExEMPLE 33. L’ensemble F' des suites complexes convergentes est un
sous-espace vectoriel de CN. La suite nulle est en effet convergente, de méme
que la somme de deux suites convergentes et le produit d’une suite conver-
gente par une constante.

ExXEMPLE 34. L’ensemble I’ des fonctions dérivables sur R est un sous-
espace vectoriel de R (Pespace vectoriel de toutes les fonctions de R dans
R). La fonction nulle est en effet dérivable, de méme que la somme de deux
fonctions dérivables et le produit d’une fonction dérivable par une constante.
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ExEMPLE 35. Tout espace vectoriel E contient des sous-espaces évi-
dents : E, mais aussi {0}.

La notion suivante est tres utile.

Enoncé indispensable 3 : combinaison linéaire

Soit E un espace vectoriel. On dit qu'un élément x de E est une

combinaison linéaire des éléments x1,...,x, de E §’il s’écrit

T =MT1+ -+ A\xn
pour certains scalaires Ap, ..., A,. On notera Vect(zy,...,z,) I'ensemble
de toutes les combinaisons linéaires des éléments x1,...,x, :

Vect(x1,...,2,) = {121 + - - + Ay | Vi, A € K}

n

On utilisera aussi la notation z = Z i

i=1

REMARQUE 39. On vérifie rapidement qu’une partie non vide F' d’un
espace vectoriel ¥ est un sous-espace vectoriel si et seulement si toute com-
binaison linéaire d’éléments de F' est un élément de F.

Le sens = consiste a utiliser directement les axiomes d’un sous-espace
vectoriel : pour Aq,..., A\, € Ket z1,...,2, € F, on a \jx; € I pour tout
i, de sorte que leur somme est aussi dans F'.

Le sens < consiste a observer que les expressions = + y et Az sont des
combinaisons linéaires des éléments z et y de F'.

PROPOSITION 26. Soient x1,...,x, des vecteurs d’un espace vectoriel
E. Alors Vect(xy,...,x,) est un sous-espace vectoriel de E et il est inclus
dans tout sous-espace F' contenant x1,...,T,.

Ainsi, Vect(x1,...,x,) est le plus petit sous-espace vectoriel de FE qui

contient z1,...,x,. On dit que c’est le sous-espace engendré par les vecteurs
Lly-+-sTp.
Démonstration. Notons V' = Vect(z1,...,2,). En écrivant 0 = >, 0 - x;, on
voit que V' contient 0 donc n’est pas vide. Pour z,y € V, on peut écrire
T =y i NiTi et y = > pix; pour certains scalaires A; et p;. Donc pour
tout € K :

n n
r+y= Z()\z + Mi)xi eV et ar = Z(a)\l)xl eV.
i=1 i=1
Cela montre que V est un sous-espace vectoriel de FE.
Si F' est un sous-espace vectoriel de E contenant x1,...,x,, il contient
leurs combinaisons linéaires (cf. remarque ci-dessus), donc V C F. &

EXEMPLE 36. Dans R?, muni de ses coordonnées usuelles z,y, z, si on
note v = (1,0,0) et w = (0,0, 1), Vect(v) est la droite Ox et Vect(v,w) est
le plan d’équation y = 0.

Une autre de fagon de construire des sous-espaces est de prendre des
intersections.
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PROPOSITION 27. Si Fy et Fy sont deux sous-espaces d’un espace vecto-
riel E, lintersection F| N Fy est encore un sous-espace-vectoriel de E.

Démonstration. Le neutre 0 est dans les sous-espaces F; et F5, donc aussi
dans F} N Fy, qui n’est donc pas vide. Si x1, ... x, sont dans F} N Fy, ils sont
dans les sous-espaces F et F5, donc leurs combinaisons linéaires sont aussi
dans F et dans F5, donc dans F} N F5. &

REMARQUE 40. Avec la méme preuve, on voit qu’'une intersection d’un
nombre arbitraire, méme infini, de sous-espaces de F est encore un sous-
espace de E. Ceci autorise la construction suivante.

Si A est une partie quelconque d’un espace vectoriel F, il y a au moins
un sous-espace qui le contient, . On peut donc considérer l'intersection
F4 de tous les sous-espaces vectoriels de E' qui contiennent A : F4 est un
sous-espace de E. Et si un sous-espace contient A, il doit contenir Iy, par
construction. On peut donc appeler F4 le sous-espace engendré par A.

Dans le cas o A = {x1,...,z,}, on retrouve Fy = Vect(z1,...,2,). En
fait, pour toute partie (non vide) A, on peut noter Vect(A) ensemble des
combinaisons linéaires d’un nombre fini (quelconque) d’éléments de A. On
vérifie que c’est un sous-espace contenant A, donc Fy C Vect(A). Et, comme
F4 est un sous-espace et contient A, il contient les combinaisons linéaires
d’éléments de A, donc Vect(A) C F4. Ainsi, F4 = Vect(A).

L’union de deux sous-espaces n’est presque jamais un sous-espace : a la
place, on va considérer leur somme.

DEFINITION 20. Soient Fj et Fo deux sous-espaces vectoriels de F. La
somme de Iy et Fy est définie par

F1+F2:{271+a}2’$1 € Fi, .I'QEFQ}.

On peut vérifier rapidement que c’est un sous-espace vectoriel. En fait,
c’est le sous-espace vectoriel engendré par 'union F} U F.

Test : la croix

On se place dans le plan R?. Montrer que ’axe des abscisses et I’axe
des ordonnées sont des sous-espaces vectoriels, mais que leur union ne
I'est pas. Quelle est leur somme ?

1.3. Bases. Dans l'espace vectoriel R", tout élément (z1,...,x,) est
déterminé de maniere univoque par ses composantes x1, ..., Z,. Dit comme
ca, c’est tres spécifique a I'ensemble R™. On va l'exprimer autrement, en
faisant intervenir sa structure d’espace vectoriel.

Pour 1 < k < n, notons e; I’élément de R™ dont toutes les composantes
sont nulles, sauf la k-ieme, qui est égale & 1. Ainsi, dans R3 :

€1 = (17070)7 €2 = (07170)7 €3 = (07071)
Dire que x = (z1,...,xy), c’est exactement dire que

T =2x1€1 + ...+ Tnp.
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Ainsi, le vecteur x peut s’écrire comme une combinaison linéaire de eq, . . . , €,.
Et il y a une seule maniere de le faire : les coefficients sont les composantes
de x. C’est ce point de vue qui est transposable aux espaces vectoriels, pour
peu qu’on ait I’équivalent de cette famille de vecteurs (eq, ..., ey).

On se place dans un K-espace vectoriel E pour le reste du paragraphe.

Enoncé indispensable 4 : famille génératrice

Soient vy, ..., v, des vecteurs de E. On dit que (vy,...,v,) est une
famille génératrice de E lorsque Vect(vy,...,v,) = E.

En d’autres termes, tout élément x de E est une combinaison linéaire
des vecteurs vy, ..., v, : il existe des scalaires Aq,..., A\, tels que

T =MNvi+ -+ A\

EXEMPLE 37. Dans R?, on considere les vecteurs vy = (1,0), vo = (—1,1)
et v3 = (0,—1). La famille (v1, vy, v3) est génératrice puisque tout élément
x = (11, 12) € R? g'écrit

x = (z1+x2)v1 + 2202+ 003 ou bien x = 2x1v] + 102 + (11 — T2)V3.
Dans la définition d’une famille génératrice, on demande 'existence d’une

écriture sous forme de combinaison linéaire. La notion suivante a trait a
’unicité d’une telle écriture.

Enoncé indispensable 5 : famille libre
Soient vy, ..., v, des vecteurs de E. On dit que (v1,...,v,) est une
famille libre lorsque pour tous scalaires A1,..., A, :
MU+ F AU, =0 = A==\, =0.

Dans ce cas, on dit aussi que vq,...,v, sont des vecteurs linéairement
indépendants.

Le contraire d’une famille libre est une famille liée. La famille (vq, ..., v,)
est liée si et seulement s’il existe des scalaires Aq,..., A, tels que

)\1U1+"'+)\nvn:0 et (Alaa)‘n)#(0770)
Ainsi, 'un des coefficients, A\, n’est pas nul et on peut écrire :
1
T — _)\7 Z )\ﬂ)i.
kitk
Dans une famille liée, 'un des éléments est une combinaison linéaire des
autres.

Test : familles manifestement liées

Soient v et w deux vecteurs d’un espace vectoriel. Prouver que les
familles (0, v, w) et (v, v, w) sont liées.
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EXEMPLE 38. Dans R?, si on reprend les vecteurs v; = (1,0), vy =
(—=1,1) et v3 = (0,—1), on voit que la famille (v, ve,v3) est liée, puisque
V] + vy +v3 = 0.

Par contre, la famille (v1,v2) est libre car, si A\; et A2 sont des réels tels
que A\jv1 + Agvg = 0, on trouve (A1 — Ag, A2) = (0,0), donc A\; — Ao =0 et
Ao = 0, ce qui impose A; = Ao = 0.

EXEMPLE 39. Placons-nous dans l'espace vectoriel E = R®+ des fonc-
tions réelles définies sur R%. On y considere les vecteurs exp et In. Pour
vérifier qu’ils sont linéairement indépendants, on se donne des réels A1 et Ao
tels que A1 exp +A9In = 0. Cela signifie :

Ve >0, Apexp(z)+ Aln(z)=0.

Si on choisit = 1, on trouve A\ e+0 = 0, donc A; = 0. Si on choisit ensuite
x = e par exemple, on trouve aussi Ay = 0. Cela prouve que (exp,In) est
une famille libre.

Soient (v, ..., v,) une famille libre et = € Vect(z1,...,x,). Sion a deux
écritures * = >, \jv; et © = >, v, on peut faire leur différence pour
trouver Y ;(A; — pi)vi = 0. La liberté de la famille impose que \; — ; soit
nul, i.e. \; = p;, pour tout i. En ce sens, il y a unicité de I’écriture sous
forme de combinaison linéaire.

Enoncé indispensable 6 : base

Une base d’un espace vectoriel est une famille a la fois libre et géné-
ratrice.

PROPOSITION 28. Soit (v1,...,v,) une base de E. Alors, pour tout vec-
teur x de E, il existe des scalaires Ai,. .., A, uniques tels que

T =AMv1+ -+ A\Un.

Les scalaires A1, ..., A, sont les coordonnées de x dans la base (v1, ..., v,).
Bien sfir, ils dépendent de la base qu’on utilise !

Démonstration. L’existence d’une telle écriture est la définition d’une famille
génératrice. L’unicité vient de la liberté, comme on I’a vu ci-dessus. O

EXEMPLE 40. La famille (eq,...,e,) introduite plus haut est une base
de R™. On l'appelle la base canonique de R™ en raison de son caractere tres
spécial : les coordonnées de = (x1, ..., x,) sont ses composantes 1, . .., Ty.

La méme famille est une base du C-espace vectoriel C”.

EXEMPLE 41. Les vecteurs v; = (1,0) et v = (—1,1) forment une
base (v1,v2) de R2. Les coordonnées de z = (x1,72) dans cette base sont
T + X2, T2.

REMARQUE 41. Soit (vy,...,v,) une famille de n vecteurs de R™ (on
comprendra pourquoi on a choisi précisément n vecteurs dans le paragraphe
suivant). Chaque vecteur v; est un n-uplet : v; = (aij,...,apn;). Cela défi-
nit une matrice A = (a;;) € M,(R) : la j-ieme colonne de A contient les
composantes de vj. Dire que (v1,...,v,) est une base, c’est dire que pour
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tout vecteur y = (y1,...,y,) de R™, il existe un unique (A1,...,\,) € R"
tel que Z;‘:l Ajvj =y, ou encore, si on écrit cette identité composante par
composante :

n
Vi=1,...,n, Zaij)\j = ;.
)

On reconnailt un systeme linéaire associé a la matrice A, d’inconnues Ay, ...,
An et de second membre y. La famille est une base si et seulement ce type
de systeme admet toujours une unique solution, c’est-a-dire si la matrice A
est inversible.

Ainsi, décider si une famille de n vecteurs de R™ est une base revient a
étudier I'inversibilité de la matrice carrée associée, par exemple en calculant
son déterminant.

REMARQUE 42. Il n’est pas completement vain de parler de la famille
vide, celle qui n’a aucun élément... L’espace vectoriel qu’elle engendre est le
plus petit sous-espace vectoriel la contenant, a savoir {0}. C’est une famille
libre, puisqu’aucune équation ne relie ses éléments. C’est donc une base de
Pespace vectoriel trivial {0}.

1.4. La dimension d’un espace vectoriel.

DEFINITION 21. Un espace vectoriel est dit finiment engendré s’il pos-
séde une famille génératrice (vy,...,v,).

Plusieurs expressions sont synonymes de « finiment engendré » : on parle
aussi d’espaces vectoriels de type fini ou bien de dimension finie. C’est sur
ces espaces que nous allons travailler pour définir la dimension. Quand il n’y
a pas de famille génératrice (finie), on dit souvent que 1’espace vectoriel est
de dimension infinie.

EXEMPLE 42. L’espace vectoriel K[X] des polynomes & coefficients dans
K n’est pas finiment engendré, il est de dimension infinie. Pour le com-
prendre, on consideére une famille quelconque (P, ..., P,) de K[X]. Chacun
de ces polynomes a un degré. Notons d le plus grand des degré des poly-
noémes P, ..., P,. Alors toute combinaison linéaire des P; est un polynome
de degré au plus d. Donc X%+ n’est pas dans Vect(Py, ..., P,). Cela montre
que cette famille n’est pas génératrice.

Par contre, le sous-espace K;[X] des polynomes de degré au plus d est
finiment engendré, puisque (1, X, X2,..., X%) en est une base.

Commencons par montrer un théoréme d’extraction de base, affirmant
qu’il est possible d’extraire une base d’une famille génératrice quelconque.

THEOREME 9. Si (v1, ..., v,) une famille génératrice de l’espace vectoriel
E, on peut en extraire une base : il existe wy,...,wy € {v1,...,v,} tels que
(w1, ..., wp) est une base.

Autrement dit, en sélectionnant certains des vecteurs v;, on obtient une
famille qui est encore génératrice, mais qui de plus est libre.
Démonstration. Soit G I'ensemble des familles génératrices (w1, ..., wy) telles
que p < n et pour tout indice j, wj € {v1,...,v,}. C’est un ensemble fini (il
a moins de n" éléments) et il n’est pas vide puisqu’il contient (v1,...,v,).
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On peut donc trouver dans G une famille (w1, ..., w,) de cardinal minimal,
c’est-a-dire avec p minimal.
Par construction, (wq, ..., wp) est génératrice. Supposons que cette fa-

mille est liée, de sorte que I'un des vecteurs est combinaison linéaire des
autres. Quitte a changer la numérotation, on peut supposer que c’est le

dernier :
p—1
Wy = E QWi
i=0

pour des scalaires «;. Comme la famille (wy, ..., wp) est génératrice, pour
tout = de FE, on a alors des scalaires x; tels que

P p—1
= Zmiwi = Z (i + xpay) w;.
i=0 i=0
Cela montre que (wi,...,wp—1) est une famille génératrice. Comme elle
ne compte que p — 1 éléments, cela contredit la minimalité de p. Donc
(w1,...,wp) est aussi libre : c’est une base. O

Puisqu’un espace vectoriel finiment engendré possede une famille géné-
ratrice par définition, on peut en extraire une base.

COROLLAIRE 5. Tout espace vectoriel finiment engendré posséde une
base.

Nous pouvons maintenant adopter I'attitude inverse et montrer que toute
famille libre est contenue dans une base : c’est le théoréme de la base incom-
pléte. Commencons par un petit lemme qui contient ’essence du théoréme.

LEMME 3. Soit (v1,...,vp) une famille libre de l’espace vectoriel E. Soit
un vecteur w € E tel que w ¢ Vect(vy,...,vp). Alors (vi,...,vp, w) est une
famille libre.

Démonstration. Soient des scalaires i, ..., A\p41 tels que

v+ -+ )\pvp + )\p+1w =0.

p .
Si Apy1 n’est pas nul, on peut écrire w = — Z A—lvi, ce qui contredit ’hy-
i=1 \p+1
pothese w ¢ Vect(vq,...,vp). Donc A,y = 0. Et la liberté de (vy,...,vp)
impose alors Ay = --- = X\, = 0. Donc tous les coefficients sont en fait
nuls. &

L’énoncé précis du théoreme de la base incomplete est le suivant.

THEOREME 10. Soit L = (v1,...,vp) une famille libre de l’espace vecto-
riel E. Soit G = (w1,...,wq) une famille génératrice de E. On peut alors
compléter L en une base (v1,...,Vp, Upti, ..., Uptm), en choisissant des vec-
teurs vp4i € {wi,...,wg}t, 1 =1,...,m.

Démonstration. La preuve est un algorithme. On le commence en posant
L' = L = (v1,...,vp). Clest une famille libre par hypothése. Puis on va
(éventuellement) modifier L’ au cours des g étapes suivantes. Pour j allant
delag:
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— si wj € Vect L, on ne fait rien et on passe & 'étape suivante ;
— sinon, on ajoute w; & L', qui reste une famille libre d’apres le lemme;
puis on passe a I’étape suivante avec ce nouveau L'.
A Tl'issue de ces opérations, on dispose d’une famille libre

/
L' = (vi,...,0p,Vps1, - Vpim)s

avec 0 < m < ¢q. Elle est construite de sorte que tous les vecteurs de GG sont
dans Vect L. On en déduit que Vect G est inclus dans le sous-espace Vect L.
Puisque G est génératrice, Vect G = E. On en déduit que Vect L' = E : la
famille L’ est génératrice. C’est donc une base. &

Nous en arrivons maintenant au point le plus délicat de notre démarche,
que 'on pourrait qualifier de lemme de comparaison.

LEMME 4. Si un espace vectoriel E& posséde une famille génératrice a n
éléments, alors toute famille d’au moins n + 1 vecteurs est liée.

Démonstration. Elle se fait par récurrence sur n. L’initialisation, pour n = 0,
est immédiate : dans ce cas, E = {0} et toute famille contenant au moins
un élément contient en fait 0, donc est liée.

Pour démontrer ’hérédité, on suppose I’énoncé vrai au rang n—1. Et on
se donne un espace vectoriel E avec une famille génératrice G = (w1, ..., wy)
et une famille quelconque (v1,...,vp), avec p > n. Il s’agit de montrer que
(vi,...,vp) est liée. Puisque G est génératirce, on peut écrire pour tout
indice j =1,...,p:

n
vj = Z Wi,
i=1

ou les a;; sont des scalaires.

Si tous les coefficients a,; sont nuls, les vecteurs vy, ..., v, sont tous dans
Pespace vectoriel F' = Vect(wy,...,w,—1) et on peut appliquer I'hypothese
de récurrence dans F' pour voir que la famille (vy,...,v,) est liée.

On peut donc supposer que 1'un des coefficients a,; n’est pas nul. Quitte
a renuméroter les vecteurs, on peut méme supposer que a,, # 0. Alors pour

j=1,....,p—1:
n—1
Oy Oy A
Vj— —Up = A5 — —=Qip | W4
anp i=1 anp

La somme a droite n’a que n — 1 termes puisque le terme pour ¢ = n est
. . QAn 5

nul par choix des coefficients. Cela montre que les vecteurs v; — —*2v;, sont
np

dans F' = Vect(w,...,w,—1) pour tous les indices j = 1,...,p— 1. Puisque
p—1 > n—1, on peut appliquer ’hypotheése de récurrence dans F' pour
trouver des scalaires A1, ..., A\p,—1 tels que

np

p—1 )

E Aj (vj _Ing vp> =0,
, a

J=1
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avec au moins I'un des scalaires \; non nuls. Comme cela se réécrit

p—1 p—1

W
ZAjvj_ Zaﬂ vp =0,
=1 =1 np

cela montre que la famille (vy,...,vp) est liée. &

REMARQUE 43. Au lieu de démontrer ce lemme par récurrence, on peut
faire appel a la théorie des systemes linéaires. Reprenons les notations de
la preuve : on a une famille génératrice G = (wq,...,w,) et on cherche a
prouver que toute famille (vy,...,v,) avec p > n est liée. On cherche donc
X = (A1,...,Ap) € KP non nul tel que >; A\ju; = 0. Si on introduit la
matrice A = (a;;) € M, ,(K) telle que

n
Vj:17"'apa szzaijwia
=1

on voit qu’il suffit d’avoir }; a;jA; = 0 pour tout indice ¢ = 1,...,n. Il suffit
donc de trouver une solution non nulle X du systéme linéaire homogene
AX = 0. Or c’est un systéeme de n équations & p inconnues, avec p > n :
comme il y a plus d’inconnues que d’équations, il n’y a jamais unicité de
la solution (au plus n variables peuvent étre fixées, les p — n autres étant
libres). Il y a donc une solution X non nulle et la famille est liée.

Ce lemme de comparaison dit qu'une famille libre quelconque a tou-
jours au plus autant d’éléments qu’une famille génératrice quelconque. Nous
sommes maintenant en mesure d’énoncer le résultat principal de ce chapitre,
qui est une conséquence presque immédiate de ce constat.

Enoncé indispensable 7 : dimension

Dans un espace vectoriel finiment engendré FE, toutes les bases ont
le méme nombre d’éléments : on ’appelle la dimension de E.

Démonstration. Soient B et By deux bases de E, comptant respectivement
n1 et ng éléments. Par le lemme de comparaison précédent, ny < mno, puisque
By est génératrice et Bj est libre. En inversant les roles de By et Bs, on
trouve aussi no < nq. Donc ny = no. &

La dimension de E est notée dim E ou parfois dimg(F) si 'on veut
préciser les scalaires choisis.

EXEMPLE 43. La base canonique de K™ compte n éléments donc on a
bien dim K" = n.

EXEMPLE 44. La dimension de K4[X] est d + 1, puisque (1, X, ..., X9)
en est une base.

EXEMPLE 45. La dimension de M, ,(K) est np. Pour le voir, on note
Ey € M, ,(K) la matrice ayant un coefficient 1 en position (k,) et des 0
partout ailleurs et on observe que la famille des matrices Ey;, pour 1 <k <n
et 1 < < p, constitue une base de M, ,(K).
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EXEMPLE 46. Attention, C est bien un C-espace vectoriel de dimension
1, dont (1) est une base (tout nombre complexe s’écrit de facon unique
z = z-1). Mais c’est aussi un R-espace vectoriel de dimension 2, dont (1, 1)
est une base (tout nombre complexe s’écrit de fagon unique = -1+ 1y -4, avec
z,y € R).

De fagon générale, si £ un C-espace vectoriel finiment engendré, E est
aussi un R-espace vectoriel finiment engendré et dimg(E) = 2dimc(E).

Tirons enfin quelques conséquences tres utiles des résultats précédents.

PROPOSITION 29. Dans un espace vectoriel E de dimension d,
— une famille libre de E a au plus d éléments,

— toute famille libre de cardinal d est une base,

— une famille génératrice de E a au moins d éléments,

— toute famille génératrice de cardinal d est une base.

Démonstration. On dispose d’une base possédant d éléments. Le lemme de
comparaison dit qu'une famille libre a moins d’éléments qu’une famille gé-
nératrice. Puisqu’on dispose d’une famille libre et génératrice a d éléments,
il suit que toute famille libre (resp. génératrice) a moins (resp. plus) de d
éléments. Cela donne la premiere et la troisieme propriétés.

Si une famille libre de cardinal d n’est pas une base, c’est qu’elle n’est pas
génératrice. Le théoréeme de la base incomplete permet de la compléter en
une base, qui aura donc au moins d+ 1 éléments, ce qui n’est pas compatible
avec la dimension. D’ot1 la deuxieme propriété.

Si une famille génératrice de cardinal d n’est pas une base, c’est qu’elle
n’est pas libre. Le théoreme de la base extraite permet d’en extraire une
base, qui aura donc au plus d — 1 éléments, ce qui n’est pas compatible avec
la dimension. D’ou la quatriéme propriété. &

1.5. Sous-espaces et dimension. Commencons par une propriété tres
naturelle.

THEOREME 11. Soit E un espace vectoriel de dimension finie d. Alors
tout sous-espace vectoriel F' de E est finiment engendré, avec dim F < d. Si
de plus F' est de dimenston d, alors F' = FE.

Démonstration. Les familles libres de F' sont aussi des familles libres de F,
donc elles ont au plus d éléments. Notons p le plus grand cardinal d’une
famille libre de F' : p < d. Soit (v1,...,vp) une famille libre de F' ayant ce
cardinal maximal, p.

Soit w € F. Si w ¢ Vect(vi,...,vp), la famille (vq,...,v,, w) est encore
libre d’apres le lemme (3| ce qui contredit la maximalité de p. Donc tout vec-
teur w de F est dans Vect(vi,...,vp) : la famille (v1,...,v)) est génératrice
de F. C’est donc une base de F' : dim F' = p < d.

Si de plus dim F' = d, on a p = d, donc (v1,...,vq) est une famille libre
de E de cardinal d = dim E : c’est une base de F. Comme c’est aussi une
base de F, il vient F' = Vect(vy,...,vq) = E. &

Nous avons vu que lintersection /' N G et la somme I + G de deux
sous-espaces vectoriels F' et GG sont aussi des sous-espace vectoriels. Si F et
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G sont de dimension finie, leur intersection ’est aussi, comme sous-espace
de F par exemple, et on va voir que leur somme 'est aussi; de plus, une
formule relie les dimensions de tous ces sous-espaces.

PropPoOSITION 30. Soit E un espace vectoriel et F', G deuz sous-espaces
vectoriels de dimension finie de E. Alors F' 4+ G est de dimension finie et

dim(F + G) =dim F 4+ dim G — dim(F N G).

Démonstration. La preuve consiste a produire une base convenable de F'+G
en partant d’une base de F'N G. Fixons donc une base B = (e, ..., ey) de
F N G. Puisque c’est une famille libre de F', on peut la compléter en une
base Bp = (e1,...,€m,v1,...,Vp) de F. Puisque c’est aussi une famille libre
de G, on peut la compléter en une base Bg = (e, ..., €m, w1, ...,w,) de G.

Par construction, dim(F N G) = m, dim F = m + p et dimG = m + q.
On va montrer que B' = (e1,...,€m,V1,...,Vp, W1, ..., W) est une base de
F + G. Cela prouvera la formule, puisqu’alors on aura :

dim(F+G) = m+p+q = (m+p)+(m+q)—m = dim F+dim G—dim(FNG).

Pour voir que B’ est génératrice, on prend un vecteur z de F + G. 11
s'écrit x = zp + z¢g, avec xp € F et z¢ € G. Par construction, zp (resp.
xg) est une combinaison linéaire délf’ements de B (resp. Bg). Donc z est
une combinaison linéaire des vecteurs e;, v; et wy. Cela prouve que B’ est
génératrice.

Pour voir que B’ est libre, on se donne des scalaires \;, 115 et v, tels que

m P q
Z Aiei + Z w5 + Z vpwg = 0.
i=1 j=1 k=1
Alors le vecteur
m p q
T = Z)\Z-ei+z,ujvj = —Zukwk
i=1 j=1 k=1

est dans F' (combinaison linéaire des e; et v;) mais aussi dans G (combinaison
linéaire des wy). Donc x est dans F'N G, dont une base est B :

m
Tr = Z a;e;
i=1
pour certains scalaires «;. Mais alors
m q
Zaiei + Z vpwg =0
i=1 k=1

et la liberté de la base Bg montre que les coefficients «; et v sont nuls. En
particulier, z = 0 donc

m p
Z Aie; + Z piv; = 0.
i=1 j=1

Par liberté de By, les coefficients \; et y; sont nuls. Ceci prouve que B’ est
libre. %
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Quand deux sous-espaces F' et G vérifient FF'N G = {0}, on dit qu’ils
sont en somme directe et on note leur somme F'+ G = F @ GG. Dans ce cas,
la formule ci-dessus se simplifie en :

dimF & G =dim F + dim G.

Ce n’est pas le seul intérét de cette notion! En fait, quand F' et G sont en
somme directe, tout élément x de F'+ G s’écrit de fagon unique r = rzp+x¢,
avec rp € F et zo € G. En effet, si on a une autre décomposition de ce
type, = &y + x5, on a ¥y — xp = G — T Le membre de gauche est dans
F', le membre de droite dans G. Comme ils sont égaux, ils sont tous les deux
dans FFN G, donc nuls : 2y = zp et z = za.

On y reviendra quand on parlera de projecteurs, puis on généralisera
cette notion de somme directe pour bien comprendre la diagonalisation, a la
fin de ce cours.

1.6. Produits d’espaces vectoriels. Soient F; et Fy deux K-espaces
vectoriels. On va étudier la structure d’espace vectoriel portée naturelle-
ment par leur produit. Rappelons que le produit (ou produit cartésien) des
ensembles E7 et Ey est I’ensemble

E1 X E2 = {(5131,332) ‘ xr1 € El,xg S EQ}

et que le couple (z1,z2) désigne la donnée d’'un élément x; de E; et d'un
élément xo de Fo. Les lois d’espace vectoriel de Fy et Eo permettent de
définir des lois analogues sur le produit E1 X Es : pour 1,1 € E1, T2,y € Eo
et A € K, on pose

(x1,22) + (y1,y2) = (1 +y1, 22+ y2) et A (z1,22) = (N-21, A - 22).

On vérifie rapidement que ces lois font de F; x Fy un K-espace vectoriel.

Par exemple, on peut prendre 1 = RP et F5 = R? et le produit est
simplement 1’espace vectoriel RPTY (essentiellement, la donnée de p réels et
q réels, c’est la donnée de p + g réels).

PrRoOPOSITION 31. Si Eq et Ey sont deux K-espaces vectoriels de dimen-
ston finie, B X F est aussi de dimension finie et

d1m(E1 X Eg) = dim Fj + dim F».

Démonstration. Soient By = (az,...,ap) une base de Ey et By = (by,...,bp)
une base de E», de sorte que p = dim Fq et ¢ = dim E». La proposition sera
démontrée si on vérifie que B = ((a1,0), ..., (ap,0),(0,b1),...,(0,by)) est
une base de F; x Es.

Soient des scalaires A1, ..., A\p, pi1, ..., fiq tels que
P q
Z )\i(ai, 0) + Z ,uj((), bj) = 0.
i=1 j=1

La définition des lois fait que le couple (Zle Aiai, 35 ujbj> est nul, de
sorte que Zle Nia; et 23:1 p;bj sont nuls. La liberté des familles By et By
implique alors que tous les coefficients \; et u; sont nuls. Donc B est libre.
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Soit (a,b) € Ey x Ep. Comme Bj et By sont génératrices, il existe des
scalaires A1,..., Ap, i1, ..., fig tels que a = 37 Mia; et b = 30_; uib;.
Alors :

p q
(a, b) = Z )\i(ai, 0) + Z uj(O, bj).
i=1 j=1
Cela prouve que B est une famille génératrice de F1 X Fs. &

REMARQUE 44. On peut noter une ressemblance formelle avec le cas de
sommes directes. La différence essentielle est que F7 et Ey, dans ce para-
graphe, ne sont a priori pas des sous-espaces d’un méme espace ambiant...
Mais on peut s’y ramener, en introduisant Ef = Ey x {0} et E = {0} x E».
Ce sont des sous-espaces vectoriels de E; x Eo dont 'intersection est {0} et
la somme est Fy x FEs, par l'identité (a,b) = (a,0) + (0,b). On peut donc
toujours écrire : Ey x Fy = E} @& Eb,.

Supposons Ej et Ey de dimension finie. Si (aq, . .., ap) est une base de Ej,
la famille ((a1,0), ..., (ap,0)) est une base de Ef, donc E/ est de dimension
dim F;. La situation de EY est similaire. D’apres le résultat sur les sommes
directes, E1 x E3 est donc de dimension dim F +dim Fj = dim E; +dim E.

Si on se donne m K-espaces vectoriels Fq,..., E,,, on peut de méme
former leur produit

E1X"'><Em:{(x17'~7$m)’xleEla"'axmeEm}

et c’est naturellement un K-espace vectoriel, par une construction analogue.
Si chacun des espaces en jeu est de dimension finie, leur produit I’est aussi
et on obtient la formule

dim (Ey X -+ X Ep,) = Y _ dim E;
=1

par une preuve similaire.
On peut vérifier cette formule sur le cas R™ =R x ... R, par exemple.

1.7. Application aux suites récurrentes d’ordre deux. Dans ce
paragraphe, on va utiliser les notions d’algebre linéaire développées ci-dessus
pour étudier les suites récurrentes d’ordre deux qui sont linéaires et a co-
efficients constants. On va voir que cela méne a des formules explicites.
Concretement, on se fixe trois nombres complexes a, b, c € C et on suppose
que le premier n’est pas nul : a € C*. Les suites (u,) qui nous intéressent
sont celles qui vérifient la relation de récurrence

AUn+2 + bupi1 + cup =0

pour tout n € N. Par exemple, la suite de Fibonacci est de ce type, avec
a=1,b=c=—-1.

On se place dans 'espace vectoriel F des suites (a valeurs complexes) et
on pose

F={u=(up) € E/VNn €N, aupi2+ bupy1 + cu, = 0}.
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On vérifie aisément que la suite nulle est dans I et que , pour tous u,u’ € F
et a, B € C, la suite v” = au + Su’ vérifie, pour tout indice n :

aup o +bup o +cupy = a(aungo + bupgr + cun) + B (aug, o + bul, g + cuy,)
= 0.

Donc F' est un sous-espace vectoriel de F.

Comme E est de dimension infinie, il n’est pas clair que F' le soit. C’est
néanmoins vrai, pour la raison suivante. Chaque élément u de F' est en-
tierement déterminé par ses deux premiers termes, ug et u;. En effet, les
termes suivants se calculent de proche en proche par la relation de récur-
rence Up4+o = —2Un+1 — gun =0 : pour n = 0, on trouve une expression de
ug en fonction de ug et uj; pour n = 1, c¢’est ug qui se trouve déterminé en
fonction de uq et uo, donc de ug et uq, ete.

On peut donc définir un élément v = (v,) de F' en décidant par exemple
que vg = 1 et v1 = 0. De méme, il existe un unique élément w de F' vérifiant
wo =0 et wy = 1.

LEMME 5. La famille (v,w) est une base de l’espace vectoriel F', qui est
donc de dimension deux.

Démonstration. Pour montrer que (v, w) est libre, on suppose que Av+pw =
0, avec A, u € C. Cela signifie que Av, + pw, = 0 pour tout n. Pour n =0
etn=1,celadonne A\ +0=0et 04+ =0. Donc A =yt =0 et on a prouvé
que la famille est libre.

Pour montrer que (v, w) est génératrice, on se donne u € F' et on observe
que la suite v’ = ugv + uyw est dans F' (combinaison linéaire d’éléments de
F), donc est entierement déterminée par ses deux premiers termes. Or le
choix de v et w fait que uy = up et uf = u;. On en déduit que v’ = wu,
de sorte que u est une combinaison linéaire de v et w. Cela montre que la
famille est génératrice.

Ainsi, (v, w) est une base de F. L’espace F' posséde donc une base com-
portant deux éléments : F' est de dimension deux. &

On peut remarquer que v et w sont calculables dans le cas ou ¢ = 0.
Dans ce cas, la relation de récurrence double s’écrit : wuy 10 = —gunJrl pour
tout n € N, c’est-a-dire up+1 = —gun pour tout n» > 1. On trouve ainsi
d’une part vg = 1 et v, = 0 pour tout n > 1, et d’autre part wg = 0 puis
wy, = (—=b/a)"~! pour tout n > 1.

On va maintenant supposer ¢ # 0. Le probleme est alors que la base
(v,w) n’est en général pas explicite : on n’a pas d’expression évidente pour
v176. Pour trouver une base plus pratique, on cherche des éléments u = (uy,)
de F sous la forme : u,, = A", pour tout n € N. Ici, A est un nombre complexe
restant a choisir. Une telle suite u est dans F si et seulement si

VneN, a\" "2 4+pA" T 4 ea = 0.

En factorisant par A", on voit que u est dans F' dés que aA\®>+bA+c¢ = 0. On
introduit donc le trindme du second degré P = aX? +bX +c et on distingue
deux cas, selon son nombre de racines. Observons au passage que 0 n’est pas
racine de P puisqu’on a supposé ¢ # 0.
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Premier cas. Si P a deux racines complexes distinctes Ay # A_ (i.e. si
le discriminant n’est pas nul), on pose ux = (A}). Montrons que (u,u_) est
une base de F. Puisque F est de dimension deux et cette famille compte deux

éléments, il suffit de vérifier qu’elle est libre. Or I'équation auy + fu_ =0
(a, B € C) signifie que X} + SN = 0 pour tout indice n. Pour n = 0
et n = 1, cela donne aa + 5 = 0 et ary + A = 0. Donc 8 = —a et

a(Ay —A_) =0. Comme Ay —A_ # 0, on en tire « = 8 = 0. Ainsi, (u4,u_)
est une base de F' dans ce cas.

Second cas. Si P a une seule racine complexe )\, le discriminant b2 —4ac
est nul et la racine est donnée par A = —%. Comme dans le premier cas, la
suite z = (A\") est dans F. En fait, dans ce cas, y = (nA") est aussi dans F :
pour n € N,

Wtz +bYns1 +cyn = a(n+2)N2 4+ b(n+ )N 4 enA”
= nA"P(\) + (2a\ + b))\
= 0.

Vérifions que la famille (y,z) est libre, en supposant ay + fz = 0, soit
(an 4+ B)A"™ pour tout n € N. Pour n = 0, on trouve directement 5 = 0.
En prenant par exemple n = 1, on en déduit aussi a = 0. Donc la famille
est libre et constitue méme une base de F', puisqu’elle a le bon nombre
d’éléments.

On retiendra le théoreme suivant.

Enoncé indispensable 8 : suites récurrentes d’ordre deux

Soient a,b,c € C, avec a # 0 et ¢ # 0, et P = aX? + bX + c. Soit
(up) une suite telle que aup2 + bup41 + cu, = 0 pour tout indice n.

Si P admet deux racines complexes A1 # A_, il existe A, B € C tels
que u, = AN} + BA" pour tout indice n.

Si P admet une seule racine complexe A, il existe A, B € C tels que
up, = (An + B)A" pour tout indice n.

ExXEMPLE 47. Considérons la suite de Fibonacci (uy) : up = up = 1
et Upyo — Upy1 — Up = 0 pour tout n. Dans ce cas, P = X? — X — 1
est de discriminant 5, de sorte qu’on dispose de deux racines Ay = Lg/g
On sait donc qu’il existe des constantes A et B telles que pour tout n :
U, = AN} + BA". Pour calculer A et B ,on utilise les données initiales :
ug = up = 1 se traduit par A+ B =1et ANy + BA_ = 1. Apres calcul, on
trouve A = A\, /v/5 et B = —\_/y/5. D’oul I'expression :

()" - ()™
VB

REMARQUE 45. Une situation completement similaire se présente quand
on étudie les équations différentielles d’ordre deux qui sont linéaires et & co-
efficients constants. Etant donnés a € C*, b, ¢ € C, on peut considérer ’en-
semble F' des fonctions lisses iy : R — C qui vérifient I’équation différentielle
ay” + by’ + cy = 0. On vérifie aisément que F est un sous-espace vectoriel de

Vn € N, Up =
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I’espace vectoriel des fonctions lisses de R dans C. Et le cours d’analyse du
premier semestre montre que F est de dimension deux, avec une base (y1,y2)
s’exprimant en termes des racines du trinome P = aX? +bX +c¢. Si P a
deux racines distinctes A\; # g, les fonctions yi : t — exp(Agxt) conviennent
(k = 1,2). Si P n’a qu'une racine A, on peut prendre y; : t — exp(At) et
Yo : t— texp(At).

La dimension de F' reflete une propriété générale des solutions aux équa-
tions différentielles d’ordre deux : toute solution y sur un intervalle I est
entierement déterminée par sa position initiale y(tp) et sa vitesse initiale
y'(to), en un temps tg € I. Les éléments de F peuvent donc se paramétrer
par ces deux nombres : la dimension est deux.
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2. Applications linéaires

2.1. Définition et premieres propriétes. On pose K = R ou C. Une
application linéaire entre deux K-espaces vectoriels est une application qui
respecte les lois.

Enoncé indispensable 9 : application linéaire
Soient E et F' deux K-espaces vectoriels. Une application f de F
dans F' est dite linéaire si elle satisfait aux deux conditions suivantes.
(1) Pour tous vecteurs u et v de E, f(u+v) = f(u) + f(v).

(2) Pour tout vecteur u de E et pour tout scalaire A de K, f(\u) =
Af(w).

Pour insister sur K, on dit parfois K-linéaire. L’ensemble des applications
linéaires de E dans F' est noté Lx(E, F) ou L(E, F).

On peut noter qu'une application linéaire f vérifie forcément :

f(0)=o0.
Cela résulte de la premiere partie de la définition ci-dessus : f(0) = f(040) =
f(0) + £(0); en soustrayant f(0), il reste 0 = f(0). Cela fournit un premier
test pour savoir si une application est linéaire ou non. Par exemple, une
application constante non nulle ne peut pas étre linéaire.

Pour démontrer qu’une application est linéaire, on peut utiliser une pro-
b
priété plus ”concentrée” donnée par la caractérisation suivante.

PROPOSITION 32 (Caractérisation d’une application linéaire). Soient E
et F' deux K -espaces vectoriels et f une application de E dans F'. L’applica-
tion f est linéaire si et seulement si, pour tous vecteurs u et v de E et pour
tout scalaire o de K,

flau+v) = af(u) + f(v).

Démonstration. Soient f une application linéaire de F dans F', u et v deux
vecteurs de E, a un élément de K. En utilisant la propriété (1) puis la
propriété (2) de la linéarité de K, on a

flou+wv) = flou) + f(v)
= af(u)+ f(v)

Montrons la réciproque. Soit f une application de E dans F telle que,
pour tous vecteurs u et v de E et pour tout scalaire « de K, f(au + v) =
af(u) + f(v). En faisant a = 1, on trouve la propriété (1) de la linéarité :
flu+v) = f(u) + f(v). Cela implique f(0) = 0 (cf. ci-dessus). En faisant
v = 0, on trouve maintenant : f(au+0) = af(u)+ f(0), soit f(au) = af(u),
pour tous « € K et u € E. La propriété (2) de la linéarité est vérifiée.

REMARQUE 46. Dans la méme veine, on montre qu’une application li-
néaire f : E — F transforme une combinaison linéaire de F en une autre
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combinaison linéaire de F' : pour tous A1,..., A\, € Ket uy,...,u, € E,

/ (ﬁ: )\iui> = 2”: Aif (uq).
=1 i=1

Beaucoup d’applications naturelles sont linéaires.

EXEMPLE 48. L’application f : R? — R définie par f(x,y) = = est
linéaire. En effet, si u = (z,y) et v’ = (2/,y) sont deux éléments de R? et si
A est un réel,

fOu+u) = fx+a2 2 y+7v)
= lr+a
= Af(u) + f(u).

EXEMPLE 49. Dans I'espace vectoriel E = R® (constitué de toutes les
fonctions de R dans R), on considere le sous-espace D constitué des fonctions
dérivables. L’application d : D — E définie par d(f) = f’ est linéaire. En
effet, si f et g sont deux fonctions dérivables sur R et a un réel,

dlaf+g) = (af +9) = af +4¢ = ad(f) + d(g).

ExXEMPLE 50. Considérons 'application de M, ,(C) dans M, ,(C) don-
née par la transposition : T(A) = *A. C’est une application linéaire car pour
tous éléments de M,, ,(C) et tout scalaire «,

"(aA+ B) ="(ad)+'B=a'A+'B.

EXEMPLE 51. Soient E le C-espace vectoriel des suites convergentes et
lim : F — C D’application qui & une suite convergente associe sa limite. lim
est linéaire puisque, si (uy), (vn) € E et a € C, lim(au, +v,) = alim(uy,) +
lim(vy,).

ExXEMPLE 52. Soit E le R-espace vectoriel des fonctions continues du
segment [a,b] dans R. L’application I : E — R telle que I(f) = fff est

linéaire puisque, pour tous f,g € E et a € R, f:(af +g) = afff + f;g.

ExXEMPLE 53. Toute matrice A € M, ,(K) définit une application li-
néaire f4 : KP — K" par simple produit matriciel : pour tout X € KP =
My 1(K), on pose fa(X) = AX. Sa linéarité provient de la distributivité du
produit matriciel : pour tous X, Y € KP et o € K, A(aX+Y) = aAX +AY.

1 . .
0 0> est associée 'application R-

Par exemple, a |a matrice A = <O 11

linéaire f4 : R3 — R? telle que

x1
_ _ I _
falzi,z0,23) = A ij = (962 —I—a:3> = (21,22 + 3).

Mais certaines applications simples ne sont pas linéaires!

EXEMPLE 54. Soient E un K-espace-vectoriel et w un vecteur non nul
de E. La translation de vecteur w est I'application 7 : £ — FE définie par
7(u) = u + w. Cette application n’est pas linéaire parce que 7(0) = w # 0.
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EXEMPLE 55. L’application f : R — R définie par f(z) = 22 n’est pas

linéaire parce que f(1) =1, f(2) =4, donc f(2) # 2f(1). Cette application
f vérifie en fait pour tous réels X et x : f(A\x) = A2f(x) — au lieu de A\f(z).
Le méme probléme surgit quand on regarde l'application det : M, (R) — R,
pour n > 2 : les propriétés du déterminant donnent det(AA) = A" det A
pour tous A € M,(R) et A € R. Ceci montre que le déterminant n’est pas
linéaire en dimension n > 2. Par exemple, det(21,,) = 2" # 2 = 2det I,.

Enoncé indispensable 10 : endomorphisme

Soit E un espace vectoriel. Une application linéaire de E' dans E est
appelée un endomorphisme de E. On notera L(F) = L(E, E).

ExEMPLE 56. 1l y a beaucoup d’exemples naturels.

— Une matrice carrée A € M, (K) définit un endomorphisme f4 de K.

— La transposition définit un endormorphisme de M, (K).

— La dérivation fournit un endomorphisme de C*° (R, R), mais aussi de
R[X].

— Une rotation du plan centrée en l'origine est un endomorphisme du
plan.

EXEMPLE 57. Soient E un K-espace-vectoriel et A un élément de K.
L’homothétie de rapport A\ est 'application hy : E — E telle que hy(u) =
Au pour tout u € E. C’est un endomorphisme (par définition d’un espace
vectoriel !).

EXEMPLE 58. Soit F un K-espace-vectoriel. On suppose que E est somme
directe de deux sous-espaces F et G : E = FF@®G. Tout vecteur v de E s’écrit
de fagn unique u = v + w avec v élément de F' et w élément de G. L’uni-
cité de la décomposition précédente permet de définir I'application p de E
dans E telle que p(u) = v. L’application p est appelée projection sur F
parallelement & G. C’est une application linéaire.

En effet, soient deux vecteurs u et ' de E, et deux scalaires o , 8 deux
scalaires de K, le vecteur u s’écrit de fagon unique v = v + w avec v élément
de F et w élément de G et, par définition de p, p(u) = v. De méme, le vecteur
u’ s’écrit de fagn unique v’ = v’ + w’ avec v’ élément de F et w’ élément de
G et, par définition de p, p(u') =0’ .

au + fu' = (aw + Bv') + (aw + fu’).
F' est un sous-espace vectoriel de F, il est donc stable par combinaison
linéaire et donc le vecteur av + Sv’ appartient & F. De méme le vecteur
aw + fw’ appartient & G et, d’apres la définition de p,on a
plau + Bu') = av + Bv’ = ap(u) + Bp(u').

Une projection p vérifie I'égalité p?> = p. En effet, soit p la projection sur

F parallelement a G, tout vecteur v de E s’écrit de fagon unique u = v + w

avec v élément de F' et w élément de G. on a alors p(u) = v et p(v) = v car
v =v+0 avec v élément de F et 0 élément de G. Ainsi

p*(u) = p (p(u) = p(v) = v = p(u).
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Un exemple de projection a été vu dans le cours sur les transformations
linéaires du plan. Soit (,;) un repére (i.e. une base) de I'espace vectoriel
P des vecteurs du plan. Les droites D(i) et D(j) sont deux sous espaces
supplémentaires de P. Et la projection sur D(;) parallélement a D(j) n’est
autre que la projection vue dans le cours sur les transformations linéaires

du plan.

Il est utile de voir que la linéarité se propage bien, par combinaisons
linéaires et par composition.
Soient E et F deux K-espaces vectoriels. Rappelons que I'ensemble F¥ de
toutes les applications de E dans F' est ntaurellement un K-espace vectoriel :
— i f et g sont deux applications de E dans F', on définit f+¢g: E — F
par (f +g)(u) = f(u) + g(u) pour tout u € E;
— si f est une application de E dans F' et A un élément de K, on définit
A f:E— Fpar (A f)(u) = Af(u) pour tout u € E.

PROPOSITION 33. L(E,F) est un sous-espace vectoriel de F¥.

Démonstration. L’application nulle est un élément de L(E, F'). On veut voir
que, pour f,g € L(E, F) et X € K, les applications f+g et A- f sont linéaires.
Soient des vecteurs u et v de E et un scalaire « de K.

(f+g)au+v) = floau+v)+ glau+v)
= af(u)+ f(v) +ag(u) + g(v) (linéarité de f et g)
= a(f(u) +9(u) + (f(v) +9(v))

= alf+9)(w)+(f+9)(v)
Donc f + g est linéaire.
A filau+v) = Af(au+v)
= Maf(u)+ f(v)) (linéarité de f )
= aAf(u) +Af(v)
= a(Af)(u) + (Af)(v)
Donc A - f est linéaire. &

PRrROPOSITION 34. Soient E, F,G trois K-espaces vectoriels, f une ap-
plication linéaire de E& dans F et g une application linéaire de F dans G,
alors g o f est une application linéaire de E dans G.

En particulier, la composée de deux endomorphismes de E est un endo-
morphisme de F.

Démonstration. Soient u et v deux vecteurs de F, et o un élément de K.

(go flau+v) = g(f(au+w))
= g(af(u)+ f(v)) (linéarité de f)
= ag(f(w)+g(f(v)) (linéarité de g)
= ago f(u)+go f(v)
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Enoncé indispensable 11 : isomorphisme

Soient F et F' deux K-espace vectoriels. On dit que f : E — F est
un isomorphisme si f est linéaire et bijective.

PROPOSITION 35 (Linéarité de la réciproque d’un isomorphisme). Soient
E et F deux K-espaces vectoriels. Si f : E — F est un isomorphisme, alors
f~Y: F — E est aussi un isomorphisme.

Démonstration. f étant une application bijective de E sur F, f~! est une
application bijective de F sur E. Il reste donc & prouver que f~! est bien
linéaire. Soient u’ et v" deux vecteurs de F' et soient o et 3 deux éléments de
K, on pose f~'(u') =uet f~1(v)) = v et on a alors f(u) = et f(v) =v'.
Comme f est linéaire, on a

F e + p0') = [ (af (w) + BF(v) = f~H (f(au+ Bv)) = au + Bo.

Donc f~Hau'+pv") = af ~Hu')+Bf ) Cela prouve que f~! est linéaire.
&

EXEMPLE 59. La transposition donne un isomorphisme entre M,, ,(K)
et M, ,(K), dont la réciproque est aussi donnée par la transposition.

EXEMPLE 60. L’homothétie hy : E — FE est un isomorphisme si A # 0;
sa réciproque est alors hy .

Test : base et isomorphisme

Soit E un K-espace vectoriel muni d’une base (ey,...,e,). Vérifier
que application ¢ : K" — E définie par o(z1,...,2,) = D1 xie; est
un isomorphisme.

Quand il existe un isomorphisme f : E — F (ou de F vers E : ¢’est pareil
d’apres la proposition ci-dessus), on dit que E et F' sont isomorphes, ou que
E est isomorphe a F. Typiquement, le test dit qu'un K-espace vectoriel
de dimension n est toujours isomorphe a K". C’est un peu le slogan de la
théorie de la dimension.

Dans la méme veine, si f : E — F est un isomorphisme et si (eq,...,e,)
est une base de F, (f(e1),..., f(en)) est une base de F' (cf. TD). En parti-
culier, si un espace vectoriel est isomorphe a un espace de dimension finie n,
il est lui aussi de dimension finie n.

2.2. Applications linéaires et sous espaces vectoriels. Si f : X —
Y est une application quelconque entre des ensembles quelconques et si A
est une partie de X, on définit 'image de A par f comme étant :

fLA)={yeY [T e A f(z) =y} ={f(z) |z € X}

C’est donc une partie de Y.
Dans la suite, on va se concentrer sur les applications linéaires entre
deux K-espaces vectoriels E et F' .
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PROPOSITION 36. Si f: E — F est une application linéaire et si A est
un sous-espace vectoriel de E, alors f(A) est un sous-espace vectoriel de F.

Démonstration. Comme A est un sous-espace vectoriel de FE, il contient
Pélément Op, donc Op = f(0g) appartient a f(A).

Si y1 et y2 sont des éléments de f(A), il existe des éléments x1 et xo de
A tels que y1 = f(x1) et yo = f(z2). Par linéarité de f,

y1 +ays = f(x1) + af(r2) = f(o1 + azs).

Or z1 + axs est un élément de A, car A est un sous-espace vectoriel de E.
Cela prouve que y; + ays est bien un élément de f(A). &

Le cas ou A = F est d’usage courant.

Enoncé indispensable 12 : image

Soit f : E — F une application linéaire. L’image de f, notée Im f,
est ’ensemble des valeurs prises par f : Im f = f(F). C’est un sous-
espace vectoriel de F'.

Un autre espace vectoriel naturel est associé a f € L(E, F), cette fois
un sous-espace de ’espace de départ F.

Enoncé indispensable 13 : noyau

Soit f : F — F une application linéaire. Le noyau de f, noté Ker f,
est défini par :
Kerf={z e E| f(z) =0r}.

C’est un sous-espace vectoriel de E.

Démonstration. Ker f contient Og puisque f(0g) = Op par linéarité. Soient
x1 et xo deux éléments de Ker f et a € K un scalaire. Pour montrer que
T1 + axg est un élément de Ker f, on utilise la linéarité de f :

flx1 + azg) = f(z1) + af(z2) =0 + a0 = OF.
%

Bien sur, par définition, f : F — F est surjective si et seulement si
Im f = F'. 1l se trouve qu’on peut caractériser l'injectivité d’une applcation
linéaire par la nature de son noyau.

Enoncé indispensable 14 : injectivité et noyau

Une application linéaire f : F — F' est injective si et seulement si
Ker f = {0g}.

Démonstration. Supposons f injective et montrons que Ker f = {0g}. La
linéarité de f donne f(0g) = Op. De plus, si x est un élément de E tel
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que x # 0, l'injectivité de f impose f(z) # f(0g), donc f(z) # Or. Donc
Ker f={z € F| f(z) =0p} = {0}

Supposons maintenant que Ker f = {Og}. Soient z et y deux éléments
de F tels que f(x) = f(y). Comme f est linéaire, on en déduit f(x —y) =
f(z) — f(y) = 0, c’est & dire z — y est un élément de Ker f = {Og}. Donc
x —y = 0p, soit x = y. Cela montre que f est injective. O

EXEMPLE 61. Si f est 'application linéaire de R? dans R? définie par
f(x,y) = (z,x, —x), on trouve que l'image et le noyau de f sont des droites :

Im(f) = Vect ((1,1,-1)) et Ker f = Vect ((0,1)) .
f n’est donc ni surjective, ni injective.

EXEMPLE 62. Si A # 0, ’homothétie h) : £ — FE est un isomorphisme :
Im(hy) = F et Kerhy = {Og}. Par ailleurs, une homothétie de rapport
A = 0 est en fait identiquement nulle : Im hg = {Og} et Ker hy = E.

EXEMPLE 63. Soit p: E — F la projection sur F' parallelement a G, ol
E =F & G. Tout vecteur u de F s’écrit d’'une maniere unique v = up + ug
avec up élément de F' et ug élément de G ; et alors p(u) = up. Le noyau de
p est 'ensemble des vecteurs v de E tels que up = 0 : Kerp = G. L’'image
de p est I’ensemble des vecteurs ug, quand u décrit F : c’est donc une partie
de F'; et si u est dans F, u = up = p(u), donc F' C Im p et en fait Imp = F.

2.3. Théoréme du rang. Dans ce paragraphe, on étudie les proprié-
tés spécifiques des applications linéaires définies sur un espace vectoriel de
dimension finie. Dans ce cas, il y a un lien entre 'image et le noyau d’une
meéme application linéaire.

ProprosITION 37. Soit f : E — F une application linéaire. On suppose
que lespace vectoriel E est finiment engendré. Alors l'image de f est un
espace vectoriel de dimension finie. Plus précisément, si (e1,...,ep) est une
base de E, alors (f(e1),..., f(en)) est une famille génératrice de Im f.

Démonstration. 1l s’agit de démontrer que tout élément de Im f est une

combinaison linéaire des vecteurs f(e1),..., f(en).
Si y est un élément de Im f, il existe un élément = de F tel que y = f(x).
Comme (ey,...,e,) est une base de F, il existe des scalaires x1,...,z, € K
n
tels que x = inei. En utilisant la linéarité de f, on en déduit f(x) =
. i=1
Zmi f(ei), ce qui acheve la démonstration. O

i=1
Cette proposition montre que l'image de f, dans ce contexte, a une

dimension finie. On lui donne un nom.

DEFINITION 22. Soit f € L(E, F), avec E finiment engendré. La dimen-
sion de ’espace vectoriel Im f est appelée rang de f : rg(f) = dimIm f.

REMARQUE 47. La proposition ci-dessus donne une famille génératrice
de Im f de cardinal n = dim E. Or le cardinal d’une famille génératrice est
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toujours minoré par la dimension : rg f < dim £. On peut aussi remarquer
que Im f est un sous-espace vectoriel de F' : si F' est de dimension finie, on
a aussi rg f < dim F.

A toute application linéaire f : F — F, on peut associer deux espaces
vectoriels naturels : le noyau Ker f et 'image Im f. Quand FE est finiment
engendré, les deux sont finiment engendrés : on vient de le voir pour I'image
et le noyau est un sous-espace de ’espace finiment engendré E. On dispose
donc de deux nombres, les dimensions respectives du noyau et de 'image.
Or ces deux nombres sont reliés par une formule!

Enoncé indispensable 15 : théoréme du rang

Soit f : E — F une application linéaire. On suppose que ’espace
vectoriel E est finiment engendré. Alors

rg f = dim F — dim Ker f.

Dans la pratique, il suffit donc de déterminer la dimension du noyau ou
celle de 'image d’une application linéaire pour avoir les deux dimensions.

Démonstration. Notons n = dim E. Le noyau de f est un sous espace de F
de dimension p < n. Soit (e1, ..., ep) une base de Ker f. D’apres le théoreme
de la base incomplete, il existe n — p vecteurs epy1,...,e, de E tels que
(e1,€2,...,ey) est une base de E. On va montrer que (f(ept1),---, f(en))
est une base de Im f. Ainsi, on aura une base de Im f possédant n — p
éléments, ce qui donne rg f = dimIm f =n — p = dim F — dim Ker f.

Génératrice 7 Soit y € Im f. Comme dans la preuve précédente, on trouve
x =Y. wie; tel que y = f(x), de sorte que par linéarité : y = >_1 | x; f(e;).
Par construction, ici, pour i < p, e; est dans le noyau de f donc f(e;) = 0.
Donc en fait y = 31" ) x;f(e;). Cela prouve que (f(ep+1),. .-, f(en)) est
une famille génératrice de Im f.

Libre ? Soient Ap11, ..., A, des scalaires tels que

Apr1fept1) + -+ Anf(en) = 0.
Puisque f est linéaire, cela implique
[ Qpriepr1 + -+ Anen) =0,

ce qui signifie que le vecteur A,11ep41 + -+ - + A€, appartient au noyau de

f. Puisque (e1,...,ep) est une base de Ker f, il existe donc des scalaires
at,...,0p tels que A\pyiepi1 + -+ Ape,, = arer + -+ - + apep, ou encore
arer + -+ apep — Apriprl — - — Apey = 0.
Comme (eq,...,ey) est une base de E, c’est une famille libre. Donc
051:'--:Oép:—)\p+1:"':—)\n:0.
En particulier, les A; sont nuls et cela assure que (f(ept1),...,f(en)) est
une famille libre. Finalement, c’est une base de Im f. &

Un exercice sain consiste a vérifier que les exemples du paragraphe pré-
cédent vérifient bien le théoreme du rang.
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COROLLAIRE 6. Soit f : E — F une application linéaire. On suppose
que les espaces vectoriels E et F' sont finiment engendrés et de méme di-
mension. Alors f est injective si et seulement si elle est surjective, et donc
st et seulement si c’est un isomorphisme.

Autrement dit, dans le cas ou les espaces de départ et d’arrivée ont la
meéme dimension, prouver la bijectivité d’une application linéaire se ramene
a prouver une seule propriété, injectivité ou surjectivité, et pas les deux.
Un résultat de type « existence »(surjectivité) équivaut a un résultat de
type « unicité »(injectivité). Par exemple, ceci s’applique quand f est un
endomorphisme.

Démonstration. Dire que f est injective, c’est dire que Ker f = {0}, i.e.
dim Ker f = 0. D’apres le théoreme du rang, cela veut dire exactement :
rg f = dim E. Puisqu’on suppose dim F = dim F’, cela revient a : dimIm f =
dim F'. Mais Im f est un sous-espace de F', donc cette égalité de dimensions
équivaut a l’égalité Im f = F, c’est-a-dire a la surjectvité de f. &

2.4. Traduction matricielle de I’action d’une application linéaire.
Soient E et F' deux K-espaces vectoriels de dimension finie et ¢ une applica-
tion linéaire de F dans F. Le but de ce paragraphe est de traduire 1’égalité
vectorielle y = ¢(z) par une égalité matricielle.

Comme FE est un espace vectoriel de dimension finie, il possede une base
Bp = (e1,e€2,...,ep),oup = dim E. Tout élément = de E admet une écriture
unique sous la forme :

r=ux1€1 + -+ Tpep.

Les scalaires x1,...,x, sont les coordonnées de = dans la base Bg. Leur
donnée est équivalente & la donnée de x. On peut donc repérer x par la
matrice colonne de ses coordonnées dans la base Bg :

x1
Z2
[x]BE i
Tp
De la méme fagon, on peut introduire une base Bp = (fi,..., fn) de F,

ou n = dim F. Et tout élément y de F' est repéré par la matrice colonne

Yn
contenant les coordonnées de y dans la base Br : y =y1f1 + - + ynSn-
Siy = ¢(z), comment calculer les coordonnées de y en fonction de celles
de x 7 1l suffit en fait de connaitre 'action de ¢ sur les éléments de la base

Bpg (comme on va le voir dans la prochaine proposition). Pour j =1,...,p,
on introduit la notation suivante pour les coordonnées de ¢(e;) dans la base
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BF:

anj

On obtient donc une matrice A = (a;5) € My ,(K), dont la j-ieme colonne
contient les coordonnées de ¢(e;) dans la base Bp.

Enoncé indispensable 16 : matrice d’une application linéaire
La matrice de ¢ € L(E, F') dans les bases Bg et Bp est
[Sﬁ]gi = (@ij) € My p(K),
ou, pour j =1,...,p, .
o(e) = ag fi.
i=1

Ici, Bg = (e1,...,ep) et Bp = (f1,...,fn). La j-ieme colonne de la
matrice [go]gﬁ contient les coordonnées de ¢(e;) dans la base Bp.

REMARQUE 48. Insistons sur le fait que la matrice [cp]g? comporte n

lignes et p colonnes, ou n est la dimension de ’espace d’arrivée F' et p est la
dimension de I’espace de départ E.

L’intérét de cette matrice est qu’elle permet de calculer les coordonnées
de y = p(z) en fonction de celles de z, par un simple produit matriciel.

Enoncé indispensable 17 : traduction matricielle 1

PROPOSITION 38. Soit ¢ : E — F une application linéaire de ma-
trice [gp]g? dans des bases Bg de E et Br de F. Pour tout x € E,
B
[‘p(x)]BF = [@]B? [x}BE

Si on note A la matrice de ¢, X celle des coordonnées de x et Y celle
des coordonnées de ¢(z), la proposition dit que

Y = AX.
Démonstration. Rappelons les notations : B = (e1,...,€p), Br = (f1,..., fn),
Il p
[go]g? =A=(a;j)et|z]p, =X =| : |.Par définition, x = Zacjej. Avec
Tp i=1

la linéarité de ¢, on trouve

o(r) =¢ (Z $j€j> = aipe;) = w; <Z aijfz‘) :
j=1 =1 =1 \i=1
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n [ p

En permutant les sommes, on obtient : ¢(x) = Z Z aijx;j | fi. La matrice
i=1 \j=1

colonne Y des coordonnées de p(z) dans la base (f1, fa,..., fn) est donc

P
> aij;
Jj=1

: . On reconnait le produit matriciel AX. &

P
Zanj Lj
j=1

Attention, la matrice d’une application dépend complétement des bases
choisies, comme on va le voir dans ’exemple suivant.

EXEMPLE 64. Soit ¢ I'application linéaire de R? dans R? définie par
p(@1, 22, 3) = (21 + T2, 1 + 3).

Soient (e1, ez, e3) la base canonique de R? et (f1, f2) la base canonique de
R2. Déterminons la matrice associée & ¢ dans les bases (e1, ea, e3) et (f1, f2).
On a

ple1) = ¢(1,0,0) = (1,1) = fi+ fa=1f1 + 1fa.

La premiere colonne de la matrice [4,0]52;2)63) est donc G) De méme, on a

p(e2) = (1,0) = f1 = 1f1 + 0 fa.

(e1,e2,€3)

La deuxieéme colonne de la matrice [go]( hfs) | est donc (1> Enfin on a

0
p(e3) = (0,1) = fo =0f1 + 1fo.

La troisitme colonne de la matrice [cp]gj{j;)%) est donc (?) Il en résulte

W5 =(1 0 1)

Changeons maintenant la base d’arrivée, en permutant ses deux vec-
teurs : la matrice de ¢ dans les bases (e, ez, e3) et (fa, f1) est

(61,62,63) . ]. O 1
[@](fz,ﬁ) - (1 1 0)°
On va maintenant changer la base de l'espace de départ et conserver
celle de 'espace d’arrivée. Soient les vecteurs €1 = (1,1,0), e2 = (1,0,1) et
e3 = (0,1,1) de R?. On montre facilement que ces vecteurs déterminent une

base de R3. On considere alors les bases (e1,¢£2,¢3) et (f1, f2) de R? et R?
respectivement. Alors p(e1) = 2f1 + fa, ¢(e2) = f1+2f2, p(e3) = fr+ f2 et

on a
(51752753) - 2 ]. 1
[SO](fth) - (1 2 1)
EXEMPLE 65. Soit A € M, ,(K). La matrice de I'application linéaire
fa : KP — K" dans les bases canoniques de KP et K" est A.

que
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Dans le cas ol ¢ est un endomorphisme de E, on peut noter que la
matrice de ¢ sera toujours carrée, de taille n = dim E. De plus, il est alors
naturel de choisir une seule base B de E, qui va servir « au départ et a

Parrivée de ¢ ». On parle alors de la matrice de ¢ dans la base B et on note
parfois [¢]5 = [¢]3.

EXEMPLE 66. Soit B = (ey,...,e,) une base de l'espace vectoriel E.
L’application identité idg est un endormophisme de E. Elle vérifie, pour

tout j=1,...,n:
n
idE(ej) =€ = Z(Sijei.
i=1

Donc la matrice de I'identité dans toute base B de E est la matrice identité :
lidg|g = I.
Attention, il arrive parfois qu’on prenne une base différente au départ et

a larrivée pour calculer la matrice d’un endomorphisme. Typiquement, la
matrice de I'identité n’est plus la matrice identité dans ce cas.

On a vu qu’on peut faire des combinaisons linéaires d’applications li-
néaires, qu’on peut les composer... Comment ces opérations se traduisent-
elles matriciellement 7

PROPOSITION 39. Soient E et I’ deux K-espaces vectoriels de dimensions
respectives p = dim E et n = dim F', munis de bases Br et Br. L’application

©:L(E,F) — M,y(K)
B
e = o B?
est linéaire.

L’application © associe a une application linéaire sa matrice dans les
bases choisies. Concrétement, sa linéarité signifie que, pour ¢, ¢’ € L(E, F),
de matrices respectives A et A’ dans les base choisies, et a € K, la matrice
de ap + ¢’ est A+ A’

Démonstration. On note encore Bg = (e1,...,ep) et Bp = (f1,..., fn). La
matrice [go]gﬁ = A = (a;;) est définie par :

n
Vi=1,....,p, ple) = aijfi-
=1

Avec la formule analogue pour ¢’ (de matrice A’), on obtient tout de suite

Vi=1,...,p, (o + @) (e5) = ap(e;) + ¢ () = Y (aaij + aiy) fi-
i=1
Et cela veut dire que [acp—l—go’}g? = aA+ A ie. O(ap+¢) = aO(p)+0(¢).
O

Cette application © est en fait un isomorphisme entre L(E, F') et M,, ,(K).
Pourquoi 7 On vient de voir que cette application est linéaire. En outre, on
a vu plus haut la formule

@(m)zz > aijxs | fis

n
i=1 \j=1
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toujours avec les mémes notations, notamment ©(p) = A = (a;;). On voit
tout de suite que si ©(p) = 0, les coefficients a;; sont nuls, donc ¢ = 0,
d’ou l'injectivité de ©. Pour voir la surjectivité, on fixe arbitrairement A €
M, ,(K) et on définit 'application ¢ par cette formule. On vérifie alors que
 est linéaire de matrice A.

Insistons. Le caractere bijectif de © signifie que, pour toute matrice
A € M, ,(K), il existe une unique application linéaire ¢ € L(E, F') dont la
matrice dans les bases Bg et Br est A. C’est un moyen de construire des
applications linéaires intéresssantes.

Cet isomorphisme permet aussi de dire des choses sur ’espace vectoriel
L(E, F) : puisqu'il est isomorphe & M, ,(K), il est finiment engendré et sa
dimension est np = dim E x dim F'.

On va maintenant voir que la composition des applications linéaires se
traduit matriciellement par un simple produit.

Enoncé indispensable 18 : traduction matricielle II

PROPOSITION 40. Soient E, F' et G trois K-espaces vectoriels, munis
de bases By, Br et Bg. Pour ¢ € L(E,F) et ¢' € L(F,G), on a :
[ o elpe = ¢ 5 lelBe-
Autrement dit, dans les bases de ’énoncé, la matrice de la composée
de deux applications linéaires est le produit des matrices associées a
chacune d’elle, dans le méme ordre : si ¢ est de matrice A et ¢’ de
matrice A’, ¢’ o ¢ est de matrice A’A.

Démonstration. Pour tout x € E, on peut utiliser deux fois la proposition
pour calculer la matrice colonne des coordonnées de ¢'(¢(x)) en fonction
de X = [.’L’}BE :

' (p(@))]Be = A'lp(2)], = A'Al2]p, = A'AX.
3 3 _ / BE oy .
Mais, si M = [¢’ o o] 57, la proposition (38 donne aussi

(¢ 0 ©)(@)]Be = [ 0 ¢l E[2]B, = MX.

En observant que ces deux choses sont égales, on obtient A’/AX = MX,
pour tout X € KP. Cela implique A’A = M, c’est-a-dire le résultat. &

EXEMPLE 67. Vérifions la formule sur un exemple simple. On définit
© € L(R?,R3) et ' € L(R3,R) par les formules

o(x,y) = (z,2+y,7y) et ' (x,y,2) = .

La composée est un élément de L(R? R) et elle vérifie alors ¢’ o p(x,y) = x
pour tout (z,y) € R2.
Par ailleurs, dans les bases canoniques de R?, R3 et R, les matrices de ¢
10
et ¢’ sont respectivement [1 1| et (1 0 0).La matrice de ¢’ o dans les
0 7
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1 0
bases canoniques de R? et R est donc le produit (1 0 0) [1 1| =(1 0).
0 7

Et le produit de cette matrice par le vecteur colonne (z) donne (), ce qui

est cohérent avec le calcul de la composée effectué ci-dessus.

On a vu que la composition des applications linéaires se traduit matriciel-
lement par un produit matriciel. Dans le cas particulier d’'un endomorphisme
¢, cette proposition ramene donc le calcul des itérés ¢* = @ o--- 0 & un
calcul de puissances matricielles, par une récurrence immédiate.

COROLLAIRE 7. Soit o un endomorphisme d’un espace vectoriel E, muni
d’une base B. Pour tout k € N, [¢¥]5 = ([¢]p)F.

On peut aussi lire la bijectivité d’une application linéaire sur sa matrice.

COROLLAIRE 8. Soient E, F des K-espaces vectoriels de méme dimen-
sion, munis de bases Bg et Bp. Soit ¢ € L(E,F). L’application ¢ est un
tsomorphisme si et seulement si la matrice [gp]gi

dans ce cas,

est inversible. De plus,

(1e128) " = [

L’hypothese dim £ = dim F' n’est pas une restriction : si elle n’est pas
vraie, de toute fagon, ¢ ne peut pas étre un isomorphisme et sa matrice ne
peut pas étre inversible (puisqu’elle n’est pas carrée).

Démonstration. Soit n = dim E = dim F. Supposons d’abord que ¢ est un
isomorphisme, de sorte qu’on dispose de = € L(F, E) telle que

o lop=idg et pop l=idp.
Donc [p~ o ¢lp, = [idg]lp, = In et [po s, = [idr]s, = In. Comme la
matrice de la composée est le produit des matrices, on en tire :

—11B B B -11B
[ ]Bg[@]Bg =1y et [SO]B?[SO ]BZ = In.
Cela prouve que la matrice [go]gﬁ est inversible et que son inverse est la
: —-11BF
matrice [~ 5"

Démontrons maintenant la réciproque en supposant que A = [cp]gi est

inversible. Soit 1 I'application linéaire de F' dans F dont la matrice dans les
bases Br et B est A=, Alors I'égalité AA~! = A~1A = I,, peut s’écrire

Wpelwlg =1 et [WpElelEE = In,
ce qui implique
[Yopl, =lidely, et [poy]p, = [idr]p,

Deux applications linéaires ayant la méme matrice dans les mémes bases
sont égales : o = idg et p o1p = idp. Cela prouve que ¢ est bijective, de
réciproque v, de sorte que c’est un isomorphisme. &
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2.5. Changement de base. On a vu qu’en dimension finie on peut
ramener les problemes d’algebre linéaire a des calculs matriciels, une fois
qu’on a choisi des bases des espaces vectoriels en jeu. Nous allons maintenant
examiner ce qui se passe quand on change de bases.

Soit F un K-espace vectoriel de dimension finie n. On consideére deux
bases de E : B = (e1,...,e,) et B = (€},...,e}). Tout élément x de E
admet des coordonnées dans chacune de ces bases :

x1 )
X—flo=|:] o X-@s-|:
T, x,

Le lien entre X et X' s’établit & I’aide d’une matrice, dite de passage.

Enoncé indispensable 19 : matrice de passage

La matrice de passage de la base B a la base B’ est la matrice
Ppp = (pij) € My (K) dont la j-ieme colonne est [e}]5, pour 1 < j < n.

Autrement dit : .
= e
i=1

On peut retenir que Pgp est la matrice des vecteurs de B’ dans la base

B. Ses colonnes donnent les coordonnées des vecteurs de B’ dans la base
B.

EXEMPLE 68. Soit 1’espace vectoriel réel R?. On considere la base cano-
nique B = (e1,e2) et la base B’ = (e1,e3) avec 1 = €1 + €3 et e = e3. La
. . . 10
matrice de passage de la base B & la base B’ est la matrice (1 1) dont la
premiere colonne est donnée par les coordonnées du vecteur €; sur la base
(e1,e2) et la deuxieme par les coordonnées 2 de sur la base (eq, e2).

Cette matrice de passage fait la traduction entre les coordonnées obte-
nues dans chacune des deux bases, par un simple produit matriciel.

Enoncé indispensable 20 : changement de base I

Les matrices d’un vecteur x dans deux bases B et B’ sont reliées par
la formule :

[IL’]B = PBB’[«T]B"

Avec les notations introduites ci-dessus, cela signifie X = Pgp/ X’ : cette
formule exprime naturellement les « anciennes » coordonnées (dans B) en
fonction des « nouvelles » (dans B’).

Démonstration. Par définition des coordonnées et de Ppp' = (pij),

n n n
Tr = sze; = ZIL’; (Zpij6i> = Z Zpi]{l:;- €;.
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Cela signifie que la coordonnée z; de x dans la base B = (eq,...,e,) est
T = pijx; et prouve que X = Pgp/ X'. &

PropoOSITION 41. Toute matrice de passage Ppp: est inversible, d’in-
verse Ppip.

Démonstration. Pour x € E, on note encore X = [z]p et X’ = [z]p. On
vient de voir que X = Pgp/X’. En inversant les roles de B et B’, on obtient
aussi X' = Pg/gX. On en déduit que X = Pgp/ Pp/pX, pour tout X € K".
D’ou Pgp/Pp g = I, et le résultat. &

REMARQUE 49. Soit F un K-espace vectoriel muni d’une base B =

(e1,...,eyn). Toute matrice inversible M = (m;;) € GL,(K) définit une nou-
velle base de E. Explicitement, pour j = 1...,n, on pose e;- = > L mije;.
Alors B’ = (€},...,¢),) est une base de E : sinon, ce serait une famille liée,

ce qui donnerait une solution X non nulle au systeme M X = 0, contredisant
Iinversibilité de M. On peut aussi le voir en introduisant I’endomorphisme
¢ de E dont la matrice dans B est M : en fait, B' = (¢(e1),...,o(en))
et ¢ est un isomorphisme parce que M inversible; ainsi, B’ est une base,
comme image d’une base par un isomorphisme. Bien siir, par construction,
M = Pgp.

THEOREME 12. Soit ¢ une application linéaire entre deuz espaces vec-
toriels E et F. Soient By et By, deuz bases de E, Br et By deux bases de
F. On introduit les matrices de passage P = PBEB/E et Q = PBFB%. Alors :

B B p—1
[elBr = Qlelpr P

Si A est la matrice de ¢ dans les « anciennes »bases (B et Bp) et A’

la matrice dans les « nouvelles »(avec des primes), la formule est donc

A=QAP.

Démonstration. C’est un jeu de notations avec ce qui précede. Pour = €
E, on note toujours X = [z]p, et X' = [2]p, . Alors [p(2)]p, = AX et
lo(2)]B,, = A'X'. La formule de passage entre Br et B donne donc AX =
QA’X'. Et la formule de passage entre Bg et Brs donne X = PX’. On en
tire AX = QA’P~' X, pour tout X, donc A = QA’P~1, O

Le cas particulier d’'un endomorphisme mérite d’étre explicité. Il est tres
important, par exemple pour la diagonalisation, qui est le prochain sujet de
ce cours.

Enoncé indispensable 21 : changement de base II

Soient B et B’ deux bases d'un espace vectoriel E. Soit ¢ un endo-
morphisme de E. Alors :

[0l = Ppp/[p)5 Pgp-




2. APPLICATIONS LINEAIRES 107

On retiendra cette formule sous la forme
A=PAP!,
ou A est la matrice de ¢ dans B, A’ la matrice de ¢ dans B’ et P est

la matrice de passage de B & B’, c’est-a-dire la matrice des coordonnées
des vecteurs de la base B’ dans la base B.

REMARQUE 50. La matrice de passage entre deux bases B et B’ de E
peut s’interpréter comme la matrice de idg, avec B’ comme base de départ
et B comme base d’arrivée :

PBB’ = [ldE]g/
Attention & l'ordre : c’est bien B’ au départ et B a I'arrivée. La preuve est
immédiate : la j-iéme colonne de [idg]E est [id r(€})]lB = [€)], soit celle de
PBB"
Ce point de vue, si on fait bien attention & ’ordre des bases, permet de se
ramener aux propriétés des matrices d’applications linéaires. Par exemple,

la propostion donne, pour tout € E, Ppplz]p = [idg|E [z]p =
[idg(z)] = [z] . Egalement, puisque Ppp = [idg]E est la matrice dun iso-
morphisme, c’est une matrice inversible, d’inverse [id;']5, = [idg]|8, = Ppp.

Enfin, la formule de changement de bases pour les endomorphismes se voit
en écrivant :

Pypl¢lp Pgp = idplS [¢lp[idp]8 = [idp op o idg]E = [¢]p.

La formule de changement de base permet de parler du déterminant d’un
endomorphisme. En effet, si A et A’ sont les matrices d’un méme endomor-
phisme ¢ dans deux bases différentes, on peut écrire A = PA’P~! pour une
certaine matrice de passage P. Comme le déterminant d’un produit est le
produit des déterminants, il vient :

det(P)
Donc le déterminant ne dépend pas de la base choisie : on peut poser
det(p) = det(A), o A est la matrice de ¢ dans n’importe quelle base.

On peut faire la méme construction avec la trace. Rappelons que la trace
Tr A d’une matrice carrée A est la somme de ses coefficients diagonaux. En
utilisant la définition du produit matriciel, on vérifie la formule

VA, B € M,(K), Tr(AB)=Tr(BA).

Ainsi, la trace d’'un produit de matrices ne dépend pas de 'ordre dans lequel
on fait le produit.

Si A et A’ sont les matrices d’'un méme endomorphisme ¢ dans deux
bases différentes, on peut écrire A = PA’P~! comme ci-dessus et alors

Tr(A) = Tr(PA'P™Y) = Tr(A'P~1P) = Tr(4A)).

Donc la trace ne dépend pas de la base choisie : on peut poser Tr(y) = Tr(A),
ol A est la matrice de ¢ dans n’importe quelle base.

det(A) = det(PA'P~) = det(P) det(A) = det(A").
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3. Diagonalisation

3.1. Motivation.
3.1.1. Motivation pour praticiens. On s’intéresse au probleme suivant :

1.9 0.9 : 100
1,8 -0, 8)’ calculer la matrice M.

L’un des buts de cette sous-section est d’expliquer comment résoudre un
tel probleme. Disons d’abord un mot de pourquoi. Il arrive qu’un systeme
physique dépende d’un nombre fini > 1 de parametres; qu'un processus
physique « en temps discret » soit une transformation linéaire de ces para-
metres. Si nous notons M la matrice de cette transformation et x,, le vecteur
des parametres au temps n, on aura x,+1 = M - z,. La question du devenir
a long terme du systeme revient a comprendre le comportement de M™ - xg
quand n tend vers l'infini.

L’approche naive qui consisterait a chercher des relations de récurrence
entre les coefficients des M™ est une re-complication du probleme : I’algébre
linéaire permet précisément de noter les choses matriciellement, avec plus
de clarté et plus d’outils.

Or calculer les puissances d’une matrice diagonale est simple. On veut
donc se ramener au cas diagonal. On pourrait songer a utiliser I’algorithme
du pivot de Gauss, qui permettrait d’écrire M = PD ou D est diagonale.
Mais 1’écriture M™ = (PD)" ne permet pas d’aller plus loin. En revanche,
si 'on peut écrire M = PDP~! avec D diagonale, alors :

M"=(PDP Y =pPDp'.PDP'.PD...PDP! = PD"P !
I I

étant donnée la matrice M = (

Cette écriture donne une réponse explicite, puisque D™ se calcule facilement.
Diagonaliser une matrice, c’est se ramener par changement de base a
une matrice diagonale.

3.1.2. Motivation pour théoriciens. Une application linéaire générale est
un objet impossible a se figurer (pour « tracer » un endomorphisme de K",
il faudrait disposer de n? dimensions) et dont la représentation algébrique
sous forme de matrice, certes utile en calcul, est assez opaque.

Mais il y a des applications linéaires plus simples que d’autres. Par
exemple, I'identité. Ou encore une homothétie. Mais c’est bien trop spé-
cifique. On peut aussi imaginer le cas ou selon un axe on multiplierait par
un scalaire, et selon un autre axe, par un autre scalaire. En étude le long
des axes, la transformation de I’espace serait grandement simplifiée.

Diagonaliser une application linéaire, c’est trouver une famille généra-
trice de droites le long desquelles elle agit comme une homothétie.

3.2. Eléments propres. On se place dans un K-espace vectoriel E.
Une droite D de E est par définition un sous-espace de dimension 1. Si
x € D n’est pas nul, (x) est une base de D et D = Vect(z).

DEFINITION 23. Une droite D de FE est dite propre si elle est stabilisée
par f, c’est-a-dire si : Yye D, f(y)eD.

C’est intéressant car alors la restriction f|p est un endomorphisme de la
droite D.
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LEMME 6. Soient D un espace vectoriel de dimension 1 et g : D — D
une application linéaire. Alors il existe A € K tel que g = Nidp.

Démonstration. Fixons o € D\{0}, de sorte que Vect(zg) = D. Notamment
il existe A (éventuellement nul) tel que g(xzg) = Azg. Nous affirmons que g
est 'homothétie de rapport A. Soit en effet x € D quelconque. Puisque
Vect(zo) = D, il existe un scalaire p tel que = = pxg, et 'on trouve :

g9(z) = g(uzo) = pg(xo) = pAzo = Ao = Az,
d’ou le résultat. &
Ce calcul montre d’ailleurs que si un vecteur xg # 0 vérifie f(xo) = Axo,

la droite D = Vect(zg) est propre et la restriction f|p est 'homothétie de
rapport A.

Enoncé indispensable 22 : vecteur propre et valeur propre

Soit f € L(F). Si on a un vecteur x € F non-nul et un scalaire
A € K tels que f(z) = Az, on dit que A est une valeur propre de f et
que x est un vecteur propre de f associé a .

Une valeur propre est donc un scalaire A tel qu’il existe une droite D
pour laquelle fip = Aidp. Et un vecteur propre est donc un vecteur qui
engendre une droite propre. Comme le vecteur 0 n’engendre que {0}, il ne
saurait compter parmi les vecteurs propres.

DEFINITION 24. Si A est une valeur propre de f, on appelle espace propre
de f associé a A le sous-espace vectoriel E)(f) = Ker(f — Aid).

Ce n’est pas forcément une droite. Ainsi, pour f =id, on a Ei(f) = E.
Par construction, E)(f) est le plus grand espace sur lequel f se comporte
comme ’homothétie de rapport A.

DEFINITION 25. On appelle spectre d’un endomorphisme f ’ensemble
de ses valeurs propres. Il est noté Sp(f).

Le spectre admet une caractérisation algébrique remarquable, liée au
polynome suivant.

Enoncé indispensable 23 : polynéme caractéristique

Soit M = (m; ;) € My(K) une matrice carrée. Son polynome carac-
téristique est par déﬁnitionlﬂ :

mi1 — X mio - Mip
mo1 mog — X ... Moy,
xm(X)=det(M — X1I,) =
mn1 Mpp — X

Soit f un endomorphisme d’un espace vectoriel F, de matrice M
dans une base de . Son polynéome caractéristique est x5 = xn.
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Les propriétés du déterminant font que le polynéme caractéristique est
un polynéme de degré n, s’écrivant

xur(X) = (=1)" X" + (=1)" T Te(M) X" + - 4 det(M).

Cela se voit par exemple par récurrence, en développant le déterminant par
rapport & la premieére colonne. Le terme constant est bien str y(0) =
det(M).

Pour comprendre, la définition du polynéme caractéristique de ’endo-
morphisme f, il faut se rappeler que le déterminant d’un endomorphisme est
bien défini : c’est le déterminant de la matrice associée dans n’importe quelle
base, le résultat ne dépendant pas de la base choisie (voir la fin du para-
graphe sur les changements de base). En particulier, si M et N représentent
le méme endomorphisme f dans deux bases différentes, alors

Xar = det(M — X1,,) = det(N — X1I,) = xn,

puisque M — X I, et N — X I, représentent le méme endomorphisme f— X id.
En fait, x5 = det(f — X id). C’est un polynome de degré n = dim(FE).

Enoncé indispensable 24 : racines du polynoéme caractéristique

Les valeurs propres de f sont exactement les racines de son polynoéme
caractéristique.

Démonstration. Soit M la matrice de f dans une base. Soit A € K. Alors
A est valeur propre si et seulement s’il existe z # 0 tel que f(z) = Az i.e.
(f = Aid)(x) = 0. Cela signifie que le noyau de f — Aid n’est pas {0}, c’est-
a-dire que 'endomorphisme f — Aid n’est pas injectif. Cela équivaut a dire
que ce n’est pas un isomorphisme, ou encore que sa matrice M — \I,, n’est
pas inversible, soit det(M — Aid) =0 i.e. xf(A) = 0. &

Le degré du polyndéme caractéristique étant la dimension, on voit qu’en
dimenston n, il y a au plus n valeurs propres.

Le théoreme de D’Alembert-Gauss dit que tout polynéme complexe ad-
met une racine complexe : si K = C, le polynéme caractéristique a tou-
jours au moins une racine, donc tout endomorphisme admet une valeur
propre donc une droite propre. Géométriquement, ce n’est pas clair du tout !
D’ailleurs, c’est completement faux si K = R : une rotation p # +id de R?
n’a pas de direction propre (puisque « tout tourne »), donc pas de valeur
propre réelle. On voit ici que la nature algébrique de K joue un réle crucial.

3.3. Diagonalisabilité.

Enoncé indispensable 25 : endomorphisme diagonalisable

Soit F un espace vectoriel de dimension finie. Un endomorphisme f
de F est diagonalisable s’il existe une base B de E formée de vecteurs
propres.

Cela revient a dire que la matrice de f dans la base B est diagonale.
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Explicitement, si B = (x1,...,2,) et si chaque x; est un vecteur propre
associé a la valeur propre \;,

A1

[fl =
An

Ainsi, chacune des droites D; = Vect(x;) est propre et E est la somme de
ces n droites, elles engendrent tout 1’espace.

La formule de changement de base méne au concept matriciel correspon-
dant.

Enoncé indispensable 26 : matrice diagonalisable

Une matrice M € M, (K) est diagonalisable s’il existe une matrice
inversible P et une matrice diagonale D telles que M = PDP~!,

Test : diagonalisabilité

Soit f un endomorphisme. Montrer I’équivalence entre :
— f est diagonalisable ;

— il existe une base B telle que [f]p soit diagonalisable;
— pour toute base B, [f]|p est diagonalisable.

LEMME 7. Soit f € L(E). Sotent x1, ..., x, des vecteurs propres associés
a des valeurs propres distinctes : pour tout i, f(x;) = Njz;, avec A\ # N\ si
i # j. Alors (x1,...,xp,) est une famille libre.

Démonstration. Procédons par récurrence sur p € N*.
Initialisation. Puisque x1 est un vecteur propre, x; n’est pas nul, donc

(1) est libre.
P

Hérédité. Supposons que (z1,...,xp—1) est libre et que Z a;x; = 0 pour
i=1
des scalaires o, . . ., o, € K. En appliquant f, on obtient une autre équation :

p p p
0= f(O) = f (Z Oéixz) = Zazf(xz) = Z /\iozi:vi.
i=1 i=1 i=1

p
En multipliant ’équation initiale par A,, on trouve aussi 0 = Z Apo;;z;. En
i=1
soustrayant ces deux équations, on annule le dernier terme et on trouve
p—1
0= Z()\Z - )\p)aixi.
i=1
Puisque la famille (x1,...,2,-1) est libre par hypothese de récurrence, on
en déduit (A; — A\p)oyy =0 pour i =1,...,p — 1. Puisque les valeurs propres
sont distinctes, \; — A\, # 0, donc a; = 0, pour ¢ = 1,...,p—1. Et I'équation
initiale donne alors a,z;, = 0, donc oy, = 0 (x), n’est pas nul : ¢’est un vecteur
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propre). Cela prouve que (x1,...,z;,) est une famille libre, et donc le lemme,
par récurrence. $

Enoncé indispensable 27 : un critére de diagonalisabilité

Soient F un K-espace vectoriel de dimension n et f un endomor-
phisme de E. Si x; admet n racines distinctes dans K, alors f est dia-
gonalisable.

L’hypothese sur le polynome caractéristique consiste a dire qu’il est
n

« scindé a racines simples » : x5 = (—1)" H(X — Ai), ou les \; sont des
i=1

éléments distincts de K.

Démonstration. Comme x; possede exactement n racines distinctes, il suit
que f possede exactement n valeurs propres distinctes. En choisissant un
vecteur propre pour chacune d’entre elles, on obtient n vecteurs propres
associés a des valeurs propres distinctes. On trouve ainsi une famille libre
(lemme) donc une base (n = dim FE), constituée de vecteurs propres. O

REMARQUES 6.

— Cette condition n’est pas nécessaire : la réciproque est fausse. Par exemple,
I’endomorphisme id¢e de C™ est bien str diagonalisable et son polynéme
caractéristique est (1 — X)™, qui n’a qu’une racine, 1, de multiplicité n.

— Si ce criteére ne s’applique pas toujours, il s’applique quand méme souvent !
Quand K = C, il n’est jamais loin d’étre vérifié : on peut montrer que toute
matrice carrée complexe peut étre approchée aussi pres qu’on veut par des
matrices vérifiant ce critére, donc diagonalisables.

Résumons-nous, en insistant sur le coté pratique. Une matrice carrée M
est diagonalisable s’il existe un changement de base la rendant diagonale, en
notation :

M = PDP™!.
Comment calculer les termes de cette formule ?

(1) Déterminer les valeurs propres : il s’agit d’écrire le polynome carac-
téristique et de trouver ses racines.
Remarque : en vérité, c’est beaucoup plus facile a dire qu’a faire.
Trouver les racines d’un polynome, les exprimer par des opérations
algébriques élémentaires... ¢a va si la matrice est de taille au plus
4 (depuis la Renaissance italienne, on connait méme des formules).
Mais, en plus grande dimension, on sait depuis Abel-Ruffini (on sait
méme pourquoi depuis Galois) qu’on ne peut pas exprimer les racines
de polynomes arbitraires.
Mais tenons pour connu le spectre.

(2) Déterminer les espaces propres et une base de chacun d’entre eux :
c’est une histoire de systemes linéaires. Pour A € Sp(f), il s’agit de
résoudre le systeme M X = AX d’inconnue X € K", par les méthodes
de pivot habituelles, qui en donnent notamment une base.
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(3) Ecrire la formule de changement de base : si I'on a obtenu en tout n
vecteurs-colonnes propres X1, ..., X, linéairement indépendants, on
forme la matrice de passage P en les mettant cote-a-cote. La formule
de changement de base donne :

A1
M=P Pt
An

ou, pour tout j, MX; = \; X;.

Vérifions. En notant E; le j-iéme vecteur-colonne de la base ca-
nonique de K", on a X; = P - E; par définition de P. Comme
MX]' = )\ij, ona:P IMP. Ej = P_lMXj = P_l)\ij = )\jE]‘,
ce qui signifie que la j-iéme colonne de P~'MP est N E;. Ainsi,
P~YMP est la matrice diagonale écrite ci-dessus et en multipliant
par P a gauche et P~ a droite, on trouve la formule.

Revenons au probleme initial : étant donnée M = (—1i98 —0(7)98>’ cal-

culer la matrice M 199, Ici, le polynéme caractéristique est :
xur =(1,9—-X)(-0,8 - X)—(0,9--1,8) = X? —1,1X 4+ 0,1
=(X-1)(X—-0,1).
Comme il est scindé a racines simples, la matrice M est diagonalisable, de

valeurs propres 1 et 0, 1. Le calcul des espaces propres associés donne lieu a
des systemes linéaires sympathiques :

0,9 0,9\ _ 1Y
Ei(M) =Ker(M — Is) = Ker (—1,8 —1,8) = Vect (_1> ;

1,8 0,9\ 1
Eo (M) =Ker(M —0,11) = Ker (—1,8 _0’9> = Vect (_2) .

Donc si on pose

11 10
P—<—1 —2) ot D_(o 10—1>’

ona M = PDP~! dou:

11 10 2 1
100 _ p . »Hl00 . p—1 _ . )
M= P-DTE-P _<—1 —2) (0 10—100) (-1 —1>

2—10"1% 1—10710
- (—2 +2-10710 1 42. 10100) '

3.4. Diagonalisation : raffinement. Le critere de diagonalisabilité
donné plus haut peut étre amélioré a peu de frais, a condition d’introduire
la notion suivante.

DEFINITION 26. Soient F1, ..., F}, des sous-espaces vectoriels d'un méme
espace vectoriel F. On dit qu’ils sont en somme directe si pour tous x1 €
Fy,...,x, € Fp, équation x1 + --- + z, = 0 implique x1 = --- =z, = 0.
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Soit F' la somme des sous-espaces F; : F' = {z1+--- +x, | Vi,z; € F}}.
C’est le plus petit sous-espace de E contenant I'union des F;. Quand les
sous-espaces F; sont en somme directe, on note

4
F=F® --0F=F.
=1

Dans ce cas, tout élément x de F' admet une unique écriture sous la forme
T =x1 + -+ 3p avec, pour tout i, x; € F;.

En effet, si on peut aussi écrire x = ) + -+ + :z;, avec, pour tout i,
x} € F;, on trouve en soustrayant :

/ /
Ty -+t —x,=0
— ——
€r €Fp
Et la définition d’une somme directe dit que chacun des termes z; — 2 est
nul : pour tout i, x; = x;.
En dimension finie, la dimension d’une somme directe se calcule facile-
ment en fonction de celle de ses termes :

p p
dim@Fi = Zdimﬂ.
i=1 i=1

FEn effet, si on munit chaque F; d’une base B;, on peut les réunir en une base
B de F'. Pourquoi une base? On voit vite que c’est une famille génératrice
(tout élément de F' est une somme d’éléments des F; et tout élément de
chaque F; est une combinaison linéaire de vecteurs de B;). Pour voir qu’elle
est libre, on suppose que 0 est combinaison linéaire des éléments de B, i.e.
une somme de combinaisons linéaires des vecteurs de chaque B;. Par unicité
de la décomposition en somme de vecteurs des F;, on obtient pour chaque i
une combinaison linéaire nulle des vecteurs de la base B;, donc finalement
tous les coefficients sont nuls.

REMARQUE 51. Attention, pour que Fi,... F}, soient en somme directe,
il ne suffit pas que 'intersection des F; soit {0} ! C’est vrai si p = 2, mais
faux si p > 3. Pour s’en convaincre, on peut penser & trois droites distinctes
de R? (passant par 0, bien siir). Leur intersection est triviale, mais elles
ne sont pas en somme directe (sinon, leur somme serait un sous-espace de
dimension 3 de R?).

LEMME 8. Les espaces propres d’un endomorphisme sont en somme di-
recte.

Démonstration. Soit f € L(F) un endomorphisme, de valeurs propres Ay,...,
Ap. Pour tout ¢ = 1,...,p, on se donne z; € E\,(f), et on suppose que
>P_, x; = 0. Supposons par I’absurde qu’au moins 'un des x; n’est pas nul et
notons x;,, . .., r;, tous ceux qui ne sont pas nuls. Ce sont alors des vecteurs
propres associés a des valeurs propres différentes, donc ils forment une famille
libre. Cela contredit le fait qu’ils vérifient 'équation > 7 _, x;, = 0. &

PROPOSITION 42. Soit f € L(E). f est diagonalisable si et seulement si

E= € Ex\f).

AeSp(f)



3. DIAGONALISATION 115

Démonstration. Pour le sens direct, on observe que F possede une base
constituée de vecteurs propres de f. Donc tout élément de E est combi-
naisons de vecteurs propres, donc somme d’éléments des espaces propres
Ex(f)-

Pour le sens réciproque, on prend pour chaque A € Sp(f) une base B)
de E5(f). Puis on les réunit : cela donne une base de E= @5 E\(f),

AESP(f)
constituée de vecteurs propres. &

Concentrons-nous sur le cas ou K = C. Soient F un C-espace vectoriel de
dimension finie n et f un endomorphisme de E. Le théoreme de D’Alembert-
Gauss permet d’écrire

xp=0E0" [T (x=xm.
AeSp(f)

Le nombre m) est la multiplicité de la racine A du polynéme .

Quand f est diagonalisable, on peut choisir une base B de vecteurs
propres. En calculant le polynéme caractéristique dans cette base, on voit
que

xr=0ED" I (x =05,
AeSp(f)

ou dy est la dimension de l'espace propre E)\(f), i.e. le nombre de vecteurs
propres associés a la valeur propre A dans la base B. Donc, dans ce cas,
la multiplicité m) est exactement d). La proposition suivante dit que cela
caractérise la diagonalisabilité.

PROPOSITION 43. Soient E un C-espace vectoriel de dimension finie et
f € L(E). f est diagonalisable si et seulement si la dimension dy de chaque
espace propre est égale a la multiplicité m).

Démonstration. Le sens direct est prouvé ci-dessus. Pour le sens réciproque,
on observe que le degré du polynome x est n = dim E. Donc n = ) my.
Puisque d) = m) pour toute valeur propre A, on en tire n = >, d). Mais
cette somme n’est autre que la dimension de la somme directe F' de tous
les espaces propres F)(f). Ainsi, F' est un sous-espace de E de dimension
n =dim F, donc F = E. Par la proposition précédente, on en déduit que f
est diagonalisable. &

REMARQUE 52. L’inégalité dy < m, est toujours vraie. Pour le voir, on
calcule le polynéme caractéristique x y dans une base B obtenue en complé-
tant une base de I'espace propre F)(f). Dans une telle base, la matrice de
f est du type

[flB = (A{)‘h %)

(c’est une écriture par blocs : M et N sont des (sous-)matrices de taille
convenable). En développant le déterminant définissant x; par rapport a
ses dy premieres colonnes, on obtient xy = (A — X)® . xn, donc my > dy.
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3.5. Diagonalisation simultanée. Dans ce paragraphe, nous nous in-
téressons a la question suivante : étant donnés deux endomorphismes diago-
nalisables f et g, peut-on les diagonaliser simultanément, c¢’est-a-dire trouver
une base dans laquelle la matrice de f et la matrice de g sont diagonales?
Il n’y aucune raison pour que ce soit possible et d’ailleurs c’est souvent
faux. Observons que deux matrices diagonales D et D’ commutent toujours :
DD’ = D'D. Donc deux endomorphismes diagonalisables dans une méme
base doivent aussi commuter : fo g = go f. On va voir que cette condition
nécessaire est aussi suffisante. Le premier pas est la remarque suivante.

LEMME 9. Si f et g commutent, alors tout espace propre de f est stabilisé
par g : Vx € Ex(f), g(z) € Ex(f).

Démonstration. Soit x € Ex(f). Alors :

flg(z)) = g(f(x)) = g(A\z) = Ag(x),
donc g(x) € Ex(f). %

Quand un endomorphisme g d’un espace vectoriel E stabilise un sous-
espace F', sa restriction g|r est une application linéaire définie sur F' et a
valeurs dans F', précisément parce que F est stabilisé par g. On dit que ¢
induit un endomorphisme de F', c’est-a-dire un élément gp de L(F'), défini
par gr(x) = g(x) pour tout x € F. On va relier les éléments propres de g a
ceux des endomorphismes qu’il induit.

LEMME 10. Soient E un espace vectoriel et g un endomorphisme de E.
On suppose que E = F ® G pour des sous-espaces F et G stables par g.
Alors pour toute valeur propre A de g,

Ex(g9) = (Ex(9)NF) & (Ex(g)NG).

Ainsi, tout vecteur propre de g est somme d’un vecteur propre de gr et d’un
vecteur propre de gg.

Démonstration. Soit z € Ey(g). Comme E = F®G, on peut écrire x = v+w
avec v € F' et w € G. Puisque g(z) = Az, on en déduit

g9(v) +g(w) = Av + dw,.
Par unicité de la décomposition dans la somme directe F' & G, g(v) = v et
g(w) = Aw. Donc v est dans Ey(g) N F' et w dans E)(g) N G. Cela prouve
I'inclusion
Ex(9) C (Ex(9) N F) + (Ex(9) N G).
L’autre inclusion est claire (chacun des termes est inclus dans Ey(g)). Et la
somme est directe en raison de l'inclusion

(Ex(g) N F) N (Ex(g)NG) C FNG ={0}.
&

PROPOSITION 44. Soient E un espace vectoriel et g un endomorphisme
diagonalisable de E. On suppose que E = F @& G pour des sous-espaces F
et G stables par g, de sorte que g induit des endomorphismes gr € L(F)
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et go € L(G). Alors g est diagonalisable si et seulement si gr et gg sont
diagonalisables.

Démonstration. Le sens <= est facile : si gp et gg sont diagonalisables, on
a une base de F constituée de vecteurs propres de gr et une base de G
constituée de vecteurs propres de gg ; en les mettant bout a bout, on obtient
une base de E constituée de vecteurs propres de g, donc g est diagonalisable.

Passons au sens = : on suppose g diagonalisable. Pour voir que gr est
diagonalisable (le cas de gg est similaire), on va vérifier la décomposition en
somme directe :

F= @ (Brg)nF).

AESp(g)

Sur chaque sous-espace F)(g) N F, g agit comme ’homothétie de rapport A,
donc, en mettant bout a bout des bases de ces sous-espaces, on obtiendra
une base de vecteurs propres de gr, ce qui démontrera la proposition.

Pour voir que le membre de droite est bien une somme directe, on se
donne des vecteurs x) € E)(g) N F tels que Y, x) = 0. Alors chaque z est
dans l'espace propre F)(g). Puisque les espaces propres de g sont en somme
directe, tous les x sont nuls. Cela prouve que le membre de droite est bien
une somme directe. Chacun de ses termes étant inclus dans F', on voit aussi
qu’il est inclus dans F'.

Pour voir 'autre inclusion, on se donne un élément y de F. Puisque g
est diagonalisable, on a la décomposition £ = @ E\(g), doncy = Z Yxs

AeSp(g) A
avec Yy € Fy(g) pour tout A. Le lemme permet d’écrire, pour chaque A :
Yr = U\ +wy, avec vy € Ex(g) N F et wy € Ex(g) NG. Alors :

y—ZUA:Zw)\.
A A

Le membre de gauche de cette égalité est dans F' et celui de droite dans G.
Comme F' NG = {0}, on en déduit qu’ils sont nuls, d’on

Yy = Z V).
A
Cela prouve l'inclusion C et donc finalement 1’égalité. O

THEOREME 13. Soit E un espace vectoriel. Soient f et g deux endo-
morphismes diagonalisables de E tels que fog = go f. Alors f et g sont
simultanément diagonalisables : il existe une base dans laquelle la matrice
de f et la matrice de g sont diagonales

Démonstration. Puisque f est diagonalisable, E = @ Ex(f). On va tra-
A€Sp(f)
vailler sur chaque espace propre séparément.

Soient A une valeur propre de f, F = E)(f) et G la somme des autres
espaces propres de f. Alors £ = F & G et, puisque f et g commutent,
F et G sont stabilisés par ¢g (premier lemme). La proposition montre que
I’endomorphisme gr induit par g sur F' = E)(f) est diagonalisable. On peut
donc trouver une base By de E)(f) constituée de vecteurs propres de g.
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Ce sont aussi des vecteurs propres de f, puisque f agit par ’homothétie de
rapport A sur Ey(f).

En mettant bout a bout les bases By de tous les espaces propres E)(f),
on obtient une base de E constituée de vecteurs propres communs de g et

f ¢

3.6. Et... La diagonalisation n’est pas toujours possible. Par exemple,
les endomorphismes nilpotents n’ont que 0 comme valeur propre. S’ils étaient
diagonalisables, ils ne pourraient donc qu’étre nuls : tout endomorphisme
nilpotent non nul n’est pas diagonalisable.

Quand la diagonalisation n’est pas possible, on peut rabattre ses at-
tentes, et au lieu de chercher une matrice diagonale, tenter au moins de
la rendre triangulaire : c’est la théorie de la trigonalisation. Miracle : tout
endomorphisme d’un espace vectoriel complexe de dimension finie est trigo-
nalisable.

On peut méme pousser plus loin et tenter, comme les mathématiciens de
la fin du x1X°¢ siecle (Jordan, puis Frobenius), une classification systématique
des opérateurs de C™. A suivre...

Et bonne chance pour les examens!

3.7. Crédits. Ce polycopié a été rédigé par Vincent Minerbe, mise
a jour légere en 2023 par Frédéric Naud. Les premiers jets du poly de
MAOQO03 ont bénéficié des contributions des collegues Adrien Deloro, Benoit
Sarels, Cyril Demarche, Daniel Pierre-Loti-Viaud, Jean-Pierre Marco, So-
phie Chemla.
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