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2.5. Fonctions réciproques, nouvelles fonctions usuelles 38
3. Suites récurrentes 44
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2. Applications linéaires 91
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Chapitre 1

Outillage

1. Langage mathématique

Les mathématiciens se sont récemment dotés d’une langue symbolique
pour noter certaines constructions grammaticales de base, d’un usage im-
portant dans leur science. Nous allons passer en revue ces constructions, leur
notation, et leurs propriétés. La science étant l’étude ce qu’on peut réfuter
(K. Popper), nous insisterons sur la notion de négation.

On appellera proposition un énoncé susceptible d’être vrai ou faux. On
dit d’une proposition P qu’elle possède une valeur de vérité, notée V (vrai)
ou F (faux). On pourrait aussi noter 1 ou 0. On parle de logique binaire.

L’activité mathématique consiste à s’assurer que des propositions sont
vraies, sachant que d’autres – les hypothèses – le sont.

1.1. Connecteurs logiques. Ils permettent de combiner des proposi-
tions afin d’en fabriquer une nouvelle. Celle-ci est définie par sa table de
vérité, qui exprime sa valeur de vérité en fonction de celle des propositions
initiales.

Le premier exemple est la négation. Si P est une proposition, sa négation,
notée nonP , est donnée par la table de vérité suivante :

P nonP
V F
F V

La première ligne de ce tableau dit que si la valeur de vérité de P est V , celle
de nonP est F ; autrement dit, si P est vraie, nonP est fausse. De même,
quand P est fausse, nonP est vraie.

Etant donnés deux propositions P et Q, on définit leur conjonction
P et Q et leur disjonction P ou Q par leurs tables de vérité :

P Q P et Q P ou Q
V V V V
V F F V
F V F V
F F F F

Le « et » est celui du langage usuel. Le « ou » mathématique est toujours
inclusif : « P ou Q est vraie » signifie que l’une des deux propositions, au
moins, est vraie ; elles peuvent être vraies toutes les deux.

Énonçons quelques propriétés de base, utiles pour nier les propositions.
— P et non(nonP ) ont même valeur de vérité ;
— non(P et Q) et (nonP ) ou (nonQ) ont même valeur de vérité ;
— non(P ou Q) et (nonP ) et (nonQ) ont même valeur de vérité.
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2 1. OUTILLAGE

Ces affirmations se vérifient en établissant les tables de vérité de chacune
des propositions mentionnées. Par exemple, pour voir la deuxième propriété,
on établit la table suivante.

P Q nonP nonQ (nonP ) ou (nonQ)
V V F F F
V F F V V
F V V F V
F F V V V

Et on observe que la dernière colonne est exactement l’opposée de celle de
P et Q.

La base de tout raisonnement est la modélisation du « si..., alors... ».
Si P et Q sont deux propositions, on note leur implication P ⇒ Q (« P
implique Q », ou « si P alors Q »), définie par la table

P Q P ⇒ Q
V V V
V F F
F V V
F F V

Remarques 1.
— L’implication n’est pas la déduction. Quand on dit « P est vraie, donc Q est

vraie », on sous-entend en fait le syllogisme suivant : « A est vraie ; or je sais
que P ⇒ Q est vraie ; donc Q est vraie ». L’implication modélise le transfert
de la véracité de P à celle de Q. Cela explique d’ailleurs pourquoi les deux
dernières lignes de la table sont ce qu’elles sont : le fait que l’implication
P ⇒ Q soit vraie n’apporte aucune information quand P est fausse. Quand
on dit « s’il pleut, je vais au cinéma », on ne s’interdit quand même pas d’y
aller quand il fait beau !

— Certains aiment écrire le symbole⇒ à toutes les lignes d’un raisonnement :
c’est mal. Déjà, c’est laid. Et puis, ce symbole⇒ a une signification précise,
qui n’est pas celle qu’on veut parfois lui prêter : il ne signifie pas « donc ».
Si on pense « donc », pourquoi ne pas écrire « donc » ?

On peut vérifier que P ⇒ Q a la même valeur de vérité que (nonP ) ou Q
(exercice : dresser les tables de vérités de ces propositions pour le voir). Et
en effet, « n’avancez pas ou je tire » veut bien dire « si vous avancez, je
tire ».

Les négations de ces propositions ont donc la même valeur de vérité :
non(P ⇒ Q) a la même table de vérité que P et nonQ. Ainsi, pour nier une
implication, on montre que P peut être vraie sans que Q soit vraie.

Definition 1 (contraposée, réciproque). Soit P ⇒ Q une implication.
— Sa contraposée est (nonQ)⇒ (nonP ).
— Sa réciproque est Q⇒ P .

On peut voir que l’implication et sa contraposée ont la même table de
vérité. Cela débouche sur la méthode de démonstration par contraposée :
pour démontrer P ⇒ Q, il est parfois plus facile de démontrer nonQ ⇒
nonP , et cela revient pourtant au même.
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Exemple 1. Soit n un entier. On veut montrer que si n2 est pair, n est
pair. La contraposée, plus naturelle, s’énonce ainsi : si n est impair, n2 est
impair. On la vérifie en remarquant que le nombre impair n s’écrit n = 2p+1,
avec p entier, de sorte que n2 = 4p2 + 4p+ 1 est manifestement impair. Cela
prouve que si n2 est pair, n est pair.

Par contre, une implication et sa réciproque ne sont pas reliées entre
elles : il n’y a aucun lien entre leurs valeurs de vérité.

Un dernier pour la route : l’équivalence. Si P etQ sont deux propositions,
on note leur équivalence P ⇔ Q (« P équivaut à Q », ou « P si et seulement
si Q »), définie par la table

P Q P ⇔ Q
V V V
V F F
F V F
F F V

On voit que P ⇔ Q est vraie lorsque P et Q ont même valeur de vérité.
On dit alors que P et Q sont équivalentes. Et ainsi, P et Q sont équivalentes
si, et seulement si, leur équivalence est vraie.

On voit aussi que P ⇔ Q est vraie si et seulement si P ⇒ Q et Q⇒ P
sont vraies. Démontrer une équivalence revient donc à prouver une implica-
tion et sa réciproque. On parle de raisonnement par double implication.

Exemple 2. Soit n un entier. On veut montrer que n2 est pair si et
seulement si n est pair. On a vu l’implication ⇒ dans l’exemple précédent.
Reste à voir l’implication réciproque : si n est pair, n2 est pair. A nouveau,
si n est pair, on écrit n = 2p avec p entier, de sorte que n2 = 4p2 est manifes-
tement pair. Cela prouve l’implication ⇐, et donc finalement l’équivalence
voulue.

Parfois, on peut raisonner par équivalence, c’est-à-dire passer de l’hy-
pothèse à la conclusion par une châıne d’équivalences. Mais il convient de
ne pas en abuser (surtout si on n’a besoin que d’une implication). D’abord,
ça ne marche pas si souvent. Et puis c’est périlleux, source d’erreur et diffi-
cile à rédiger. Le raisonnement par double implication est plus simple, plus
naturel, plus sûr.

Que retenir de tout ceci ?

Énoncé indispensable 1 : négations

— La négation de « P et Q » est « (non P) ou (non Q) ».
— La négation de « P ou Q » est « (non P) et (non Q) ».
— La négation de « P implique Q » est « P et (non Q) ».
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Énoncé indispensable 2 : sur l’implication

— L’implication « P implique Q » est équivalente à sa contraposée
« (non Q) implique (non P) ».

— L’équivalence « P équivaut à Q » signifie une double implication :
« (P implique Q) et (Q implique P) ».

1.2. Avec des ensembles. Sans entrer dans les détails, un ensemble
E est une collection d’objets. Un objet x de E est un élément de E : on note
x ∈ E (« x appartient à E »). Les connecteurs logiques ont une traduction
ensembliste assez claire.

Quand on dispose de deux ensembles A et B, on peut réunir tous leurs
objets dans un même ensemble A∪B, l’union de A et B. On peut aussi consi-
dérer l’ensemble A∩B des objets qu’ils ont en commun : c’est l’intersection
de A et B. Par construction,

— x ∈ A ∪B si et seulement si x ∈ A ou x ∈ B ;
— x ∈ A ∩B si et seulement si x ∈ A et x ∈ B.
Si A est un ensemble dont tous les éléments appartiennent à un ensemble

E, on dit que A est une partie de E ou que A est inclus dans E, ce que l’on
note A ⊂ E. L’inclusion se traduit par une implication : x ∈ A implique
x ∈ E.

On dit que deux ensembles A et B sont égaux s’ils sont les mêmes élé-
ments. Cela revient à dire que les éléments de A appartiennent à B et les
éléments de B appartiennent à A : l’égalité A = B traduit une double
inclusion, A ⊂ B et B ⊂ A. Au niveau des éléments, cela revient à une
double implication d’appartenance, c’est-à-dire à une équivalence : x ∈ A si
et seulement si x ∈ B.

Quand un objet x de E n’appartient pas à A, on note x /∈ A. Le com-
plémentaire de A dans E, noté E\A, est

E\A = {x ∈ E | x /∈ A},
cette notation désignant l’ensemble des x de E tels que x /∈ A. Quand
l’ensemble E est clair dans le contexte, on note simplement Ac. Ainsi, pour
un objet x de E, x ∈ Ac si et seulement si non (x ∈ A) : la négation logique
se traduit par le passage au complémentaire ensembliste.

Les ensembles apparaissent dans les propositions mathématiques via
deux types de quantificateurs.

Definition 2 (quantificateurs). Soit P (x) une proposition dépendant
d’un objet x de l’ensemble E.

« ∀x ∈ E, P (x) » est la proposition disant que tous les éléments de E
vérifient la propriété P .

« ∃x ∈ E, P (x) » est la proposition disant que l’un (au moins) des
éléments de E vérifie la propriété P .

L’expression ∀x ∈ E se lit « pour tout x de E », tandis que ∃x ∈ E
se lit « il existe x dans E tel que ». La notation admet des variantes : on
note indifféremment ∀x ∈ E, P (x) ou ∀x ∈ E P (x) ou ∀x ∈ E : P (x) ou
(∀x ∈ E)(P (x))...
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Exemple 3. Les quantificateurs permettent bien sûr d’indiquer qu’un
ensemble E possède au moins un élément ; il suffit d’écrire : « ∃x ∈ E ».
Mais comment dire que E possède au plus un élément ?

Premier essai : « ∃x1 ∈ E, non(∃x2 ∈ E) ». Incorrect. En effet quand
un mathématicien prend un objet x1, puis un objet x2 même avec un nom
différent, il a pu reprendre le même sous un autre nom, comme dans : « Soient
k = 2 et ` = 2 ». Donc cet énoncé est... toujours faux.

Deuxième essai : « ∃x1 ∈ E, non(∃x2 ∈ E, x2 6= x1) ». Incorrect. Cet
énoncé affirme en particulier qu’il y a un x1 dans E, donc il dit aussi que
E possède au moins un élément, ce qui n’est pas la même chose qu’au plus
un car E pourrait être vide. En fait, il signifie que E possède un et un seul
élément, ce qu’on note parfois « ∃!x ∈ E (« il existe un unique... »).

Dire que E possède au plus un élément, c’est dire que si l’on en trouve
deux, c’est en fait le même — sans prétendre qu’on peut en trouver un. La
solution est donc « ∀x1 ∈ E ∀x2 ∈ E x2 = x1 ».

Les énoncés mathématiques font souvent intervenir plusieurs quantifica-
teurs à la suite. Quid de l’ordre ? On se convainc rapidement que deux ∀
ou deux ∃ peuvent se permuter : par exemple, ∀a ∈ A,∀b ∈ B, . . . signifie
la même chose que ∀b ∈ B, ∀a ∈ A, . . . . Mais on ne peut pas impunément
permuter les quantificateurs ∀ et ∃ ! Les échanger modifie drastiquement le
sens l’expression. Par exemple, la proposition

∀x ∈ N,∃y ∈ N, x ≤ y
est vraie puisque, pour tout entier naturel x, on peut choisir y = x et on
aura bien x ≤ y. Par contre, la proposition

∃y ∈ N,∀x ∈ N, x ≤ y
est fausse puisqu’elle réclame un nombre y plus grand que tous les entiers
naturels x : il n’y en a pas (si on avait un tel y, en choisissant x = y + 1,
on trouverait x > y). Cet exemple est typique : le y dont on veut l’existence
est autorisé ou non à dépendre du x selon l’ordre des quantificateurs ; et ça
change tout.

Il est très important de savoir nier les expressions quantifiées. La néga-
tion de l’un des quantificateurs s’exprime avec l’autre :

Énoncé indispensable 3 : négation des quantificateurs

— La négation de « ∀x ∈ E, P (x) » est « ∃x ∈ E, nonP (x) ».
— La négation de « ∃x ∈ E, P (x) » est « ∀x ∈ E, nonP (x) ».

La première ligne dit simplement que le contraire de « tous les éléments
de E vérifient la propriété P » est « l’un des éléments de E ne la vérifie
pas »(au moins). C’est la notion de contre-exemple.

Pour nier une expression mathématique, il reste à combiner tout ce qu’on
a vu. Une négation s’écrit à la volée en respectant les règles suivantes :

— tout « ∀x ∈ E » est changé en « ∃x ∈ E » ;
— tout « ∃x ∈ E » est changé en « ∀x ∈ E » ;
— tout « P et Q » est changé en « (nonP ) ou (nonQ) » ;
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— tout « P ou Q » est changé en « (nonP ) et (nonQ) » ;
— tout « P ⇒ Q » est changé en « P et (nonQ) ».

Exemple 4. L’énoncé formel

(∀a ∈ A)(∀b1 ∈ B)(∀b2 ∈ B)(((a, b1) ∈ Γ) et ((a, b2) ∈ Γ)⇒ (b2 = b1))
a pour négation :

(∃a ∈ A)(∃b1 ∈ B)(∃b2 ∈ B) (((a, b1) ∈ Γ) et ((a, b2) ∈ Γ) et (b2 6= b1)).
Son sens n’a pas d’importance ici, l’exercice est purement formel. On nie
l’énoncé « en propageant la négation » :

non∀a ∈ A ∀b1 ∈ B ∀b2 ∈ B ((a, b1) ∈ Γ et (a, b2) ∈ Γ) ⇒ b2 = b1;
∃a ∈ A non∀b1 ∈ B ∀b2 ∈ B ((a, b1) ∈ Γ et (a, b2) ∈ Γ) ⇒ b2 = b1;
∃a ∈ A ∃b1 ∈ B non∀b2 ∈ B ((a, b1) ∈ Γ et (a, b2) ∈ Γ) ⇒ b2 = b1;
∃a ∈ A ∃b1 ∈ B ∃b2 ∈ B non((a, b1) ∈ Γ et (a, b2) ∈ Γ) ⇒ b2 = b1;
∃a ∈ A ∃b1 ∈ B ∃b2 ∈ B (a, b1) ∈ Γ et (a, b2) ∈ Γ et non(b2 = b1);
∃a ∈ A ∃b1 ∈ B ∃b2 ∈ B (a, b1) ∈ Γ et (a, b2) ∈ Γ et b2 6= b1.

Ça a l’air monstrueux quand on détaille tout, mais si l’énoncé est bien
construit, on le fait de tête sans difficulté. D’où l’importance de bien écrire
ses énoncés, en écrivant les quantificateurs à gauche, dans l’ordre ( !), en
mettant des parenthèses pour éviter toute ambigüıté.

Test : écrire la négation de...

— ∀ε ∈ R∗+, ∃n0 ∈ N,∀n ∈ N, n ≥ n0 ⇒ |un − `| < ε ;
— ∀ε ∈ R∗+, ∃η ∈ R∗+, ∀x ∈ R, |x− x0| < η ⇒ |f(x)− f(x0)| < ε ;

— ∀ε ∈ R∗+, ∃η ∈ R∗+, ∀x ∈ R, 0 < |x− x0| < η ⇒
∣∣∣f(x)−f(x0)

x−x0

∣∣∣ < ε.

1.3. Et des fonctions. On a l’intuition d’une fonction via son graphe.

Fonction Pas fonction

La différence entre les deux dessins est le test de la verticale : un dessin
est le graphe d’une fonction si et seulement si, quand on trace une droite
verticale, on coupe le dessin au plus une fois. Formalisons cela. La verticale
d’abscisse x ∈ R est l’ensemble des points de coordonnées (x, y), où y varie
dans R mais x reste fixé. Que la verticale d’abscisse x coupe la courbe au
plus une fois signifie qu’il y a au plus un y ∈ R tel que (x, y) soit sur la
courbe.

On peut considérer des fonctions de A dans B pour deux ensembles
quelconques. Ce qui était un « point du plan », est maintenant un élément
(a, b) du produit cartésien A × B, c’est-à-dire la donnée d’un élément a
de A et d’un élément b de B. Et un « dessin » est juste un sous-ensemble
Γ ⊂ A×B.
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Definition 3. Un sous-ensemble Γ ⊂ A×B est un graphe (fonctionnel)
si, pour tout a ∈ A, il existe un unique b ∈ B tel que (a, b) ∈ Γ. On lui associe
alors la fonction f : A → B qui envoie a ∈ A sur l’unique b correspondant,
avec la notation usuelle b = f(a).

Très souvent, on emploiera le mot « application » pour parler d’une
« fonction ». On note habituellement

f : A → B
a 7→ f(a)

et le graphe de f est Γ = {(a, f(a)) | a ∈ A}.

Remarques 2.
— Si b = f(a), on dit que b est l’image de a par f ou que a est un antécédent

de b par f .
— La donnée des ensembles A et B est indispensable. Changer l’un ou l’autre

change la fonction.
— Si l’on veut éviter de prendre deux lignes, on peut écrire : « f : A→ B telle

que f(a) = . . . » (ou une formulation analogue).
— Bien noter la différence entre les symboles «→ »et « 7→ ». Les mathémati-

ciens sont sans doute ridicules, mais ici la confusion les agace.

Test : graphes

Associer à chacune des fonctions suivantes son graphe.
— f1 : R→ R telle que f(x) = x2 ;
— f2 : R+ → R telle que f(x) = x2 ;
— f3 : R→ R+ telle que f(x) = x2 ;
— f4 : R+ → R+ telle que f(x) = x2.

Remarques 3.
— Si A′ ⊂ A, on peut considérer la fonction g : A′ → B telle que g(x) = f(x).

C’est la restriction de f à A′ et on note parfois g = f |A′ .
— Si A ⊂ A′, il existe des fonctions h : A′ → B telle que h(x) = f(x) pour

tout x ∈ A. Ce sont des prolongements de f à A′.

Definition 4. Une fonction f : A→ B est dite injective si elle vérifie :

∀a1 ∈ A,∀a2 ∈ A, f(a2) = f(a1)⇒ a2 = a1.

Cela signifie que tout élément b de B admet au plus un antécédent. Par
contraposition, l’injectivité s’écrit aussi

∀a1 ∈ A, ∀a2 ∈ A, a2 6= a1 ⇒ f(a2) 6= f(a1).

Ainsi, deux éléments distincts de A ont deux images distinctes.
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Pas injective Injective

Definition 5. La fonction f : A→ B est surjective si tout élément de
B admet un antécédent par f :

∀b ∈ B, ∃a ∈ A, f(a) = b.

Test : injectivité, surjectivité

Lesquelles des quatre fonctions du test précédent sont injectives ?
Surjectives ?

Definition 6. Une fonction A→ B est dite bijective si elle est à la fois
injective et surjective.

Ainsi, une fonction f : A→ B est bijective si et seulement si tout élément
de B admet un unique antécédent par f . On dit aussi que f est une bijection
entre A et B.

Exemple 5. Pour tout ensemble A, l’application identité de A est la
fonction idA : A→ A définie par idA(a) = a. C’est bien sûr une bijection !

Definition 7. Soient f : A → B et g : B → C deux fonctions. On
appelle composée de f et g la fonction g ◦ f telle que :

∀a ∈ A, (g ◦ f)(a) = g(f(a)).

Test : c’est quoi, ça ?

On reprend les notations de la définition et on note Γf (resp. Γg) le
graphe de f (resp. g). Qu’est-ce que

{(a, c) ∈ A× C : ∃b ∈ B (a, b) ∈ Γf et (b, c) ∈ Γg}
?

Remarques 4.
— L’application identité est toujours un élément neutre pour la composition :

pour toute fonction f : A→ B, f ◦ idA = idB ◦f = f.
— La composition se comporte bien : si l’on a des fonctions f : A → B,

g : B → C et h : C → D, alors h ◦ (g ◦ f) = (h ◦ g) ◦ f (ce sont des
fonctions A → D). On dit que la composition est associative. Cela permet
de noter simplement h ◦ g ◦ f , sans parenthèses. (C’est exactement comme
x+ (y + z) = (x+ y) + z, que l’on peut noter x+ y + z.)

— Quand on écrit g ◦ f , l’ordre est important : f ◦ g n’a en général pas de sens
(il faut que C = A) et même si c’est le cas, il n’y a aucune raison pour que
g ◦ f et f ◦ g soient égales. La composition n’est pas commutative.
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Test : stabilité par composition

Démontrer que la composée de deux fonctions injectives (resp. sur-
jectives, resp. bijectives) est injective (resp. surjective, resp. bijective).

Proposition 1. Une fonction f : A → B est bijective si et seulement
s’il existe une fonction f−1 : B → A telle que f−1◦f = idA et f ◦f−1 = idB.

La fonction f−1 est alors la réciproque de f . C’est également une bijec-
tion, de réciproque f .

Démonstration. Supposons d’abord f bijective. Tout élément b de B admet
alors un unique antécédent, qu’on baptise f−1(b). Cela définit une fonction
f−1 : B → A. Par construction, pour tout b ∈ B, f−1(b) est un antécédent
de b, donc f(f−1(b)) = b et, pour tout a ∈ A, a est un (l’unique) antécédent
de f(a), donc f−1(f(a)) = a. Cela prouve que f ◦f−1 = idB et f−1◦f = idA.

Réciproquement, supposons qu’il existe une fonction f−1 : B → A telle
que f−1 ◦ f = idA et f ◦ f−1 = idB. Si a1 et a2 sont deux éléments de A tels
que f(a1) = f(a2), on a f−1(f(a1)) = f−1(f(a2)) ; puisque f−1 ◦ f = idA,
cela veut dire que a1 = a2. Donc f est injective. Pour tout b ∈ B, puisque
f ◦ f−1 = idB, on peut écrire b = f(f−1(b)). Donc f est surjective. Cela
prouve que f est bijective. ♦

2. Nombres réels

Commençons par une description sommaire des ensembles de nombres
qui vont nous occuper. Le but est essentiellement de fixer les notations, avant
de dégager des propriétés fondamentales.

L’ensemble N est celui des entiers naturels, familiers des étudiants d’école
maternelle :

0, 1, 2, 3, 4, 5, 6, . . .
A partir de N, on construit l’ensemble Z des entiers relatifs en ajoutant les
nombres négatifs :

. . . ,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, . . .
L’ensemble Q des nombres rationnels s’obtient en considérant maintenant
les fractions d’entiers : 2/3,−7/12, etc.

Ces ensembles sont très concrets, on peut les expliquer à de jeunes en-
fants. La construction de l’ensemble R des nombres réels n’est pas aussi
simple, ni aussi algébrique.

Un moyen assez concret d’aborder les nombres réels est leur écriture
décimale : un nombre réel x est défini par son écriture décimale :

x = ± ck . . . c1c0 , d1d2 . . . dn . . .

Dans cette expression, les chiffres ci et dj sont des entiers naturels compris
entre 0 et 9. Les chiffres avant la virgule c0, . . . , ck sont en nombre fini. Le
chiffre c0 est celui des unités, c1 celui des dizaines, etc. Les chiffres après
la virgule, notés dj , sont en nombre infini ; ils peuvent être nuls à partir
d’un certain rang, ou pas. Par exemple, on peut écrire 1/2 = 0, 5000000 . . . ,
−100/3 = −33, 333333 . . . , π = 3, 1415926 . . .
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On notera :
— R l’ensemble des nombres réels ;
— R+ l’ensemble des nombres réels positifs, c’est-à-dire ceux qui s’écrivent

x = +ck . . . c0, d1d2 . . . dn . . . ;
— R− l’ensemble des nombres réels négatifs, c’est-à-dire ceux qui s’écrivent

x = −ck . . . c0, d1d2 . . . dn . . . ;
— R∗ l’ensemble des nombres réels non nuls, i.e. R∗ = R\{0} ;
— R∗+ = R∗ ∩ R+ l’ensemble des nombres réels strictement positifs ;
— R∗− = R∗ ∩ R− l’ensemble des nombres réels strictement négatifs.

L’avantage de cette approche des nombres réels est qu’elle est intuitive,
usuelle. Mais il convient de remarquer ses limites. L’écriture décimale de x
sous-entend une somme infinie

x = ck · 10k + · · ·+ c1 · 10 + c0 + d1 ·
1
10 + d2 ·

1
102 + +d3 ·

1
103 + . . .

à laquelle il faudrait donner un sens précis, ce que nous ne ferons pas ici.
On peut remarquer qu’un nombre réel peut avoir deux écritures décimales :
par exemple, les écritures décimales 0, 999999 . . . (avec une infinité de 9)
et 1, 0000000 . . . (avec une infinité de 0) désignent le même nombre réel, 1.
L’idée est que la somme géométrique

N∑
n=1

9
10n = 9

10
1− 1

10N

1− 1
10

= 1− 1
10N

vaut exactement 1 quand N = +∞. Enfin, cette présentation privilégie le
nombre 10. On pourrait choisir un autre nombre comme base, par exemple
2 (ça s’appelle l’écriture binaire, familière des informaticiens). En fait, cela
fournit différentes façons de décrire le même ensemble, R.

Il existe plusieurs constructions rigoureuses de R : coupures de Dede-
kind, complétion de Q par ses suites de Cauchy... On renvoie aux cours de
deuxième année pour plus de précision. Ici, nous supposons que le ecteur a
une certaine intuition de l’a droite réelle et nous allons rappeler quelques
éléments concernant l’ordre qui régit les nombres réels.

Les nombres réels sont ordonnés par les inégalités usuelles. Sans entrer
dans les détails, pour comparer deux nombres réels, on compare leurs écri-
tures décimales, chiffre par chiffre, depuis la gauche. Deux nombres réels x
et y vérifient toujours x ≤ y ou x ≥ y (on parle d’ordre total) et la conjonc-
tion de ces deux inégalités caractérise l’égalité x = y. Le lecteur n’ignore pas
que ces inégalités sont compatibles avec les opérations algébriques : on peut
sommer les inégalités, les multiplier par un nombre positif... Attention aux
pièges usuels :

— si x ≤ y et a ∈ R−, alors ax ≥ ay ;
— si x ≤ y, avec x, y ∈ R∗+, alors 1

x ≥
1
y .

En particulier, pour majorer un quotient de nombres positifs, on majore le
numérateur et on minore le dénominateur : si 0 ≤ x ≤ a et y ≥ b > 0, alors
x
y ≤

a
b .

Dans ce texte, on notera les intervalles de la façon suivante : étant donnés
deux réels a ≤ b, on écrit l’intervalle ouvert ]a, b[= {x ∈ R | a < x < b},
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le segment [a, b] = {x ∈ R | a ≤ x ≤ b} et les intervalles semi-ouverts
]a, b] = {x ∈ R | a < x ≤ b}, [a, b[= {x ∈ R | a ≤ x < b}. Les bornes exclues
peuvent être +∞ ou −∞. Par exemple, une partie A de R est majorée si elle
incluse dans un intervalle du type ]−∞,M ] avec M ∈ R ; et A est minorée
si A ⊂ [m,+∞[ avec m ∈ R.

Dans le chapitre sur les suites, on verra une propriété cruciale de l’en-
semble ordonné R : l’existence de bornes supérieures et inférieures (éventuel-
lement infinies) pour n’importe quelle partie de R. Grossièrement, ce sont
les bornes du plus petit intervalle contenant cette partie.

Une conséquence très intuitive est la « propriété d’Archimède » : pour
tout x ∈ R∗+, il existe un entier n ∈ N tel que n > x. Cette propriété sert tout
le temps. Elle permet aussi de construire la partie entière E(x) de chaque
réel x : c’est l’unique entier vérifiant l’encadrement

E(x) ≤ x < E(x) + 1.
Autrement, dit, c’est le plus grand entier inférieur ou égal à x (cf. TD).

Une autre conséquence est que tout intervalle ]a, b[ non vide contient une
infinité de nombres rationnels, mais aussi une infinité de nombres irrationnels
(cf. TD).

Pour faire de l’analyse, on a besoin de mesurer la taille des choses : dans
R, la valeur absolue est l’outil de base, qu’il faut mâıtriser avec assurance.
Rappelons la définition de la valeur absolue : pour tout nombre réel x, |x| = x
si x ≥ 0 et |x| = −x si x ≤ 0. On a donc toujours −|x| ≤ x ≤ |x|. On voit

aussi que |x| = max(x,−x) et |x| =
√
x2 en distinguant les cas où le réel x

est positif ou négatif. De même, l’inégalité |x| ≤ R signifie exactement que
x appartient à l’intervalle [−R,R].

La proposition suivante indique le lien entre la valeur absolue et les
opérations algébriques : c’est très important en pratique.

Énoncé indispensable 4 : propriétés de la valeur absolue

Pour tous x, y ∈ R :

(1) |xy| = |x| × |y| ;
(2) |x+ y| ≤ |x|+ |y| (« inégalité triangulaire ») ;

(3) |x+ y| ≥ ||x| − |y|| (« inégalité triangulaire à l’envers »).

Démonstration.

(1) La première propriété se voit en discutant sur les signes de x et y,
ou bien en observant que l’égalité (xy)2 = x2y2 entrâıne

√
(xy)2 =√

x2
√
y2, donc |xy| = |x||y|.

(2) Puisque 2xy ≤ 2|x||y|, on a x2 + y2 + 2xy ≤ x2 + y2 + 2|x||y|. En
factorisant, il vient (x+y)2 ≤ (|x|+|y|)2. En prenant la racine carrée,
on obtient l’inégalité triangulaire |x+ y| ≤ |x|+ |y|.

(3) Par inégalité triangulaire, on obtient

|x| = |x+ y − y|| ≤ |x+ y|+ | − y| = |x+ y|+ |y|,
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d’où |x| − |y| ≤ |x+ y|. En échangeant les rôles de x et y, on trouve
aussi |y| − |x| ≤ |x+ y|. On en déduit

||x| − |y|| = max(|x| − |y|, |y| − |x|) ≤ |x+ y|.
♦

Remarque 1. Une récurrence facile étend l’inégalité triangulaire à un

nombre arbitraire de termes :

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ ≤
n∑
i=1
|xi|.

Remarque 2. On dit qu’une partie A de R est bornée si elle est majorée
et minorée. Cela revient à dire que la valeur absolue des éléments de A est
majorée : il existe R ≥ 0 tel que pour tout a ∈ A, |a| ≤ R.

En effet, si on a un majorant M et un minorant m de A, tout élément
a de A vérifie

−|m| ≤ m ≤ a ≤M ≤ |M |,
donc a ∈ [−|m|, |M |], donc |a| ≤ R avec R = max(|M |, |m|). Réciproque-
ment, si on a un nombre R tel que pour tout a ∈ A, |a| ≤ R, c’est-à-dire
−R ≤ a ≤ R, on voit que R est un majorant de A et que −R est un minorant
de A.

Pour aller plus loin 1 : coupures de Dedekind

Indiquons brièvement comment Richard Dedekind construit R.
L’idée est qu’un réel doit couper l’ensemble Q en deux morceaux : ceux
qui sont plus petits et ceux qui sont plus grands. Une coupure est par
définition un couple (A1, A2) de parties non vides de Q telles que :

— A1 ∪A2 = Q,
— ∀a1 ∈ A1,∀a2 ∈ A2, a1 < a2,
— A1 n’a pas de plus grand élément.

L’ensemble R est défini comme l’ensemble de toutes les coupures. Au
premier coup d’oeil, on ne reconnâıt pas tout à fait notre bonne vieille
droite réelle, mais au deuxième...

Par exemple, pour comprendre où sont les rationnels dans ce truc,
il suffit de suivre cette idée de couper Q en deux : tout élément r de
Q donne une coupure (A1, A2) en posant A1 = {x ∈ Q | x < r} et
A2 = {x ∈ Q | x ≥ r}. Cela permet de voir l’inclusion Q ⊂ R.

L’ordre est simple à décrire : si x = (A1, A2) et y = (B1, B2), on
décide que x ≤ y si A1 ⊂ B1. De ce point de vue, on peut facilement ex-
pliciter la borne supérieure d’une partie majorée A de R (qu’on définira
au chapitre 2) : c’est (S,Q\S), où S est l’union de tous les A1 tels que
(A1, A2) ∈ A.

Reste à voir que ça marche bien, qu’on peut prolonger les opérations
algébriques de Q...

3. Nombres complexes

A partir de l’ensemble des réels R, on construit l’ensemble C en intro-
duisant un nouvel élément i, racine du polynôme X2 + 1 : i2 = −1. Tout
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nombre complexe z ∈ C s’écrit de manière unique z = a + ib où a et b
sont des réels. Le réel a est la partie réelle de z, noté Re(z). Le réel b est la
partie imaginaire de z, notée Im(z). Une opération utile est la conjugaison :
le conjugué de z est par définition z̄ = a− ib. Par exemple, les parties réelle
et imaginaire de z sont données par Re(z) = z+z̄

2 et Im(z) = z−z̄
2i .

L’ensemble C n’est au fond que R2, puisqu’on peut identifier z = a+ ib
au couple de réels (a, b). Le point important est qu’on peut additionner et
multiplier les nombres complexes entre eux par les formules

(a+ ib) + (c+ id) = (a+ c) + i(b+ d),
(a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc).

Ces opérations sont compatibles avec la conjugaison au sens où, pour tous
z, w ∈ C : z + w = z + w et z · w = z · w.

On définit le module d’un complexe z comme suit : si a = Re(z) et

b = Im(z), |z| =
√
a2 + b2. Autrement dit, c’est la longueur euclidienne du

vecteur du plan de coordonnées (a, b). Le module permet donc de mesurer
la taille d’un nombre complexe, comme la valeur absolue mesure la taille des
nombres réels.

L’inégalité a2 ≤ a2 + b2 (pour a, b ∈ R) implique |Re(z)| ≤ |z| pour tout
nombre complexe z. De même, | Im(z)| ≤ |z|.

L’égalité (a+ ib)(a− ib) = a2 +b2 établit un lien entre produit complexe,
conjugaison et module : zz̄ = |z|2. En particulier, on voit que tout nombre
complexe z 6= 0 admet un inverse donné par 1/z = z̄/|z|2.

Le nombres réels sont les nombres complexes de partie imaginaire nulle.
A ce titre, on peut calculer le module d’un nombre réel et ce n’est autre que
sa valeur absolue (donc il n’y a pas de conflit de notation !). La proposition
suivante étend les propriétes de la valeur absolue au module.

Énoncé indispensable 5 : propriétés du module

Pour tous z, w ∈ C :

(1) |zw| = |z| × |w| ;
(2) |z + w| ≤ |z|+ |w| (« inégalité triangulaire ») ;

(3) |z + w| ≥ ||z| − |w|| (« inégalité triangulaire à l’envers »).

Démonstration.

(1) La première propriété se voit bien en utilisant la conjugaison :

|zw|2 = zwzw = zwz w = |z|2 × |w|2.

Il suffit alors de prendre la racine carrée pour trouver l’égalité voulue.

(2) On développe |z + w|2 = (z + w)(z + w) :

|z + w|2 = (z + w)(z + w) = |z|2 + |w|2 + zw + zw.

Or zw = zw, donc zw + zw = 2 Re(zw) ≤ 2|zw| = 2|z||w| = 2|z||w|.
On en tire

|z + w|2 ≤ |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2
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et on prend la racine carrée pour conclure.

(3) Par inégalité triangulaire, on obtient

|z| = |z + w − w|| ≤ |z + w|+ | − w| = |z + w|+ |w|,
d’où |z| − |w| ≤ |z+w|. En échangeant les rôles de z et w, on trouve
aussi |w| − |z| ≤ |z + w|. On en déduit

||z| − |w|| = max(|z| − |w|, |w| − |z|) ≤ |z + w|.
♦

Remarque 3. Il est intéressant de chercher dans quel cas l’inégalité tri-
angulaire est une égalité. Or la preuve présentée ci-dessus n’utilise que des
égalités, à part une seule inégalité : Re(zw) ≤ |zw|. Si celle-ci est stricte,
l’inégalité triangulaire est stricte. Sinon, c’est une égalité. La condition d’éga-
lité est donc Re(zw) = |zw|, ce qui signifie que zw est un réel positif. Si w
(ou z) est nul, c’est vrai. Sinon on divise par |w|2 et on voit que ce critère
est z/w ∈ R+. Géométriquement, cela veut dire que les vecteurs du plan
représentés par z et w sont colinéaires de même sens.

Remarque 4. Dans C, il n’existe pas de relation d’ordre total qui soit
compatible avec les opérations algébriques (comme le sont les inégalités dans
R). On n’écrira donc pas d’inégalités entre nombres complexes !

Et si on a vraiment trop envie, on travaille avec les parties réelle et
imaginaire, ou avec le module.



Chapitre 2

Analyse

1. Suites

Une suite de nombres complexes est la donnée de nombres complexes
un indexés par un entier naturel n. Autrement dit, c’est une application
u : N → C, qui à chaque indice n associe le nombre complexe un = u(n).
On note généralement une telle suite sous la forme (un)n∈N, ou parfois (un)
pour faire plus court.

Le nombre un est appelé le n-ième terme de la suite (un). Il arrive qu’il
ne soit défini qu’à partir d’un certain rang n0 > 0 : on parlera alors de la
suite (un)n≥n0 . Comme on s’intéressera aux propriétés de un pour les indices
n très grands, cela n’a pas beaucoup d’importance.

Pour définir une suite, on peut donner une formule. Par exemple, on
peut poser un = n + i sin(n) pour tout n ∈ N ou bien un = 1/n pour tout
n ∈ N∗. On peut aussi donner un procédé de construction par récurrence,
comme dans les exemples suivants.

Typiquement, une suite géométrique est déterminée par sa valeur initiale
u0 et par sa raison λ via la relation de récurrence un+1 = λun pour tout
n ∈ N. Ainsi, u1 = λu0, u2 = λu1 = λ2u0... et on obtient même une formule :
un = λnu0 pour tout n ∈ N.

Un autre exemple est donné par la suite de Fibonacci : on pose u0 =
u1 = 1 et un+2 = un+1 +un pour tout n ∈ N. Ainsi, chaque terme de la suite
est la somme des deux précédents : puisqu’on se donne les deux premiers,
on peut tous les calculer. On verra plus tard dans ce cours comment donner
une formule générale dans ce type de situation.

Les suites de Syracuse sont aussi définies par récurrence. On se donne
une valeur initiale entière et strictement positive : u0 ∈ N∗. Ensuite, pour
tout n ∈ N, on demande que un+1 = un/2 si un est pair et un+1 = 3un+1 si
un est impair. Par exemple, si on part de u0 = 3, les termes successifs de la
suite sont : 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, etc. Si on s’amuse
à prendre d’autres valeurs de u0, on retrouvera un comportement similaire :
au bout d’un moment, la suite arrive à 1 et donc se met à boucler : 4, 2, 1,
4, 2, 1, etc. Enfin... c’est ce qu’on croit. Personne n’a jamais réussi à prouver
que les suites de Syracuse finissent toujours par retomber sur 1... Défi ?

1.1. Convergence des suites complexes. Quand on étudie une suite,
la question centrale est celle de son comportement asymptotique : comment
décrire les valeurs prises par un quand n est très grand ? On va donner une
définition précise décrivant les suites qui se rapprochent asymptotiquement
d’une valeur donnée ` ∈ C.

Dans la suite, on notera D(a, r) le disque de rayon r centré en un point
a du plan complexe : D(a, r) = {z ∈ C : |z − a| < r}.

15
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Énoncé indispensable 1 : convergence d’une suite

Une suite (un) est dite convergente s’il existe ` ∈ C tel que, pour
tout rayon ε > 0, il existe un rang N ∈ N à partir duquel la suite reste
dans le disque D(`, ε). Autrement dit :

∃` ∈ C,∀ε > 0, ∃N ∈ N,∀n ≥ N, |un − `| < ε.

Le nombre complexe ` apparaissant dans cet énoncé est unique (s’il
existe), comme on va le démontrer ci-dessous. On dit que (un) converge
(ou tend) vers l, que l est la limite de la suite (un) et on note :

` = lim(un), ` = lim
n→+∞

un, (un)→ `.

Exemple 6. La suite (1/n) converge vers 0. En effet, si on se donne
ε > 0, on peut trouver un entier N > 1/ε et alors pour n ≥ N :∣∣∣∣ 1n − 0

∣∣∣∣ = 1
n
≤ 1
N
< ε.

Proposition 2. La limite d’une suite, quand elle existe, est unique.

Démonstration. On raisonne par l’absurde en supposant que la suite (un)
converge vers ` et `′, avec ` 6= `′. Ainsi, le nombre ε = |`−`′|/4 est strictement
positif. La définition de la convergence donne des rangs N et N ′ tels que

∀n ≥ N, |un − `| < ε et ∀n ≥ N ′, |un − `′| < ε.

Pour n ≥ max(N,N ′), on peut utiliser l’inégalité triangulaire pour trouver

|`− `′| = |(`− un)− (`′ − un)| ≤ |`− un|+ |`′ − un| < 2ε.
Or |` − `′| = 4ε. C’est donc contradictoire : il n’est pas possible que (un)
converge vers ` et `′, avec ` 6= `′. ♦

Remarque 5. Dans la définition de la convergence d’une suite, on peut
remplacer ε par 17ε ou ε/2 : ça ne change rien, il suffit de baptiser ε′ = 17ε
ou ε/2 et on aura l’énoncé initial pour tout ε′ > 0. Dans le même ordre
d’idée, on peut aussi écrire ≤ ε au lieu de < ε dans la définition et cela ne
change rien.

Ne pas converger, c’est diverger.

Definition 8. Une suite (un) est dite divergente si elle ne converge pas :

∀` ∈ C,∃ε > 0,∀N ∈ N,∃n ≥ N, |un − `| ≥ ε.

Exemple 7. Vérifions que la suite (in) est divergente. On se donne
` ∈ C, quelconque, et on suppose par l’absurde que (in) converge vers `.
Fixons ε = 1 dans la définition de la convergence : cela nous donne un entier
N ∈ N tel que pour n ≥ N , |in − `| < 1. Pour n = 4N et n = 4N + 2, cela
donne respectivement |1− `| < 1 et | − 1− `| < 1. Par inégalité triangulaire,

2 = |(1− `)− (−1− `)| ≤ |1− `|+ | − 1− `| < 2,
absurde. Donc la suite (in) ne converge pas : elle diverge.
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Qui peut le plus peut le moins.

Definition 9. Une suite (un) est dite bornée si le module de ses termes
est majoré :

∃M ∈ R+, ∀n ∈ N, |un| ≤M.

Géométriquement, cela signifie ques les termes de la suite sont tous situés
dans un certain disque (centré en l’origine 0 du plan complexe C).

Remarque 6. Une suite (un) est bornée si et seulement si les suites
(Re(un)) et (Im(un)) le sont, c’est-à-dire si ces deux suites à valeurs réelles
sont majorées et minorées. Le sens ⇒ vient des inégalités |Re(un)| ≤ |un| et
|Im(un)| ≤ |un|. Le sens⇐ découle de la formule |un| =

√
Re(un)2 + Im(un)2.

Proposition 3. Une suite convergente est bornée.

Démonstration. Supposons que la suite (un) converge vers ` ∈ C. En prenant
ε = 1 dans la définition de la convergence, on trouve un rang N tel que pour
n ≥ N , |un − `| ≤ 1 et donc |un| = |un − ` + `| ≤ |un − `| + |`| ≤ 1 + |`|.
Cette borne convient pour les termes à partir du rang N . Afin d’englober les
premiers termes, on pose M = max(|u0|, . . . , |uN−1|, 1 + |`|) et on observe
que |un| ≤M , pour tout n ∈ N. ♦

Par contraposée, on déduit de cette proposition qu’une suite non bornée
est divergente. Par exemple, les termes de la suite (nei arctann) sont de module
n, donc prennent des valeurs arbitrairement grandes : cette suite n’est pas
bornée, donc divergente.

Remarque 7. L’inégalité triangulaire ||un| − |`|| ≤ |un − `| montre
immédiatement que si (un) converge `, alors (|un|) converge vers |`|.

Quand on se donne deux suites (un) et (vn), on peut en produire deux
autres en sommant et en multipliant leurs termes : (un+vn) et (un×vn). Ces
opérations sont compatibles avec la notion de convergence : la proposition
suivante dit qu’une somme (resp. un produit) de suites convergentes converge
vers la somme (resp. le produit) des limites.

Proposition 4. Si (un) → ` et (vn) → k, alors (un + vn) → ` + k et
(unvn)→ ` k.

Démonstration. Somme. Soit ε > 0. Il existe des rangs N1 et N2 tels que
|un − `| < ε/2 pour n ≥ N1 et |vn − k| < ε/2 pour n ≥ N2. On se place
au-delà du rang N = max(N1, N2) : pour n ≥ N ,

|(un + vn)− (`+ k)| = |un− `+ vn− k| ≤ |un− `|+ |vn− k| < ε/2 + ε/2 = ε.

Cela prouve que la suite (un + vn) converge vers `+ k.
Produit. Commençons par écrire, pour n ∈ N :

|unvn − `k| = |(un − `)vn + `(vn − k)| ≤ |un − `||vn|+ |`||vn − k|.

(vn) est convergente donc bornée : on peut trouver R > 0 tel que pour tout
n ∈ N, |vn| ≤ R. Etant donné ε > 0, on peut (comme ci-dessus) trouver
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un rang N tel que pour n ≥ N , |un − `| < ε
R+|`| et |vn − k| < ε

R+|`| . En

combinant ces inégalités, on trouve, pour n ≥ N :

|unvn − `k| <
ε

R+ |`|R+ |`| ε

R+ |`| = ε.

Cela prouve que la suite (unvn) converge vers `k. ♦

Test : convergence de l’inverse

Soit (un) une suite convergeant vers ` 6= 0. Prouver que la suite
(1/un) converge vers 1/`.

Corollaire 1. Une suite complexe (un) converge vers ` si et seulement
si (Re(un)) tend vers Re(`) et (Im(un)) tend vers Im(`).

Démonstration. Le sens ⇐ découle de l’écriture un = Re(un) + iIm(un) et
de la proposition précédente. Pour le sens ⇒, on écrit l’inégalité

∀n ∈ N, |Re(un)− Re(`)| = |Re(un − `)| ≤ |un − `|

Si (un) → `, pour tout ε > 0, on a un rang N à partir duquel le membre
de droite est < ε, de sorte que le membre de gauche l’est aussi : (Re(un))
converge vers Re(`). De même pour la partie imaginaire. ♦

En particulier, si les termes d’une suite convergente (un) sont tous dans
R, la suite (Im(un)) est identiquement nulle et donc tend vers 0. Ainsi, la
limite de (un) est de partie imaginaire nulle : c’est un nombre réel.

Pour étudier le comportement asymptotique des suites, les notions sui-
vantes sont utiles.

Definition 10. Soient (un) et (vn) deux suites complexes telle que vn
ne s’annule pas à partir d’un certain rang. On note

— un = o(vn) si
(
un
vn

)
tend vers 0 ;

— un ∼ vn si
(
un
vn

)
tend vers 1 ;

— un = O(vn) si
(
un
vn

)
est bornée.

Ces trois propriétés se lisent respectivement « (un) est un petit o de (vn) »,
« (un) est équivalente à (vn) » et « (un) est un grand o de (vn) ».

Par exemple, en prenant (vn) constante à 1, on voit que un = o(1) ssi
(un) tend vers 0, un ∼ 1 ssi (un) tend vers 1 et un = O(1) ssi (un) est bornée.

Ces trois notions sont liées entre elles. On voit bien que les relations
un = o(vn) ou un ∼ vn impliquent un = O(vn). On vérifie aussi que un ∼ vn
si et seulement si un − vn = o(vn), ce qu’on note aussi un = vn + o(vn).

Les développements limités usuels, vus au premier semestre, sont utiles
pour apprécier le comportement asymptotique des suites. Par exemple, le
développement limité ln(1 + x) = x+ o(x), quand x→ 0, assure la relation
ln(1+1/n) = 1/n+o(1/n) quand n→ +∞. Cela revient à ln(1+1/n) ∼ 1/n.
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Pour calculer des limites, il peut être utile d’avoir les comparaisons sui-
vantes en tête.

— lnn = o(na) pour tout a > 0.
— nb = o(rn) pour tout b ∈ R et r > 1.
— zn = o(n!) pour tout z ∈ C.
— n! = o(nn).

Elles seront démontrées en TD.

1.2. Bornes supérieure et inférieure. Dans le prochain paragraphe,
nous allons nous concentrer sur les suites réelles afin d’obtenir des critères de
convergence puissants. Cela passe par un approfondissement des propriétés
des nombres réels. Si A une partie de R, on dit que

— le nombre réel M est un majorant de A si, pour tout a ∈ A, a ≤M ;
— le nombre réel m est un minorant de A si, pour tout a ∈ A, a ≥ m ;

la partie A est majorée (resp. minorée) si elle admet un majorant
(resp. minorant).

Bien sûr, une partie majorée n’admet pas qu’un majorant : si M est un ma-
jorant, M + 1 aussi... Il peut être intéressant d’avoir un majorant optimal,
le plus petit possible. L’ensemble ordonné R possède une propriété remar-
quable : toute partie non vide et majorée possède un plus petit majorant,
qu’on appelle sa borne supérieure.

Énoncé indispensable 2 : borne supérieure

Toute partie non vide et majorée A de R admet une borne supérieure
supA : c’est le plus petit des majorants, c’est-à-dire l’unique nombre réel
vérifiant les deux propriétés suivantes.

— ∀a ∈ A, a ≤ supA ;
— ∀ε > 0, ∃a ∈ A, a > supA− ε.

La première propriété exprime le fait que supA est un majorant. La
seconde dit que c’est le plus petit des majorants, puisque tout nombre plus
petit (supA− ε) n’est pas un majorant.

Nous ne démontrerons pas ce théorème : il est intimement lié à la
construction de R (dans la construction par coupures de Dedekind, c’est
presque par définition vrai).

L’énoncé analogue sur les minorants est bien sûr vrai : toute partie non
vide et minorée de R possède un plus grand minorant, qu’on appelle sa borne
inférieure.

Énoncé indispensable 3 : borne inférieure

Toute partie non vide et minorée A de R admet une borne inférieure
inf A : c’est le plus grand des minorants, c’est-à-dire l’unique nombre
réel vérifiant les deux propriétés suivantes.

— ∀a ∈ A, a ≥ inf A ;
— ∀ε > 0, ∃a ∈ A, a < inf A+ ε.
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Par convention, on étend parfois les bornes supérieures et inférieures à
toutes les parties A de R en autorisant des valeurs infinies :

— si A n’est pas majorée, supA = +∞ ;
— si A n’est pas minorée, inf A = −∞.

Si A est vide, on peut même poser supA = −∞ et inf A = +∞.

Remarque 8. On dit qu’un réel a0 est le plus grand élément (ou maxi-
mum) d’une partie A de R si :

a0 ∈ A et ∀a ∈ A, a ≤ a0.

Un tel a0, s’il existe, est la borne supérieure de A : supA = a0 (en effet,
c’est un majorant et, pour tout ε > 0, on peut choisir a = a0 dans la
seconde propriété). Mais attention ce n’est pas du tout le cas général ! La
borne supérieure n’est pas forcément un élément de A, comme on le voit
dans l’exemple suivant.

Exemple 8. Soient deux réels a < b. On considère l’intervalle ouvert

I =]a, b[= {x ∈ R | a < x < b}.
Il admet comme borne supérieure b . En effet, b est un majorant de I puisque
tout x de I vérifie x ≤ b. Et pour tout ε > 0, on peut trouver x ∈]a, b[ tel
que x > b − ε (prendre x = b − ε/2 si ε < b − a, et n’importe quel élément
de l’intervalle sinon). Cela prouve que sup I = b. On montre de même que
la borne inférieure de I est a.

On peut remarquer que les intervalles [a, b[, ]a, b] et [a, b] ont aussi comme
borne supérieure b et comme borne inférieure a, avec le même argument.

Avant de donner un autre exemple, revenons sur la « propriété d’Archi-
mède » : pour tout x ∈ R∗+, il existe un entier n ∈ N tel que n > x. On peut
la voir comme une conséquence de l’existence de la borne supérieure : par
l’absurde, si tous les entiers naturels n ∈ N vérifient n ≤ x, l’ensemble N est
une partie non vide et majorée (par x) de R, donc admet une borne supé-
rieure σ ∈ R ; or pour tout n ∈ N, n+1 ∈ N, donc n+1 ≤ σ, i.e. n ≤ σ−1, ce
qui prouve que σ− 1 est un majorant de N ; c’est une contradiction puisque
σ − 1 < σ = supN.

Exemple 9. Soit A = {1/n | n ∈ N∗}. On voit que 0 est un minorant de
A. Et pour tout ε > 0, on peut trouver un entier n tel que n > 1/ε, de sorte
que 1/n < 0 + ε. Donc inf A = 0. Par ailleurs, 1 est le plus grand élément
de A, donc 1 = supA.

Remarque 9. Faisons une remarque pratique sur la manipulation des
inégalités avec des bornes supérieures. Si A est une partie de R et M un
nombre réel, on dispose de l’équivalence suivante :

supA ≤M ⇔ ∀a ∈ A, a ≤M.

⇒ est clair parce que le sup est un majorant (et donc tout nombre plus grand
aussi). Pour ⇐, on suppose en fait que M est un majorant de A, et donc,
puisque la borne supérieure est le plus petit des majorants, supA ≤M .

On appelle cela « passer à la borne supérieure » : si tous les éléments
d’une partie de R vérifient une majoration, la borne supérieure la vérifie
aussi. De même, si les éléments a de A vérifient une minoration a ≥ m, on
peut la passer à la borne inférieure : inf A ≥ m.
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Test : inclusion et bornes

Prouver que si A ⊂ B, alors supA ≤ supB et inf A ≥ inf B.

L’existence de bornes supérieures et inférieures est cruciale en analyse.
C’est elle qui permet de démontrer rigoureusement certains résultats fonda-
mentaux comme le théorème des valeurs intermédiaires ou l’existence d’une
limite réelle pour les suites croissantes majorées. Essentiellement, dans ces
énoncés, on a besoin de construire un réel et on le définira comme la borne
supérieure ou inférieure d’un ensemble de réels bien choisi.

Remarque 10. Cela impose de travailler spécifiquement avec des nombres
réels. Il n’y a pas d’équivalent dans Q : une partie majorée de Q n’admet
pas de borne supérieure rationnelle en général. Par exemple, l’irrationnalité
de
√

2 (cf. TD) fait que A = {x ∈ Q | x <
√

2} n’a pas de borne supérieure
dans Q.

1.3. Résultats spécifiques aux suites réelles. Dans ce paragraphe,
on se focalise sur les suites (un) à valeurs réelles : pour tout indice n, un est
supposé être un nombre réel. L’intérêt, c’est qu’on dispose dans R d’inéga-
lités, ce qui donne lieu à des résultats particuliers.

Précisons d’abord la condition de convergence d’une suite réelle (un) vers
un nombre ` (réel, comme on l’a vu). Elle signifie que, pour tout ε > 0, il
existe un rang N tel que pour n ≥ N , un ∈ D(`, ε), i.e. |un− `| < ε. Comme
ici un et ` sont des réels, le module n’est qu’une valeur absolue et donc en
fait |un − `| < ε veut dire −ε < un − ` < ε ou encore `− ε < un < `+ ε. Ou
encore un ∈]`− ε, `+ ε[.

Théorème 1. Les inégalités larges passent à la limite : si on considère
des suites réelles telles que (un)→ `, (vn)→ k et un ≤ vn pour tout indice
n, alors ` ≤ k.

Dans cet énoncé, on ne peut pas remplacer les inégalités larges ≤ par des
inégalités strictes <. Par exemple, si un = 0 et vn = 1/n pour tout n ∈ N∗,
on a un < vn pour tout n, (un)→ 0, (vn)→ 0 et certainement pas 0 < 0.

Démonstration. Soit ε > 0. La convergence des suites dit que pour un indice
n assez grand, on aura `−ε < un < `+ε et k−ε < vn < k+ε. Avec l’inégalité
un ≤ vn, on en tire ` − ε < k + ε. Donc ` < k + 2ε, et ce pour tout ε > 0.
Cela implique ` ≤ k. En effet, si au contraire ` > k, on peut trouver ε > 0
tel que `− 2ε > k (par exemple, ε = (`− k)/4 convient), contradiction. ♦

Un célébrissime critère de convergence découle des mêmes idées.

Théorème 2 (Théorème des gendarmes). Soient (un), (vn), (wn) trois
suites réelles telles que un ≤ vn ≤ wn pour tout n ∈ N. On suppose que (un)
et (wn) convergent vers une même limite `. Alors (vn) converge aussi vers
`.

Démonstration. Soit ε > 0. Comme (un)→ ` et (wn)→ `, on peut trouver
un rang N tel que pour n ≥ N , `− ε < un < `+ ε et `− ε < wn < `+ ε et
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donc `− ε < un ≤ vn ≤ wn < `+ ε, d’où |vn − `| < ε. Cela prouve que (vn)
converge vers `. ♦

Exemple 10. Etant donné un réel x, définissons un = E(nx)/n pour
n ∈ N∗. Rappelons que E(a) désigne la partie entière du réel a, l’entier
caractérisé par l’encadrement E(a) ≤ a < E(a) + 1. En faisant a = nx, on
en déduit pour tout n ∈ N∗ : un ≤ x < un + 1/n, i.e. x − 1/n < un ≤ x.
Donc la suite de rationnels (un) converge vers le réel x.

Explicitons une caractérisation des bornes supérieure et inférieure avec
des suites. Elle sert tout le temps, que ce soit pour calculer un sup en pratique
ou pour produire des suites intéressantes.

Proposition 5. Soit A une partie non vide de R.

(1) On suppose que S est un majorant de A et qu’il existe une suite (an)
d’éléments de A telle que (an) converge vers S. Alors S = supA.

(2) Réciproquement, si A est majorée, il existe une suite (an) d’éléments
de A telle que (an) converge vers supA.

L’énoncé analogue pour les bornes inférieures est bien sûr aussi vrai.

Démonstration. (a) S est un majorant par hypothèse. Soit ε > 0. Pour n
assez grand, S − ε < an < S + ε. Comme an ∈ A, cela indique que S − ε
n’est pas un majorant. Donc S = supA. (b) Posons S = supA. Pour tout
n ∈ N∗, la définition de la borne supérieure donne un élément an de A tel
que an > S− 1

n (puisque S−1/n n’est pas un majorant). Comme S est aussi

un majorant de A, on en déduit : ∀n ∈ N∗, S − 1
n ≤ an ≤ S. Donc (an) est

une suite d’éléments de A qui converge vers sa borne supérieure S. ♦

Une suite réelle (un) peut être croissante (si p ≤ q, up ≤ uq) ou décrois-
sante (si p ≤ q, up ≥ uq), ce qui n’aurait juste pas de sens dans C.

Théorème 3. Toute suite réelle croissante et majorée (resp. décrois-
sante et minorée) est convergente.

Une suite réelle (un) est majorée s’il existe M ∈ R tel que, pour tout
n ∈ N, un ≤ M . Cela revient à dire que l’ensemble des valeurs prises par
la suite (un) admet une borne supérieure finie : sup{un : n ∈ N} est un
nombre réel bien défini. De même, une suite réelle (un) est minorée s’il
existe m ∈ R tel que, pour tout n ∈ N, un ≥ m. Cela revient à dire :
inf{un : n ∈ N} > −∞.

On va voir dans la preuve ci-dessous que la limite d’une suite croissante
(resp. décroissante) est précisément la borne supérieure (resp. inférieure) de
ses valeurs.

Démonstration. Soit (un) une suite croissante majorée. On considère sa
borne supérieure ` = sup{un : n ∈ N} ∈ R. Ainsi, on a l’inégalité un ≤ `
pour tout indice n. De plus, par définition de la borne supérieure, si on se
donne ε > 0, il existe un élément uN de l’ensemble {un : n ∈ N} tel que
uN ≥ ` − ε. Par croissance de (un), on en déduit que pour tout n ≥ N ,
un ≥ uN ≥ `− ε. Pour n ≥ N , on peut donc écrire `− ε ≤ un ≤ ` ≤ `+ ε,
ce qui implique |un − `| ≤ ε. Cela prouve que (un) converge vers `.
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Si (un) est décroissante minorée, (−un) est croissante majorée, donc
converge vers une limite `. Alors (un) converge vers −`. ♦

On peut renforcer cet énoncé en introduisant la notion de limite ±∞,
pour les suites réelles. On dit qu’une suite réelle (un) tend vers +∞ si

∀A ∈ R,∃N ∈ N, ∀n ≥ N, un ≥ A;
on dit qu’elle tend vers −∞ si :

∀A ∈ R,∃N ∈ N, ∀n ≥ N, un ≤ A.
Attention au vocabulaire : si une suite réelle tend vers ±∞, elle n’est pas
bornée, donc elle est divergente. La notion de convergence requiert une limite
finie.

Exemple 11. Complétons la proposition 5. Si A est une partie non
majorée de R, on peut trouver pour tout n ∈ N∗ un élément an de A tel que
an > n (sinon, n serait un majorant). La suite (an) tend alors vers +∞.

On peut retenir que, pour toute partie non vide A de R, il existe une
suite (an) d’éléments de A qui tend vers supA, que cette borne supérieure
soit finie ou non. De même, il existe toujours une suite (bn) de A qui tend
vers inf A.

Si on considère une suite (un) croissante mais non majorée, on peut
trouver pour tout A ∈ R, une valeur uN telle que uN ≥ A (sinon, A serait
un majorant de la suite) ; alors la croissance donne un ≥ A pour tout n ≥ N .
Donc une suite croissante non majorée tend vers +∞. Et on voit de la même
façon qu’une suite décroissante non minorée tend vers −∞.

Proposition 6. Toute suite réelle croissante et non majorée (resp. dé-
croissante et non minorée) tend vers +∞ (resp. −∞).

Donc une suite monotone (i.e. croissante ou décroissante) admet toujours
une limite dans R = R ∪ {±∞}.

Remarque 11. Soit (un) une suite de nombres positifs. Si on pose, pour

tout n ∈ N, Sn =
n∑
k=0

uk, on obtient une suite croissante (Sn), puisque, pour

tout n, Sn+1− Sn = un+1 ≥ 0. Ainsi, (Sn) admet toujours une limite S, qui

est soit un nombre réel positif, soit +∞. On la note S =
+∞∑
k=0

uk. Cela donne

un sens à n’importe quelle somme infinie de nombres positifs. Par exemple,

on peut montrer que
+∞∑
k=0

1
2k = 2 et

+∞∑
k=1

1
k

= +∞.

Mentionnons enfin un joli critère de convergence découlant des résultats
précédents.

Théorème 4 (Théorème des suites adjacentes). Soient (un) et (vn) des
suites réelles telles que (un) est croissante, (vn) est décroissante et (vn−un)
tend vers 0. Alors (un) et (vn) convergent vers une même limite `.
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Comme le nom du théorème le suggère, deux suites (un) et (vn) comme
dans l’énoncé sont dites adjacentes.

Démonstration. Ecrivons (un) = (un−vn+vn). La suite (un−vn) est conver-
gente donc bornée, et en particulier majorée. La suite (vn) est décroissante
donc majorée (par son premier terme v0). En sommant, on voit donc que
(un) est majorée. Comme (un) est croissante, (un) converge vers une limite `.
On voit de même que (vn) est décroissante minorée, donc convergente, vers
une limite `′. Alors (un − vn) tend vers `− `′. Or, par hypothèse, (un − vn)
tend vers 0. Par unicité de la limite, `− `′ = 0, soit ` = `′. ♦

On peut remarquer que les suites (un) et (vn) de l’énoncé vérifient au-
tomatiquement un ≤ vn pour tout n. En effet, les hypothèses du théo-
rèmes assurent que (vn−un) est une suite décroissante tendant vers 0. Donc
0 = inf{vn − un | n ∈ N} : vn − un ≥ 0 pour tout n.

1.4. Sous-suites.

Definition 11. Soit (un) une suite. Une sous-suite de (un) est une suite
(vn) de la forme (vn) = (uϕ(n)), où ϕ : N → N est une fonction strictement
croissante.

On dit aussi que (vn) est une suite extraite de (un) et que la fonction
ϕ est une extractrice. L’idée est ne pas prendre en compte tous les termes
de la suite (un), mais d’en effacer certains et de ne garder que ceux qui
sont indicés par ϕ(0), ϕ(1), ϕ(2), . . . . En pratique, on va chercher à extraire
une sous-suite qui a de meilleures propriétés : typiquement, on va s’arranger
pour sélectionner des termes qui donnent une sous-suite convergente.

Exemple 12. Partons de la suite divergente (un) = (in), dont les termes
successifs sont : 1, i,−1,−i, 1, i,−1,−i, 1, i,−1, . . . A l’aide de l’extractrice
ϕ : n 7→ 4n, on obtient la sous-suite (u4n) = (i4n) = (1), qui est constante à
1 (donc convergente). Dans la liste des termes de (un), on a ici sélectionné
exactement les 1, en oubliant trois termes sur quatre.

Remarque 12. Une sous-suite d’une sous-suite est une sous-suite : si
(wn) est une sous-suite de (vn), qui elle-même est une sous-suite de (un), alors
(wn) est une sous-suite de (un). En effet, dans ce cadre, on a des extractrices
ϕ1 et ϕ2 telles que (wn) = (vϕ2(n)) et (vm) = (uϕ1(m)). En posant m = ϕ2(n),
on obtient donc pour tout n : wn = uϕ1(ϕ2(n)) = uϕ1◦ϕ2(n). Et la fonction
ϕ1 ◦ ϕ2 : N → N est strictement croissante comme composée de fonctions
strictement croissantes : c’est bien une extractrice.

Quand on manipule des suites extraites, il est bon d’avoir la petite re-
marque suivante en tête.

Lemme 1. Toute extractrice ϕ vérifie : ∀n ∈ N, ϕ(n) ≥ n.

Démonstration. On montre cette inégalité par récurrence sur l’entier naturel
n. Initialisation ? Puisque ϕ est à valeurs dans N, ϕ(0) est dans N, donc
ϕ(0) ≥ 0. Hérédité ? Supposons que ϕ(n) ≥ n pour un certain entier naturel
n. Puisque ϕ est strictement croissante, l’entier ϕ(n+1) est strictement plus
grand que l’entier ϕ(n) : ϕ(n+1) ≥ ϕ(n)+1. Avec l’hypothèse de récurrence
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ϕ(n) ≥ n, il vient donc ϕ(n + 1) ≥ n + 1. Cela montre le résultat, par le
principe de récurrence. ♦

On en déduit qu’une sous-suite d’une suite convergente est convergente,
de même limite.

Proposition 7. Si (un) converge vers `, toute sous-suite (uϕ(n)) converge
aussi vers `.

Démonstration. Soit ε > 0. La convergence de (un) donne un rang N tel
que pour tout k ≥ N , |uk− `| < ε. Pour tout entier n ≥ N , le lemme permet
de voir que ϕ(n) ≥ n ≥ N , donc on peut poser k = ϕ(n) dans l’inégalité
ci-dessus et on trouve |uϕ(n) − `| < ε. ♦

Le théorème suivant est fondamental en analyse. Il permet de bâtir des
sous-suites convergentes de façon très générale, sans avoir à expliciter une
extractrice particulière.

Énoncé indispensable 4 : théorème de Bolzano-Weierstrass

Toute suite bornée admet une sous-suite convergente.

La preuve repose sur le principe des tiroirs : si deux tiroirs contiennent
en tout trois chaussettes, l’un des tiroirs contient au moins deux chaussettes.
De même, si deux tiroirs contiennent en tout une infinité de chaussettes, l’un
des tiroirs (au moins) contient une infinité de chaussettes !

Démonstration.
Etape 1. Traitons dans un premier temps le cas d’une suite réelle bornée

(un) : il existe un intervalle [−R,R] de R qui contient tous les termes un.
Dans ce cadre, on va définir par récurrence deux suites adjacentes (an)

et (bn) telles que tous les intervalles [an, bn] contiennent une infinité de
termes de la suite (un). On initialise les deux suites en posant a0 = −R
et b0 = R, de sorte que [a0, b0] contient tous les termes. On suppose ensuite
[an, bn] construit convenablement pour un certain n et on note mn le milieu
de [an, bn]. Puisque [an, bn] contient une infinité de termes de la suite (par
construction), l’un des intervalles [an,mn] ou [mn, bn] contient une infinité
de termes de la suite : on le baptise [an+1, bn+1] (si on a le choix, disons
qu’on prend le premier par exemple).

On peut alors vérifier que les suites (an) et (bn) sont adjacentes. En
effet, pour tout n, an+1 est soit an, soit mn qui est dans [an, bn], donc dans
les deux cas an+1 ≥ an. Cela montre que (an) est croissante. On voit de
même que (bn) est décroissante. Enfin, la construction fait que la longueur
des intervalles considérés est divisée par deux à chaque étape : (bn− an) est
une suite géométrique de raison 1/2, donc elle tend vers 0. On déduit du
théorème 4 que (an) et (bn) convergent vers une même limite `.

On bâtit maintenant par récurrence une extractrice ϕ telle que, pour
tout n, uϕ(n) ∈ [an, bn]. Comme [a0, b0] contient tous les termes de la suite,
on peut choisir ϕ(0) = 0. Supposons ϕ(n) construit convenablement pour un
certain n ∈ N. Puisque l’intervalle [an+1, bn+1] contient une infinité de termes
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de la suite, il contient des termes uk dont l’indice k vérifie k ≥ ϕ(n) + 1.
On choisit par exemple le plus petit k qui convient et on pose ϕ(n+ 1) = k.
Ceci définit une application ϕ : N → N telle que ϕ(n + 1) ≥ ϕ(n) + 1 pour
tout n : ϕ est une extractrice. De plus, par construction, on a pour tout
n : uϕ(n) ∈ [an, bn], i.e. an ≤ uϕ(n) ≤ bn. Puisque (an) → ` et (bn) → `, le
théorème des gendarmes montre que (uϕ(n)) converge vers `.

Etape 2. Traitons maintenant le cas général, celui d’une suite bornée
(un), à valeurs complexes. Les suites réelles (Re(un)) et (Im(un)) sont alors
bornées. On peut appliquer l’étape 1 à la suite réelle (Re(un)) : cela nous
donne une extractrice ϕ1 telle que (Re(uϕ1(n))) converge. Considérons main-
tenant la suite (vn) = (uϕ1(n)), dont la partie réelle converge par construc-
tion. Sa partie imaginaire est bornée, donc on peut lui appliquer l’étape 1 :
cela nous donne une extractrice ϕ2 telle que la partie imaginaire de (vϕ2(n))
converge. La partie réelle de (vϕ2(n)) converge aussi, puisque c’est une sous-
suite de la suite convergente (Re(vn)). Donc la suite complexe (vϕ2(n)) est
convergente. Or (vϕ2(n)) = (uϕ1◦ϕ2(n)) est une sous-suite de (un), comme
sous-suite d’une sous-suite. ♦

Remarque 13. Quid des suites non bornées ? On peut parfois extraire
d’une suite non bornée une sous-suite convergente. Par exemple, si on pose
un = 0 si n est pair et un = n si n est impair, on voit que la suite (un) n’est
pas bornée et que sa sous-suite (u2n) est constante donc convergente.

Le lecteur pourra d’autre part démontrer qu’une suite non bornée admet
toujours une sous-suite de module tendant vers +∞.

Remarque 14. Le théorème de Bolzano-Weierstrass s’étend aux suites
vectorielles bornées, c’est-à-dire aux suites d’éléments de Rd dont toutes les
composantes sont bornées. La preuve est la même que dans le cas complexe :
on extrait une sous-suite pour faire converger la première composante, puis
on extrait une sous-suite de cette sous-suite pour faire converger la deuxième
composante, etc. En d extractions successives, on obtient une sous-suite dont
toutes les composantes convergent.

Pour aller plus loin 1 : valeurs d’adhérence

Quand une suite (un) admet une sous-suite convergeant vers `, on
dit que ` est une valeur d’adhérence de (un). Par exemple, les valeurs
d’adhérence de la suite ((−1)n + 1/n) sont 1 et −1. Celles de la suite
(in) sont 1, i, −1 et −i. Le théorème de Bolzano-Weierstrass dit qu’une
suite bornée a toujours au moins une valeur d’adhérence. Mais il n’y en
a pas toujours : si |un| tend vers +∞, ses sous-suites tendent aussi vers
+∞, donc (un) n’a pas de valeur d’adhérence.

On peut formuler un critère de convergence à l’aide des valeurs
d’adhérence : une suite bornée est convergente si et seulement si elle
admet une unique valeur d’adhérence.

Le sens direct est clair : si (un) converge vers `, il en va de même
de toutes ses sous-suites, donc ` est l’unique valeur d’adhérence de
(un). Considérons maintenant une suite (un) bornée et divergente. Par
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Bolzano-Weierstrass, (un) a une valeur d’adhérence `. Puisqu’elle est di-
vergente, on peut trouver ε > 0 tel qu’une infinité de termes de la suite
se trouvent hors du disque D(`, ε). Ceci permet de bâtir une sous-suite
(vn) de (un) telle que |vn − `| ≥ ε pour tout n. Comme (vn) est bornée
(comme sous-suite d’une suite bornée), elle admet une sous-suite conver-
gente (wn). La limite `′ de (wn) vérifie alors |`′− `| ≥ ε par passage à la
limite. Donc ` et `′ sont deux valeurs d’adhérence distinctes de (un), ce
qui achève de prouver le critère.
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2. Continuité et dérivabilité

2.1. Limites et continuité. Dans toute cette section, on va s’intéres-
ser à des fonctions définies sur un intervalle I de R, à valeurs dans R. On
commence par définir ce qu’est la limite de la fonction en un point a. Pour
définir la continuité, on pourrait se contenter de prendre a dans I. Néan-
moins, il est aussi intéressant de prendre pour a l’une des bornes de I, même
si elle n’est pas dans I. On choisira en fait a dans Ī, le plus petit intervalle
fermé contenant I. Par exemple, si I =]α, β], Ī = [α, β]. 1

Énoncé indispensable 5 : limite

Soit une fonction f : I → R. Soient a ∈ Ī et ` ∈ R. On dit que f
tend vers ` en a si

∀ε > 0, ∃η > 0,∀x ∈ I, |x− a| < η =⇒ |f(x)− `| < ε.

Dans ce cas, on note lim
a
f = `.

On dit aussi que f a pour limite ` en a, ou bien que f(x) tend vers `
quand x tend vers a et on note aussi lim

x→a
f(x) = `.

Remarque 15. La définition donnée admet des variantes utiles où la
limite est infinie (` = ±∞) ou bien est prise à l’infini (a = ±∞). Il suffit
d’adapter l’énoncé... On dit ainsi que f tend vers +∞ en a si

∀A ∈ R, ∃η > 0, ∀x ∈ I, |x− a| < η =⇒ f(x) > A

et que f tend vers −∞ en a si

∀A ∈ R, ∃η > 0, ∀x ∈ I, |x− a| < η =⇒ f(x) < A.

Quand la borne supérieure de I est +∞, on dit que f tend vers ` en +∞ si

∀ε > 0,∃B > 0,∀x ∈ I, x > B =⇒ |f(x)− `| < ε,

on dit que f tend vers +∞ en +∞ si

∀A ∈ R,∃B > 0, ∀x ∈ I, x > B =⇒ f(x) > A,

on dit que f tend vers −∞ en +∞ si

∀A ∈ R,∃B > 0, ∀x ∈ I, x > B =⇒ f(x) < A.

Le lecteur est invité à écrire les expressions quantifiées traduisant les limites
analogues en −∞.

Remarque 16. On parle de limite à gauche (resp. droite) en a quand
on ne regarde f qu’à gauche (resp. droite) de a. Plus précisément, on dit
que f admet ` comme limite à gauche en a et on note lim

a−
f = ` si

∀ε > 0,∃η > 0,∀x ∈ I, a− η < x < a =⇒ |f(x)− `| < ε.

Bien sûr, pour la limite à droite, on note lim
a+

f = ` quand

∀ε > 0,∃η > 0,∀x ∈ I, a < x < a+ η =⇒ |f(x)− `| < ε.

1. Le lecteur pointilleux observera que I sera parfois autorisé à être, non un intervalle,
mais une réunion d’intervalles, auquel cas Ī contiendra les bornes de tous ces intervalles.
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On peut définir de même des limites infinies à gauche ou à droite.

Il est important de savoir que ces limites de fonctions se ramènent à des
limites de suites : faire tendre x vers a, c’est regarder toutes les suites qui
convergent vers a. C’est ce qu’on appelle la caractérisation séquentielle des
limites.

Proposition 8. Soient f : I → R une fonction, a ∈ Ī et ` ∈ R. Alors
f(x) tend vers ` lorsque x tend vers a si et seulement si, pour toute suite
(xn) d’éléments de I qui converge vers a, la suite (f(xn)) converge vers `.

En adaptant l’argument ci-dessous, on voit que cet énoncé est également
vrai pour des limites infinies, ou prises à l’infini.

Démonstration. Pour le sens direct, on se donne une suite (xn) qui converge
vers a. Soit ε > 0. Par hypothèse, il existe η > 0 tel que

∀x ∈ I, |x− a| < η =⇒ |f(x)− `| < ε.

Comme il existe N tel que pour tout n ≥ N , |xn − a| < η, on a ainsi

∀n ≥ N, |f(xn)− `| < ε.

Donc (f(xn)) converge vers `.
Pour le sens réciproque, on raisonne par contraposée : on suppose que f

ne tend pas vers ` en a et cherche à montrer qu’il existe une suite (xn)→ a
telle que (f(xn)) ne converge pas vers `. En niant la définition d’une limite,
on trouve qu’il existe ε > 0 tel que

∀η > 0, ∃x ∈ I, |x− a| < η et |f(x)− `| ≥ ε

Pour tout n ∈ N∗, on peut prendre en particulier η = 1
n et on dispose ainsi

d’un xn ∈ I tel que

|xn − a| <
1
n

et |f(xn)− `| ≥ ε.

Puisque 1/n tend vers 0, la suite (xn) tend vers a. Par contre, la suite f((xn))
reste à distance au moins ε de `, donc elle ne converge pas vers `. ♦

Énoncé indispensable 6 : continuité

Soit une fonction f : I → R. On dit que f est continue en un point
a de I si elle tend vers f(a) en a. Cela signifie :

∀ε > 0,∃η > 0,∀x ∈ I, |x− a| < η =⇒ |f(x)− f(a)| < ε.

On dit simplement que la fonction f est continue (sur I) si elle est
continue en tout point de I.

Test : un usage typique

Soit f : R → R une fonction continue telle que f(0) = 1. Prouver
qu’il existe α > 0 telle que f soit minorée par 1/2 sur l’intervalle ]−α, α[.
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Remarque 17. La continuité, en lien avec la proposition 8, est un outil
important pour calculer des limites : si f est continue en a et si (xn) → a,
alors la suite (f(xn)) tend vers f(a). C’est la continuité de la fonction exp
qui permet d’écrire (exp(1/n))→ exp(0) = 1.

Par propriétés sur les limites (de suites), on obtient des résultats sur la
somme, le produit ou l’inverse des fonctions continues.

Proposition 9. Soient f et g deux fonctions de I dans R.

(1) Si f et g sont continues en un point a de I, leur somme f + g et leur
produit f × g sont continus en a.

(2) On suppose que f ne s’annule pas, de sorte que 1/f est bien définie
sur I. Si f est continue en a ∈ I, 1/f est aussi continue en a.

Par exemple, on vérifie sur la définition que les fonctions constantes et
la fonction f : x 7→ x sont continues sur R. Avec la proposition, on en dé-
duit que les polynômes (réels) définissent des fonctions continues sur R. Par
quotient, les fractions rationnelles définissent donc des fonctions continues
aux points où elles sont définies (là où leur dénominateur ne s’annule pas).

Proposition 10. Soient I et J deux intervalles de R. Soient deux fonc-
tions f : I → J et g : J → R. On suppose que f est continue en un point a
de I et que g est continue en f(a). Alors la fonction g ◦ f est continue en a.

Démonstration. Comme les valeurs de f sont bien prises dans J , où g est
définie, la fonction g ◦ f : I → R est bien définie. Soit (xn) une suite de I
tendant vers a. Par continuité de f en a, la suite (f(xn)) converge vers f(a).
Par continuité de g en f(a), on en déduit que la suite (g(f(xn))) converge
vers g(f(a)). Cela prouve que g ◦f tend vers g ◦f(a) en a, par la proposition
8. ♦

Exemple 13. Soit f : R→ R définie par f(x) = 1 si x ≥ 0 et f(x) = 0 si
x < 0. Cette fonction n’est pas continue en 0 : en effet, la suite (xn) = (−1/n)
tend vers 0 et (f(xn)) est constante à 0, donc tend vers 0, qui n’est pas
f(0) = 1. La discontinuité en 0 est dûe au « saut » que le graphe de f
effectue en x = 0 : les valeurs sautent de 0 à 1.

Remarque 18. On dit que f est continue à droite en a si lim
a+

f = f(a)
et continue à gauche en a si lim

a−
f = f(a). La continuité en a équivaut à la

continuité à gauche et à droite. Dans l’exemple précédent, f est continue à
droite en 0, mais pas à gauche.

Remarque 19. Supposons que f :]a, b[→ R est une fonction continue
et que f admet une limite ` en a. Il est naturel de prolonger f par la valeur
` en a : on définit f̃ : [a, b[→ R par f̃(x) = f(x) si x ∈]a, b[ et f̃(a) = `.
Par construction, cette nouvelle fonction est continue sur [a, b[ tout entier.
On dit que la fonction f̃ est le prolongement par continuité de f à [a, b[. Par
exemple, la fonction f : x 7→ x ln(x), définie et continue sur R∗+, tend vers 0
en 0 : elle se prolonge par continuité à R+ en posant f̃(0) = 0.
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2.2. Propriétés globales des fonctions continues. On dit souvent
que le graphe des fonctions continues se trace sans lever le crayon. C’est le
contenu du théorème fondamental suivant.

Énoncé indispensable 7 : théorème des valeurs intermédiaires

Soit f : [a, b]→ R une fonction continue. Alors pour tout y compris
entre f(a) et f(b), il existe c ∈ [a, b] tel que f(c) = y.

Démonstration. Quitte à changer f en −f , on peut supposer par exemple
f(a) ≥ f(b). L’énoncé est clair si y = f(a) ou y = f(b) donc on considère
un réel y tel que f(b) < y < f(a). On pose

C = {x ∈ [a, b]|f(x) ≤ y}.

C’est une partie de [a, b] non vide (elle contient b), donc c = inf C est un
nombre réel bien défini. Par définition de la borne inférieure, il existe une
suite (cn) de points de C qui converge vers c. Alors pour tout indice n :

a ≤ cn ≤ b et f(cn) ≤ y.

Par continuité de f en c, la suite (f(cn)) converge vers f(c). Donc en passant
à la limite, on trouve :

a ≤ c ≤ b et f(c) ≤ y.

Comme on a supposé y < f(a), on trouve f(c) < f(a), donc c 6= a. Ainsi
a < c ≤ b. Pour n assez grand, c − 1

n est donc dans [a, b] mais pas dans C
(puisque c est la borne inférieure de C). Donc

f

(
c− 1

n

)
> y,

ce qui donne à la limite, toujours par continuité de f :

f(c) ≥ y.

On en conclut que f(c) = y. ♦

Si f est une fonction continue sur un intervalle I, le théorème des valeurs
intermédiaires montre que l’ensemble des valeurs prises par f est aussi un
intervalle J . Les bornes de J sont bien sûr :

inf J = inf{f(x) | x ∈ I} et sup J = sup{f(x) | x ∈ I}.

On les note respectivement inf
I
f et sup

I
f . Ces bornes sont éventuellement

±∞ si f n’est pas minorée ou pas majorée sur I.
Même si ces bornes sont finies, ce ne sont pas forcément des valeurs

atteintes par la fonction f : l’intervalle J peut être ouvert ou semi-ouvert.
Par exemple, si on considère f : x→ x2 sur l’intervalle I =]−1, 1[, on trouve
J = [0, 1[ ; 0 = f(0), mais 1 n’est pas une valeur atteinte. Le théorème
suivant précise la situation quand I est un segment [a, b] : il dit qu’une
fonction continue sur un segment est bornée et atteint ses bornes.
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Énoncé indispensable 8 : théorème des bornes atteintes

Soit f une fonction continue sur un segment [a, b]. Alors f atteint
une valeur maximale M et une valeur minimale m sur [a, b].

On dit que M est le maximum de f , que m est son minimum et on note

m = min
[a,b]

f et M = max
[a,b]

f.

La notation max (resp. min) au lieu de sup (resp. inf) sous-entend que ce sont
des valeurs atteintes : il existe xmin et xmax dans [a, b] tels que m = f(xmin)
et M = f(xmax).
Démonstration. Soit M = sup{f(x) | x ∈ [a, b]}, un nombre réel ou bien
+∞. Il existe une suite (xn) de points de [a, b] telle que (f(xn)) tend vers M
(cf. exemples 5 et 11). La suite (xn) est bornée donc le théorème de Bolzano-
Weierstrass permet d’en extraire une sous-suite (xϕ(n)) qui converge, vers
x ∈ [a, b]. D’une part, comme sous-suite de (f(xn)), (f(xϕ(n))) tend vers
M . D’autre part, par continuité de f en x, (f(xϕ(n))) tend vers f(x). Donc
M = f(x). Cela veut dire M est une valeur atteinte par f et donc, en
particulier, un nombre réel (fini).

On procède de même pour la borne inférieure. ♦

Corollaire 2. Soit f : [a, b] → R une fonction continue. Alors l’en-
semble J des valeurs prises par f est un segment : J = [m,M ].

Démonstration. Le théorème des valeurs intermédiaires a montré que J était
un intervalle. Le théorème des bornes atteintes montre que m = inf J et
M = sup J sont dans J . Donc J = [m,M ]. ♦

2.3. Fonctions dérivables. La définition usuelle de la dérivée consiste
à la voir comme la limite du taux de variation.

Énoncé indispensable 9 : dérivabilité

Soient un intervalle I et une fonction f : I → R. On dit que f est

dérivable en un point a de I si f(x)−f(a)
x−a admet une limite finie quand x

tend vers a. Cette limite est notée f ′(a), c’est la dérivée de f en a.

On dit simplement que la fonction f est dérivable (sur I) si elle est
dérivable en tout point de I.

Géométriquement, la dérivée en a est la pente de la tangente au graphe
de f au point (a, f(a)).

La dérivabilité en un point est équivalente à l’existence d’un dévelop-
pement limité d’ordre 1 : c’est le contenu du prochain théorème. Dans son
énoncé, la notation o(x− a) désigne n’importe quelle quantité qui tend vers

0 plus vite que x−a quand x tend vers a. Cela signifie que le quotient o(x−a)
x−a
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tend vers 0. On peut aussi penser que o(x− a) désigne n’importe quelle ex-
pression du type (x − a)e(x) avec limx→a e(x) = 0. On suppose le lecteur
familier des manipulations usuelles de développements limités.

Théorème 5. Soient un intervalle I et une fonction f : I → R. Pour
tout a ∈ I, il y a équivalence entre les deux assertions suivantes.

(1) f est dérivable en a.

(2) f admet en a un développement limité d’ordre 1 :

f(x) = f(a) + α(x− a) + o(x− a) quand x→ a.

Dans ce cas, α = f ′(a).

Démonstration. C’est au fond une simple reformulation. Si on suppose (2),
en faisant tendre x vers a, on trouve

f(x)− f(a)
x− a

= α+ o(x− a)
x− a

→ α.

Donc f est dérivable en a et f ′(a) = α. Réciproquement, si on suppose (1),
le taux de variation f(x)−f(a)

x−a tend vers une limite α ∈ R, ce qui s’écrit :

f(x)− f(a)
x− a

= α+ o(1) quand x→ a,

puisque o(1) désigne par définition une quantité tendant vers 0. En multi-
pliant par x− a, il vient

f(x)− f(a) = α(x− a) + o(x− a),

d’où le développement limité. ♦

En particulier, la dérivabilité implique la continuité : non seulement f(x)
tend vers f(a) quand x tend vers a, mais le développement limité à l’ordre
1 précise à quelle vitesse.

Corollaire 3. Si f est dérivable en a, f est continue en a.

Démonstration. Le théorème ci-dessus donne le développement limité

f(x) = f(a) + f ′(a)(x− a) + o(x− a) quand x→ a.

Les termes f ′(a)(x−a) et o(x−a) tendent vers 0 quand x tend vers a, donc
f(x) tend vers f(a). ♦

Le développement limité à l’ordre 1 éclaire bien la compatibilité de la
dérivation avec sommes et produits.

Proposition 11. Soient f et g deux fonctions dérivables en un point a.
Alors f + g et f × g sont dérivables en a et

(f + g)′(a) = f ′(a) + g′(a)
(fg)′(a) = f ′(a)g(a) + f(a)g′(a).
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Démonstration. Quand x→ a, on dispose des développement limités :

f(x) = f(a) + f ′(a)(x− a) + o(x− a),
g(x) = g(a) + g′(a)(x− a) + o(x− a).

La somme donne

f(x) + g(x) = f(a) + g(a) + (f ′(a) + g′(a))(x− a) + o(x− a).

Le produit donne

f(x)g(x) = f(a)g(a) + (f ′(a)g(a) + g′(a)f(a))(x− a) + o(x− a).

Et le théorème permet de conclure. ♦

Proposition 12. Soit f une fonction ne s’annulant pas sur un intervalle
I. Si f est dérivable en un point a de I, alors 1/f est dérivable en a et(

1
f

)′
(a) = − f ′(a)

f(a)2 .

Démonstration. Commençons par remarquer que 1/f est bien définie sur I
parce que f ne s’annule pas sur I. Le taux de variation de 1/f en a s’écrit

1
f(x) −

1
f(a)

x− a
= −f(x)− f(a)

x− a
1

f(x)
1

f(a)

donc tend vers − f ′(a)
f(a)2 quand x → a. Dans le membre de droite, le premier

facteur est en effet le taux de variation de f , qui tend vers f ′(a), et le
deuxième tend vers 1

f(a)2 par continuité de f en a. ♦

En combinant les formules pour la dérivée d’un produit et d’un in-
verse, on obtient l’expression bien connue pour la dérivée d’un quotient :(
f
g

)′
= f ′g−fg′

g2 . Comme pour la continuité, on déduit par exemple de ces

résultats que les polynômes et fractions rationnelles définissent des fonctions
dérivables.

Proposition 13. Soient I et J deux intervalles de R. Soient deux fonc-
tions f : I → J et g : J → R. On suppose que f est dérivable en un point a
de I et que g est dérivable en f(a). Alors la fonction g ◦ f est dérivable en
a et

(g ◦ f)′(a) = g′(f(a))× f ′(a).

Démonstration. Posons b = f(a). L’idée est de composer les développements
limités de f(x) quand x→ a et g(y) quand y → b, en posant y = f(x). On
peut le faire puisque, si x tend vers a, f(x) tend b = f(a) par continuité de
f en a. On part donc des développements

f(x) = f(a) + (x− a)(f ′(a) + ef (x)),
g(y) = g(b) + (y − b)(g′(b) + eg(y)),
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où ef (x) (resp. eg(y) ) tend vers 0 quand x→ a (resp. y → b). Avec y = f(x)
et b = f(a), on en déduit :

g(f(x)) = g(b) + (x− a)(f ′(a) + ef (x))(g′(b) + eg(f(x)))
= g(b) + (x− a)f ′(a)g′(b) + o(x− a)
= g(f(a)) + (x− a)f ′(a)g′(f(a)) + o(x− a).

Cela montre que g ◦ f est dérivable en a, de dérivée f ′(a)g′(f(a)). ♦

Remarque 20. On dit que f est dérivable à gauche (resp. droite) en a si

le taux de variation f(x)−f(a)
x−a admet une limite finie en a− (resp. en a+). On

parle de dérivée à gauche ou à droite pour désigner ces limites à gauche ou
à droite.Une fonction est dérivable en a si et seulement si elle est dérivable
à gauche et à droite avec des dérivées à gauche et à droite égales.

Par exemple, en 0, la valeur absolue admet une dérivée à gauche égale à
−1 et une dérivée à droite égale à 1. Cette fonction n’est donc pas dérivable
en 0. C’est un exemple de fonction continue mais pas dérivable en 0.

2.4. Propriétés globales des fonctions dérivables. La dérivée four-
nit un moyen pratique pour trouver les endroits où une fonction est maximale
ou minimale. Le résultat de base est le suivant.

Énoncé indispensable 10 : dérivée et extrema

Soit f :]α, β[→ R une fonction dérivable. On suppose que f atteint
un maximum ou un minimum en un point a de l’intervalle ouvert ]α, β[.
Alors f ′(a) = 0.

Géométriquement : en un point de maximum ou minimum, la tangente
au graphe est de pente nulle, c’est-à-dire horizontale.

Attention : ce n’est vrai que sur un intervalle ouvert. Par exemple, re-
gardons la fonction f : [0, 1]→ R définie par f(x) = x. Elle est maximale en
a = 1 et pourtant f ′(1) = 1 6= 0. Le critère ne vaut que si la fonction prend
des valeurs plus grandes (ou plus petites) à gauche et à droite de a ; on le
verra dans la preuve ci-dessous. En pratique, si on n’est pas sur un intervalle
ouvert, il faudra toujours traiter à part les bornes de l’intervalle d’étude.

Insistons sur le fait que ce théorème ne donne qu’une condition néces-
saire : la fonction f : x 7→ x3 est dérivable sur ] − 1, 1[, sa dérivée s’annule
en 0 et la fonction n’y atteint ni maximum, ni minimum.

Démonstration. Supposons f maximale en a : f(x) − f(a) ≤ 0 pour tout
x ∈]α, β[. Puisque α < a < β, on peut trouver des suites (x+

n ) et (x−n )
convergeant vers a, avec α < x−n < a et a < x+

n < β pour tout indice n
(prendre x±n = a± 1/n pour n assez grand). Alors :

f(x+
n )− f(a)
x+
n − a

→ f ′(a)

et le membre de gauche est négatif, donc f ′(a) ≤ 0. De même,

f(x−n )− f(a)
x−n − a

→ f ′(a)



36 2. ANALYSE

avec un membre de gauche positif cette fois : f ′(a) ≥ 0. Donc finalement
f ′(a) = 0. Le cas d’un minimum est similaire. ♦

Un problème courant consiste à chercher la valeur maximale (ou mini-
male) que peut prendre une fonction dérivable f : [α, β] → R. Le théorème
des bornes atteintes dit qu’il existe un point a du segment [α, β] où f est
maximale. Si ce point a est dans l’intervalle ouvert ]α, β[, il vérifie l’équation
f ′(a) = 0. Le maximum de f est donc atteint en α, en β ou en l’une des
solutions a de cette équation. Pour conclure, il reste à comparer les valeurs
que prend f en ces différents points (notamment aux bornes du segment !).

Exemple 14. Considérons la fonction f : [−1, 1]→ R définie par f(x) =
x2. Elle est dérivable et sa dérivée ne s’annule qu’en 0. Pour la maximiser,
on compare donc : f(−1) = 1, f(1) = 1 et f(0) = 0. On conclut que le
maximum est 1, atteint uniquement aux bornes −1 et 1 du segment. Le
minimum est quant à lui atteint en 0 et il vaut 0.

Cette discussion mène naturellement au théorème de Rolle, qu’on per-
fectionnera légèrement pour obtenir un outil très important : le théorème
des accroissements finis.

Théorème 6 (théorème de Rolle). Soit f : [a, b] → R, avec a < b. On
suppose que f est dérivable sur ]a, b[, continue sur [a, b] et que f(a) = f(b).
Alors il existe un point c ∈]a, b[ tel que f ′(c) = 0.

Démonstration. Le théorème des bornes atteintes affirme que f atteint un
minimum m et un maximum M sur le segment [a, b].

Si l’un d’entre eux est atteint en un point c de ]a, b[, on a f ′(c) = 0 par
le résultat précédent.

Sinon, c’est qu’ils sont tous les deux atteints aux bornes du segment.
Comme f prend la même valeur en a et b, le maximum M et le minimum m
sont alors égaux. Puisque par construction, on a m ≤ f(x) ≤ M pour tout
x ∈ [a, b], on voit que la fonction f est constante à la valeur m = M dans
ce cas. Donc sa dérivée est nulle en tout point c de l’intervalle ]a, b[. ♦

Remarque 21. En pratique, ce théorème (et les suivants) s’applique à
une fonction qui est dérivable sur un intervalle contenant le segment [a, b].
Comme la dérivabilité implique la continuité, les hypothèses sont vérifiées.

Énoncé indispensable 11 : égalité des accroissements finis

Soit f : [a, b] → R, avec a < b. On suppose que f est continue sur
[a, b] et dérivable sur ]a, b[. Alors il existe c ∈]a, b[ tel que

f(b)− f(a) = (b− a) f ′(c).

Démonstration. Soit g la fonction affine telle que g(a) = f(a) et g(b) = f(b).
Explicitement, elle est donnée par

∀x ∈ R, g(x) = f(b)− f(a)
b− a

(x− a) + f(a).
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La fonction h = f − g est dérivable et le choix de g donne h(a) = h(b) = 0.
Le théorème de Rolle s’applique donc, donnant l’existence de c ∈]a, b[ tel
que h′(c) = 0. Or la dérivée de h se calcule immédiatement :

∀x ∈]a, b[, h′(x) = f ′(x)− f(b)− f(a)
b− a

.

On en déduit : f ′(c) = f(b)−f(a)
b−a . ♦

Corollaire 4. Soit f une fonction dérivable sur un intervalle I.
Si f ′ est positive, f est croissante.
Si f ′ est strictement positive, f est strictement croissante.
Si f ′ est négative, f est décroissante.
Si f ′ est strictement négative, f est strictement décroissante.
Si f ′ est identiquement nulle, f est constante.

Démonstration. Si a < b sont deux points de I, légalité des accroissements
finis donne un point c ∈]a, b[ tel que f(b) − f(a) = (b − a) f ′(c). Donc
f(b) − f(a) est ≥ 0, > 0, ≤ 0, < 0 ou = 0 si et seulement si f ′(c) l’est. Le
corollaire en découle. ♦

Plutôt que l’égalité, on utilise souvent l’inégalité des accroissements finis.
Elle dit qu’une borne sur la dérivée contrôle l’ampleur des variations de
la fonction sur un segment donné. Concrètement, si on court à moins de
21km/h entre 9h et 11h du matin, on parcourt moins de 42km.

Énoncé indispensable 12 : inégalité des accroissements finis

Soit f : [a, b] → R une fonction continue sur [a, b] et dérivable sur
]a, b[. Alors :

|f(b)− f(a)| ≤ (b− a) sup
]a,b[
|f ′|.

Démonstration. L’égalité des accroissements finis f(b)− f(a) = (b−a) f ′(c)
donne en valeur absolue

|f(b)− f(a)| = (b− a) |f ′(c)|

et la majoration suit, par définition de la borne supérieure. ♦

Pour que l’inégalité ait un intérêt, il faut que la borne supérieure dans le
membre de droite soit finie. Typiquement, ce sera vrai si la fonction dérivée
f ′ est continue sur le segment [a, b] (par le théorème des bornes atteintes),
c’est-à-dire si la fonction f y est de classe C1.

Remarque 22. Si la dérivée de f est majorée en valeur absolue par κ
sur l’intervalle I tout entier, l’inégalité des accroissements finis donne :

∀x, y ∈ I, |f(y)− f(x)| ≤ κ|y − x|,

On dit alors que f est κ-lipschitzienne. Pour une telle fonction, les variations
de f(x) sont au plus proportionnelles à celles de x. Ce contrôle uniforme
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peut s’avèrer utile en pratique, par exemple dans la théorie des équations
différentielles.

2.5. Fonctions réciproques, nouvelles fonctions usuelles. Dans
ce paragraphe, on s’intéresse aux fonctions continues qui sont strictement
monotones, c’est-à-dire strictement croissantes ou strictement décroissantes,
sur un intervalle de R. On peut les voir comme des bijections entre intervalles,
ce qui permet de définir une fonction réciproque aux propriétés intéressantes.

Soit f une fonction continue et strictement monotone sur un intervalle
I. Notons J l’ensemble de ses valeurs :

J = {f(x) | x ∈ I}.

C’est un intervalle d’après le théorème des valeurs intermédiaires. Par défini-
tion de J , la fonction f : I → J est surjective. La stricte monotonie de f fait
qu’elle est aussi injective : si x < y sont deux points de I, on a f(x) < f(y)
(resp. f(x) > f(y)) si f est strictement croissante (resp. décroissante), et en
tout cas f(x) 6= f(y).

Ainsi, f : I → J est une bijection.

Remarque 23. Dans le programme officiel de terminale, « on convient
que les flèches obliques d’un tableau de variation traduisent la continuité et
la stricte monotonie de la fonction sur l’intervalle considéré ». Pour chacune
de ces flèches obliques, on obtient donc une bijection.

Remarque 24. On peut préciser les bornes de l’intervalle J (un dessin
l’indique assez clairement). Notons a = inf I, b = sup I, α = inf J , β = sup J
(on autorise les valeurs infinies). On suppose f strictement croissante pour
fixer les idées (si f est strictement décroissante, la discussion s’adapte en
changeant l’ordre des bornes de J).

Montrons dans ce cas que f tend vers β en b. On écrit la preuve dans le
cas où β est fini. Etant donné ε > 0, par définition du sup, on peut trouver
xε ∈ I tel que f(xε) ≥ β − ε. Par définition de β et croissance de f , si
xε ≤ x < b, on a β − ε ≤ f(x) ≤ β. Cela prouve que f tend vers β en b. Si
β = +∞, f n’est pas majorée et le même argument montre que f tend vers
+∞ en b. De même, f tend vers α en a. Donc les bornes de J sont

α = lim
a
f et β = lim

b
f.

Si b ∈ I, f est continue en b, donc β = lim
b
f = f(b), et en particulier

β ∈ J . Si au contraire la borne supérieure b de I n’est pas dans I, β n’est pas
une valeur atteinte : si on avait β = f(c) pour un certain c ∈ I (donc c < b),
n’importe quel x ∈]c, b[ vérifierait f(x) > f(c) = β par stricte croissance, ce
qui contredirait la définition de β. Donc β ∈ J si et seulement si b ∈ I. Il en
est de même pour α et a. Bref :

— si I = [a, b], J = [α, β], avec α = f(a) et β = f(b) ;
— si I = [a, b[, J = [α, β[, avec α = f(a) et β = lim

b
f ;

— si I =]a, b], J =]α, β] avec α = lim
a
f et β = f(b) ;

— si I =]a, b[, J =]α, β[ avec α = lim
a
f et β = lim

b
f .
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Puisque f : I → J est une bijection, on dispose d’une fonction réciproque
f−1 : J → I : tout point y de l’intervalle J admet un unique antécédent x
dans I, que l’on note x = f−1(y). Ainsi, l’équation y = f(x), avec x ∈ I,
équivaut à x = f−1(y), avec y ∈ J . Géométriquement, cela signifie que le
graphe de f−1 s’obtient à partir de celui de f en échangeant le rôle des
coordonnées x et y, c’est-à-dire en effectuant une réflexion par rapport à la
première bissectrice (la droite d’équation y = x).

L’énoncé suivant résume ce qu’on vient de voir et précise les propriétés
de cette fonction réciproque f−1.

Énoncé indispensable 13 : théorème de la bijection

Soit f une fonction strictement monotone et continue sur un inter-
valle I. On note J l’ensemble de ses valeurs. Alors

(1) la fonction f : I → J est une bijection entre les intervalles I et
J ;

(2) la réciproque f−1 : J → I est strictement monotone, de même
sens de variation que f ;

(3) la réciproque f−1 est continue sur l’intervalle J ;

(4) si f est dérivable en un point a de I et si f ′(a) 6= 0, la réciproque
f−1 est dérivable en b = f(a), avec(

f−1
)′

(b) = 1
f ′(a) = 1

f ′ (f−1(b)) .

Démonstration. Le point (1) est expliqué ci-dessus. Pour le point (2), on
suppose par exemple que f est strictement croissante (on peut s’y ramener en
considérant −f). Soient y < y′ deux points de J . On note x = f−1(y) et x′ =
f−1(y′). Si on avait x ≥ x′, la croissance de f donnerait y = f(x) ≥ f(x′) =
y′, contradiction. On a donc x < x′. Et cela prouve la stricte croissance de
f−1.

Passons au point (3). Soient b ∈ J et a = f−1(b) ∈ I. On suppose que
a n’est pas une borne de l’intervalle I et que f est strictement croissante
pour simplifier la rédaction (le cas général se traite de même). Soit ε > 0
suffisamment petit pour que ]a − ε, a + ε[ soit entièrement inclus dans I.
Comme f est strictement croissante, on a f(a−ε) < f(a) = b < f(a+ε). On
peut fixer η > 0 assez petit pour que f(a−ε) < b−η < b < b+η < f(a+ε).
Pour tout y ∈ ]b− η, b+ η[, on a alors

f(a− ε) < y < f(a+ ε)

et, par stricte croissance de f−1, on en déduit :

a− ε = f−1(f(a− ε)) < f−1(y) < f−1(f(a+ ε)) = a+ ε.

Ainsi, comme a = f−1(b), on vient de prouver que |y − b| < η implique
|f−1(y)− f−1(b)| < ε. D’où la continuité de f−1 en b.
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Pour le point (4), on écrit le taux de variation de f−1 au point b = f(a),
en fonction de la variable y = f(x) :

f−1(y)− f−1(b)
y − b

= x− a
f(x)− f(a) .

Quand y tend vers b, x = f−1(y) tend vers f−1(b) = a par continuité de

f−1 en b. Par dérivabilité de f en a, la quantité f(x)−f(a)
x−a tend donc vers

f ′(a). Et comme cette limite n’est pas nulle par hypothèse, on peut passer
à l’inverse et voir que le membre de droite de l’égalité ci-dessus tend vers
1/f ′(a). Cela prouve que f−1 est dérivable en b, de dérivée 1/f ′(a). ♦

Remarque 25. Géométriquement, si la dérivée de f s’annule en a, la
tangente au graphe de f au point (a, f(a)) est horizontale. Par réflexion par
rapport à la première bissectrice, le graphe de f−1 admet une tangente verti-
cale au point (f(a), a), c’est-à-dire de pente infinie : f−1 n’est pas dérivable
en f(a).

Exemple 15. On peut définir le logarithme népérien comme la primitive
de la fonction inverse qui s’annule en 1 2. Par construction, cette fonction
est dérivable sur R∗+, de dérivée strictement positive, donc strictement crois-
sante. Par le théorème de la bijection, on peut définir l’exponentielle comme
la fonction réciproque du logarithme sur cet intervalle. Et on peut prouver
les propriétés usuelles de l’exponentielle... En particulier, la formule ci-dessus
donne exp′ = 1

ln′ ◦ exp = exp.

Pour définir de nouvelles fonctions comme fonctions réciproques, on peut
donc étudier les fonctions dont on dispose déjà et chercher les plus grands
intervalles sur lesquels elles sont strictement monotones. Pour les fonctions
trigonométriques, par périodicité, il y a une infinité de tels intervalles : il
faut faire un choix et c’est arbitraire. Les définitions ci-dessous présentent
les choix standards. Ces fonctions sont à connâıtre ! Les graphes présentés
s’obtiennent à partir de ceux des fonctions trigonométriques (sinus, cosinus,
tangente, sur les domaines précisés), en effectuant une symétrie par rapport
à la première bissectrice.

Énoncé indispensable 14 : arcsinus

La fonction sinus est continue et strictement croissante sur l’in-
tervalle I = [−π

2 ,
π
2 ]. Elle y prend toutes les valeurs de l’intervalle

J = [−1, 1]. C’est donc une bijection entre I et J et on peut définir
une fonction réciproque, appelée arcsinus :

arcsin : [−1, 1]→
[
−π2 ,

π

2

]
.

Pour x ∈ [−1, 1], arcsin(x) est l’unique angle compris entre −π/2 et π/2
dont le sinus est x.

2. On montrera que toute fonction continue admet une primitive dans le chapitre sur
l’intégrale.
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La fonction arcsinus est strictement croissante et continue sur [−1, 1].
Elle est dérivable sur ]− 1, 1[, avec

∀x ∈]− 1, 1[, arcsin′(x) = 1√
1− x2

.

1

-1

π
2

−π
2

Figure 1. Le graphe de la fonction arcsinus

Démonstration. Tout découle du théorème de la bijection. Pour la dériva-
bilité, observons que la dérivée de sinus s’annule aux points ±π/2, et en
aucun autre point de I. Comme sin(±π/2) = ±1, cela prouve que arcsin est
dérivable sur ]− 1, 1[. La formule donne pour tout x ∈]− 1, 1[ :

arcsin′(x) = 1
sin′(arcsin(x)) = 1

cos(arcsin(x)) .

On peut observer que arcsin(x) est dans ]− π
2 ,

π
2 [, donc cos(arcsin(x)) > 0.

Cela permet d’écrire

cos(arcsin(x)) =
√

(cos(arcsin(x)))2 =
√

1− (sin(arcsin(x)))2 =
√

1− x2.

D’où la formule pour la dérivée. ♦

Remarque 26. Attention au domaine de définition ! Par définition d’une
réciproque, on dispose bien sûr des formules :

∀x ∈ [−1, 1], sin(arcsin(x)) = x,

∀x ∈
[
−π2 ,

π

2

]
, arcsin(sin(x)) = x.

Ces formules sont-elles vraies pour un réel x quelconque ? Déjà, si x n’est pas
dans [−1, 1], arcsin(x) n’est pas défini, donc la première formule n’a aucun
sens. Et la seconde ? L’expression arcsin(sin(x)) a un sens pour tout réel x
puisque la fonction sinus est définie sur R et prend ses valeurs dans [−1, 1],
où la fonction arcsinus est définie. La seconde formule est donc diablement
tentante... mais fausse. En effet, arcsin(sin(x)) est toujours dans

[
−π

2 ,
π
2
]
; si

on prend x en dehors de cet intervalle, la formule est forcément fausse.



42 2. ANALYSE

Énoncé indispensable 15 : arccosinus

La fonction cosinus est continue et strictement décroissante sur
l’intervalle I = [0, π]. Elle y prend toutes les valeurs de l’intervalle
J = [−1, 1]. C’est donc une bijection entre I et J et on peut définir
une fonction réciproque, appelée arccosinus :

arccos : [−1, 1]→ [0, π].
Pour x ∈ [−1, 1], arccos(x) est l’unique angle compris entre 0 et π dont
le cosinus est x.

La fonction arccosinus est strictement décroissante et continue sur
[−1, 1]. Elle est dérivable sur ]− 1, 1[, avec

∀x ∈]− 1, 1[, arccos′(x) = − 1√
1− x2

.

1-1

π

π
2

0

Figure 2. Le graphe de la fonction arccosinus

Démonstration. C’est totalement similaire au cas de sinus. Le signe - dans
la formule vient simplement de cos′ = − sin (versus sin′ = cos). ♦

Énoncé indispensable 16 : arctangente

La fonction tangente est continue et strictement croissante sur l’in-
tervalle I =]− π

2 ,
π
2 [. Elle y prend toutes les valeurs de l’intervalle J = R.

On peut donc définir une fonction réciproque, appelée arctangente :

arctan : R→
]
−π2 ,

π

2

[
.

Pour x ∈ R, arctan(x) est l’unique angle compris entre −π/2 et π/2
dont la tangente est x. En outre,

lim
x→+∞

arctan(x) = π

2 et lim
x→−∞

arctan(x) = −π2 .
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La fonction arctangente est strictement croissante et dérivable sur R,
avec

∀x ∈ R, arctan′(x) = 1
1 + x2 .

π
2

−π
2

0

Figure 3. Le graphe de la fonction arctangente

Démonstration. La fonction arctangente est bien définie par le théorème de
la bijection. Comme la fonction tangente tend vers ±∞ en ±π/2, l’intervalle
J est bien R et cela donne les limites indiquées. Pour la dérivabilité, on
observe que tan′ = 1 + tan2 ne s’annule pas. Et la formule de dérivation
donne pour tout x ∈ R :

arctan′(x) = 1
tan′(arctan(x)) = 1

1 + tan(arctan(x))2 = 1
1 + x2 .

♦
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3. Suites récurrentes

Dans cette partie, on s’intéresse aux suites définies par récurrence, comme
évoquées dans la partie 1. On va se concentrer sur le cas réel afin de tirer
parti de notre étude des fonctions continues/dérivables sur des intervalles
de R. On travaillera donc avec une fonction f : I → R, dont le domaine de
définition I est un intervalle de R. Les suites (un) qu’on considérera seront
définies par leur premier terme u0 et une relation de récurrence

un+1 = f(un),

vérifiée pour tout indice n.
Par exemple, en prenant pour fonction f : x 7→ λx, avec λ ∈ R, on

obtient exactement les suites géométriques de raison λ. En prenant f affine
(i.e. f : x 7→ ax+ b), on obtient les suites arithmético-géométriques.

Nous allons donner des réponses générales à quelques questions natu-
relles. La suite (un) est-elle bien définie ? Par exemple, si on prend u0 dans
I, la fonction f est certes définie en u0, mais pas forcément en u1 = f(u0),
ce qui empêche de définir le terme u2... Peut-on visualiser le comportement
de la suite (un) à l’aide du graphe de f ? Quelles propriétés de la fonction
f peuvent garantir que la suite (un) est monotone ? Qu’elle converge ? Vers
quelle limite ?

3.1. Bien définie ? Pour éviter le gag évoqué ci-dessus, on va imposer
que, si f est bien définie en x, alors f est encore bien définie en f(x).

Definition 12. Soit f une fonction définie sur un intervalle I. On dit
que I est stable ou stabilisé par f si

∀x ∈ I, f(x) ∈ I.

Exemple 16. L’intervalle [0,+∞[ est stabilisé par la fonction x 7→ x2,
alors que l’intervalle ]−∞, 0] ne l’est pas.

Proposition 14. Soit I un intervalle stabilisé par une fonction f . Si
u0 est un point de I, alors la relation de récurrence

∀n ∈ N, un+1 = f(un)

définit une suite (un). De plus, pour tout n ∈ N, un est dans I.

Démonstration. On démontre par récurrence sur n ∈ N la propriété

Pn : un est bien défini et se trouve dans I.

Initialisation : par hypothèse, u0 ∈ I. Hérédité. Soit n ∈ N tel que Pn est
vraie. Puisque un est dans I, où f est bien définie, un+1 = f(un) est bien
défini. Puisque I est stabilisé par f , un+1 = f(un) est dans I, ce qui prouve
Pn+1. ♦

À partir de maintenant, on se donne un intervalle I stabilisé par f , ainsi
que u0 ∈ I. Et on note (un) la suite définie par

∀n ∈ N, un+1 = f(un).
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3.2. Représentation graphique. On note G le graphe de la fonction
f , D la droite d’équation y = x (appelée la première bissectrice). On peut
représenter graphiquement les termes successifs de la suite (un),de la façon
suivante.

On commence par placer le point P0 d’abscisse u0 sur la courbe G. Par
définition, ses coordonnées sont (u0, u1).

Ensuite, pour n ≥ 0, on itère les deux étapes suivantes.

(1) On trace le segment horizontal reliant Pn à la droite D, et on note
P ′n+1 le point de D ainsi obtenu. Ses coordonnées sont (un+1, un+1).

(2) On trace le segment vertical reliant P ′n+1 à la courbe G, et on note
Pn+1 le point de G ainsi obtenu. Ses coordonnées sont (un+1, un+2).

Pour tout entier naturel n, le terme un de la suite est donc l’abscisse du point
Pn du graphe G de f . Les exemples suivants montrent des comportements
typiques.

Exemple 17. On considère la fonction f : R→ R définie par f(x) = x2.
Le premier dessin correspond à u0 = 3

4 = 0, 75.

11

11

00

PP00P'P'11

PP11
P'P'22

PP22
P'P'33

PP33

Le second dessin correspond à u0 = 1, 05.
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Exemple 18. On considère la fonction f : ] − 1,+∞[→ R définie par
f(x) = 1

x+1 , avec u0 = 1
2 .
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3.3. Sens de variation. Nous allons énoncer deux résultats prédisant
une forme de monotonie pour la suite récurrente (un). Ils font des hypothèses
différentes sur la fonction f : le premier demande que son graphe reste soit
au-dessus, soit au-dessous de la première bissectrice ; le second traite du cas
où la fonction f elle-même est monotone.

Proposition 15.

(1) Si pour tout x ∈ I, f(x) ≥ x, alors (un) est croissante.

(2) Si pour tout x ∈ I, f(x) ≤ x, alors (un) est décroissante.

Démonstration. On suppose que pour tout x ∈ I, f(x) ≥ x (resp. f(x) > x).
Alors, pour n ∈ N, un+1 = f(un) ≥ un (resp. un+1 = f(un) > un), d’où le
premier point. Le second est similaire. ♦

On peut aussi obtenir de la stricte monotonie. Par exemple, si le graphe
de f est strictement au-dessus de la première bissectrice (f(x) > x), on voit
de même que (un) est strictement croissante.

Les dessins tracés au début de ce chapitre illustrent bien cette première
proposition. Ils annoncent aussi que le lien entre le sens de variation de f et
celui de (un) est plus subtil.

Proposition 16.

(1) Si f est croissante sur I, alors (un) est monotone ; elle est croissante
sur u1 ≥ u0, décroissante si u1 ≤ u0.

(2) Si f est décroissante sur I, alors les sous-suites (u2n) et (u2n+1) sont
monotones de sens contraires.

Démonstration.

(1) On raisonne par récurrence sur n. Supposons que u1 ≥ u0. Soit n ∈
N tel que un+1 ≥ un. Puisque f est croissante, on en déduit que
f(un+1) ≥ f(un), ce qui se réécrit un+2 ≥ un+1. Le principe de
récurrence assure donc que pour tout n ∈ N, un+1 ≥ un, donc la
suite (un) est croissante. Le second cas est exactement similaire.

(2) Puisque f est décroissante, la fonction f ◦ f est croissante (si x ≤ y,
f(x) ≥ f(y), puis f(f(x)) ≤ f(f(y))). Or la suite (u2n) vérifie

∀n ∈ N, u2(n+1) = u2n+2 = f(u2n+1) = f(f(u2n)),
donc c’est une suite récurrente associée à la fonction croissante f ◦ f .
Par le point (1), la suite (u2n) est monotone. La suite (u2n+1) est
aussi une suite récurrente associée à la fonction croissante f ◦f , donc
elle est aussi monotone. Si on suppose par exemple (u2n) croissante,
on a :

∀n ∈ N, u2n+2 ≥ u2n
donc en appliquant la fonction décroissante f , on obtient

∀n ∈ N, u2n+3 = f(u2n+2) ≤ f(u2n) = u2n+1,

ce qui montre que la suite (u2n+1) est décroissante. Le cas où (u2n)
est décroissante est similaire.

♦
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3.4. Convergence et points fixes. Dans ce paragraphe, on cherche
à comprendre la convergence de la suite récurrente (un) en termes des pro-
priétés de la fonction f .

D’abord, quelles sont les limites possibles ? L’énoncé suivant donne une
réponse générale quand l’intervalle stable I est un intervalle fermé, c’est-à-
dire de la forme [a, b], ou ]−∞, b] ou [a,+∞[ ou ]−∞,+∞[.

Énoncé indispensable 17 : limites possibles

On suppose que la fonction f est continue sur un intervalle I, stable
et fermé, et que la suite récurrente (un) converge vers une limite `. Alors
` est dans I et c’est un point fixe de f : f(`) = `.

Démonstration. Comme I est fermé, il est défini par des inégalités larges
(c’est l’ensemble des réels x vérifiant x ≥ a et/ou x ≤ b, ou rien du tout).
Puisqu’il est stable, tous les termes un de la suite vérifient ces inégalités
larges. En passant à la limite, on voit que ` les vérifie aussi : ` ∈ I.

Ensuite, la fonction f est continue en I, donc la caractérisation séquen-
tielle de la continuité (proposition 8) assure que (f(un)) converge vers f(`).
Or par définition la suite (f(un)) est la sous-suite (un+1) de (un), donc cette
suite converge aussi vers `. Par unicité de la limite, on a donc f(`) = `. ♦

En pratique, pour trouver les limites possibles d’une suite récurrente, on
cherche donc les points fixes de la fonction f . Il est bon de savoir qu’il y en
a toujours dans le cas où l’intervalle stable I est fermé et borné, i.e. de la
forme [a, b].

Proposition 17. On suppose que la fonction f est continue sur un
intervalle stable de la forme I = [a, b]. Alors f possède au moins un point
fixe.

Démonstration. On considére la fonction continue g : I → R définie par
g(x) = f(x) − x. Puisque I = [a, b] est stable, tous ses éléments x vérifient
a ≤ f(x) ≤ b. En prenant x = a puis x = b, on obtient g(a) = f(a)− a ≥ 0
et g(b) = f(b)− b ≤ 0. Le théorème des valeurs intermédiaires (théorème 7)
assure alors que g s’annule : il existe x ∈ I tel que g(x) = 0, ce qui signifie
exactement que x est un point fixe de f . ♦

Considérons maintenant l’exemple suivant.

Exemple 19. On considère la fonction continue f : x 7→ x2 sur l’inter-
valle I = [0, 1]. On voit que I est stable et fermé, et que f admet exacte-
ment deux points fixes sur I, à savoir 0 et 1. La proposition 15 assure que la
suite récurrente (un) est décroissante. Puisque (un) est minorée par 0, elle
converge vers une limite l, qui est 0 ou 1 par la proposition 17. Si on part
de u0 = 1, la suite (un) est constante à la valeur 1 (puisque c’est un point
fixe) ; en particulier, elle converge vers 1. Si on choisit plutôt u0 ∈ [0, 1[, la
décroissance de la suite l’empêche de converger vers 1 : c’est donc qu’elle
converge vers 0 (voir aussi les dessins au début de ce chapitre).
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Il semble donc que les deux points fixes de f ne jouent pas un rôle
symétrique : 1 a tendance à repousser les termes de la suite (sauf si on part
exactement de 1), alors que 0 a tendance à les attirer. Les résultats qui
suivent vont expliquer ce comportement.

Nous allons faire des hypothèses supplémentaires de régularité sur la
fonction f . Si k est un entier naturel, on dira que f est de classe Ck si f
est k fois dérivable de dérivée k-ième continue. Cela revient à dire que les
dérivées successives f ′, (f ′)′ = f ′′, . . . , f (k) existent et sont continues.

Proposition 18. On suppose que f est de classe C1 sur l’intervalle
stable I et que ` ∈ I est un point fixe de f tel que |f ′(`)| > 1. Dans ce cas, si
la suite récurrente (un) converge vers `, elle y est forcément stationnaire :
il existe N ∈ N tel que pour tout n ≥ N , un = `.

Démonstration. Puisque |f ′(`)| > 1, la continuité de |f ′| donne un réel η > 0
tel que |f ′| ≥ 1 sur l’intervalle J = I ∩ ]`− η, `+ η[.

Puisque la suite (un) converge vers `, il existe un rang N tel que pour
tout n ≥ N , |un − `| < η. Comme l’intervalle I est stable, on en déduit que
pour tout n ≥ N , un est dans J .

On va maintenant montrer que la suite est constante à partir de ce rang
N . Pour n ≥ N , observons que l’égalité des accroissements finis donne un
point cn entre ` et un tel que

f(un)− f(`) = (un − `)f ′(cn).

Par hypothèse, le membre de gauche n’est autre que un+1 − `. Par ailleurs,
le point cn est entre les points ` et un de l’intervalle J , donc cn est aussi
dans J : |f ′(cn)| ≥ 1. On en déduit :

|un+1 − `| ≥ |un − `|.

Donc, par récurrence immédiate, pour tout n ≥ N et tout p ∈ N :

|un+p − `| ≥ |un − `|.

Fixons n ≥ N et faisons tendre p tend vers +∞ : par convergence de la suite
vers `, on trouve 0 ≥ |un − `|, i.e. un = `, et ce pour tout n ≥ N . ♦

C’est un résultat négatif : sauf si par chance la suite tombe exactement
sur le point fixe ` au bout d’un nombre fini d’itérations, elle ne peut pas
converger vers `. La preuve montre même que si la suite passe près de `,
sans y être tout à fait, elle va s’en éloigner. Ce point fixe est dit répulsif.

On cherche maintenant à trouver un critère positif, permettant de conclure
que la suite récurrente converge vers une limite bien identifiée. On peut
s’inspirer du cas des suites géométriques : ce sont les suites récurrentes (un)
associées à des fonctions du type fa : x 7→ ax, pour une constante a ∈ R.
Ce sont des suites explicites : un = anu0 pour tout n ∈ N. Si |a| > 1, la
suite diverge, sauf si on part de u0 = 0 (auquel cas elle reste nulle) : c’est la
situation de la proposition précédente , le point fixe 0 de fa est répulsif. Dans
le cas |a| < 1, par contre, la suite converge toujours vers le point fixe 0 de
fa : ce point fixe est attractif, il attire toutes les suites récurrentes associée
à fa. On va généraliser cette situation.
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Definition 13. Une fonction f : I → R est dite contractante s’il existe
k ∈ [0, 1[ tel que, pour tout x, y ∈ I,

|f(x)− f(y)| ≤ k|x− y| .
Parfois, pour préciser la valeur de la constante k, on dit que f est k-

contractante.

Test : propriétés des fonctions contractantes

— Prouver qu’une fonction contractante est continue.
— Prouver qu’une fonction contractante admet au plus un point

fixe.

Le critère suivant est très utile pour montrer qu’une fonction est contrac-
tante.

Proposition 19. Soit f une fonction dérivable sur un intervalle I telle
que sup

I
|f ′| < 1. Alors f est contractante.

Démonstration. Notons k = sup
I
|f ′|. Alors k < 1 par hypothèse, et l’in-

égalité des accroissements finis dit que |f(x) − f(y)| ≤ k|x − y| pour tous
x, y ∈ I. ♦

Remarque 27. Si f est de classe C1 sur un segment [a, b], le théorème
des bornes atteintes assure que l’hypothèse supx∈I |f ′(x)| < 1 équivaut à
l’hypothèse :

pour tout x ∈ I, |f ′(x)| < 1 .
Attention, ce n’est pas vrai sans ces hypothèses !

Remarque 28. Soit f une fonction de classe C1 sur un intervalle stable
I contenant un point ` tel que f(`) = ` et |f ′(`)| < 1. Soit k un réel tel que
|f ′(`)| < k < 1. Par continuité de f ′, il existe η > 0 tel que |f ′| ≤ k sur
l’intervalle J = I ∩ ]`−η, `+η[. Alors f est contractante sur l’intervalle J . On
peut noter que l’intervalle J est lui-même stable : si x ∈ J , |f(x)− f(`)| ≤
k|x− `| ≤ η ; puisque f(`) = `, cela veut dire que f(x) est dans ]`− η, `+ η[,
donc dans J (I étant supposé stable).

Énoncé indispensable 18 : théorème du point fixe contractant

On suppose que f est une fonction k-contractante sur un intervalle
stable I, contenant un point fixe `. Alors la suite récurrente (un) converge
vers `. De plus, pour tout n ∈ N,

|un − `| ≤ kn |u0 − `| .

Outre le résultat de convergence, on remarquera l’inégalité, qui mesure
la vitesse de convergence. C’est un aspect important quand on veut évaluer
numériquement la limite en calculant les termes successifs de la suite. Dans ce
cas, la suite tend vers sa limite au moins aussi vite qu’une suite géométrique
de raison k. C’est assez rapide, d’autant plus rapide que k est petit.
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Démonstration. On prouve l’inégalité par récurrence sur n. Elle est immé-
diate pour n = 0 Et si elle est vraie au rang n, on peut écrire

|un+1 − `| = |f(un)− f(`)| ≤ k|un − `| ≤ k · kn|u0 − l|,
ce qui prouve l’inégalité au rang n+ 1.

Ceci montre que pour tout n ∈ N : |un − `| ≤ kn|u0 − `|. Puisque
0 ≤ k < 1, la suite (kn) converge vers 0. On en déduit que |un− `| tend vers
0 : la suite (un) converge vers `. ♦

Exemple 20. Soit a un réel strictement positif. On considère la fonction
f définie sur R∗+ par f(x) = 1

2
(
x+ a

x

)
. Alors f(

√
a) =

√
a. En outre, f est

de classe C1 et pour tout x ∈ I, f ′(x) = 1
2

(
1− a

x2

)
. On voit donc que f

est 1
2 -contractante sur l’intervalle I = [

√
a,+∞[ et on peut vérifier que cet

intervalle est stable (puisque (A−B)2 ≥ 0, on a A2 +B2 ≥ 2AB pour tous

réels A et B : prendre ici A =
√
x et B =

√
a√
x
). Donc le théorème assure que

la suite (un), définie par u0 ∈ I quelconque et un+1 = f(un) = 1
2

(
un + a

un

)
,

converge vers
√
a à une vitesse exponentielle.

Cela fournit un algorithme efficace pour calculer des valeurs appro-
chées de la racine carrée d’un nombre réel positif. Par exemple, si a = 2
et u0 = 2, on obtient u1 = 1, 5, u2 = 1, 41 . . . , u3 = 1, 41421 . . . , u4 =
1, 41421356237 . . . , u5 = 1, 414213562373095048801688 . . . , où les décimales
écrites avant les points de suspension sont exactes. On voit donc que le
nombre de décimales exactes semble doubler à chaque itération (ce qui est
encore meilleur que l’estimation donnée par le théorème : cf. TD).

La méthode de Newton est une technique générale permettant d’appli-
quer le théorème du point fixe contractant pour calculer des solutions ap-
prochées d’équations de la forme

F (x) = 0,
où F est une fonction de classe C2 sur un intervalle ouvert I. Pour ce faire,
on se donne u0 ∈ I et on construit une suite récurrente de la façon suivante :

11 22 33 44 55 66 77 88

11

22

33

44

00

ff

uu00 uu11 uu22 uu33
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Géométriquement, si un est construit, on trace la tangente au graphe de F
au point de coordonnées (un, F (un)), et on note un+1 l’abscisse du point
d’intersection entre la tangente et l’axe des abscisses.

On voit vite qu’il peut y avoir un souci si la tangente qu’on trace est
horizontale, donc ne rencontre pas l’axe des abscisses. Mais passons là-dessus
pour le moment.

Algébriquement, l’équation de la tangente au graphe au point de coor-
données (un, F (un)) s’écrit : y = F (un) + F ′(un)(x− un). L’intersection de
cette tangente avec l’axe des abscisses est le point de coordonnées (un+1, 0)
vérifiant 0 = F (un) + F ′(un)(un+1 − un), i.e.

(1) un+1 = un −
F (un)
F ′(un) .

Par conséquent, la suite (un) est définie par u0 ∈ I et pour tout n ∈ N,
un+1 = f(un), où la fonction f est donnée par

f(x) = x− F (x)
F ′(x) .

La fonction f est continue là où elle est définie. Si la suite (un) converge vers
`, ce sera donc un point fixe de f : f(`) = `. La formule donnant f montre
alors que F (`) = 0. Donc la limite ` sera bien une solution du problème
considéré.

Reste à assurer que la suite (un) est bien définie et converge, ce qui
n’est pas garanti a priori. Manifestement, au vu de la formule donnant f ,
il peut y avoir un problème si F ′ s’annule (c’est-à-dire là où la tangente
est horizontale). Pour ne pas tomber dans ce piège, on va supposer que
l’équation F (x) = 0 admet une solution pour laquelle F ′ ne s’annule pas, et
aussi que la suite est initialisée assez près de cette solution.

Proposition 20. Soit ` ∈ I tel que F (`) = 0 et F ′(`) 6= 0. Alors
pour tout u0 ∈ I suffisamment proche de `, la suite (un) est bien définie et
converge vers `.

Démonstration. Puisque F (`) = 0, on a f(`) = `. Comme F est de classe
C2 et F ′(`) 6= 0, la fonction f est de classe C1 au voisinage de `, et on a

f ′(`) = 1− F ′(`)2 − F (`)F ′′(`)
F ′(`)2 = 0.

En particulier, |f ′(`)| < 1. On peut donc utiliser la remarque 28 pour trouver
un intervalle stable J autour de ` sur lequel f est contractante.

On peut alors appliquer le théorème du point fixe contractant sur cet
intervalle : pour tout u0 ∈ J , la suite (un) est bien définie et elle converge
vers `. ♦

Exemple 21. Soient a ∈ R∗+ et I = R∗+. On considère la fonction F :
I → R définie par F (x) = x2−a. La méthode de Newton consiste à regarder
la suite (un) définie par un+1 = f(un), avec f : I → I définie par f(x) =
1
2(x + a

x). La proposition 20 assure alors que (un) converge vers
√
a si u0

est suffisamment proche de
√
a. On retrouve donc exactement l’exemple 20

comme cas particulier de la méthode de Newton.
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4. Intégration

4.1. Introduction. Commençons par un rappel. Soit f une fonction
définie sur un intervalle I, à valeurs dans R. Une primitive de f est une
fonction F dérivable sur I, de dérivée F ′ = f .

Une notion d’intégrale a été introduite au premier semestre, à l’aide des
primitives. Si F est une primitive de f , on pose pour tous réels α et β de I :∫ β

α
f(t) dt = F (β)− F (α) .

Puisque toute autre primitive G de f s’écrit G = F + c pour une constante
c, la différence G(β) − G(α) vaudra aussi F (β) − F (α) et donc l’intégrale,
définie ainsi, ne dépend pas du choix de la primitive.

Les propriétés classiques de la dérivation (dérivée d’une somme, d’un pro-
duit, d’une composée, lien entre monotonie et signe de la dérivée) confèrent
à cette intégrale des propriétés calculatoires riches : relation de Chasles, li-
néarité, positivité, intégration par parties, changement de variable... Nous
renvoyons le lecteur aux cours du premier semestre pour les énoncés et aux
travaux dirigés pour des révisions.

Dans ce cours, on présente un cadre théorique qui recouvre ce cas de
l’intégrale définie par la primitive. En particulier on démontrera que les
fonctions continues admettent une primitive (théorème admis au premier
semestre) et on définira l’intégrale de fonctions plus générales, non nécessai-
rement continues. L’idée générale est que l’intégrale d’une fonction positive
doit être « l’aire sous la courbe », si on donne un sens à cette expression,
ce qui n’est pas toujours facile. Qu’est-ce qu’une aire ? Si la fonction qu’on
regarde est assez gentille, son graphe sera raisonnable et on va voir une
construction qui donne une sorte de formule pour l’aire sous le graphe, par
un procédé d’approximation. Mais il est bon de garder à l’esprit qu’il existe
des fonctions suffisamment vilaines pour qu’on n’arrive pas du tout à définir
l’aire sous leur graphe.

Nous conclurons ce chapitre par la preuve de quelques formules utiles –
notamment les formules de Taylor – et par quelques idées autour de l’ap-
proximation numérique des intégrales.

4.2. Intégrale des fonctions en escalier. Pour définir l’intégrale
des fonctions continues sur un intervalle borné [a, b], on va passer par les
fonctions en escalier, qui ne sont pas continues en général : essentiellement
on va casser [a, b] en plusieurs intervalles et regarder les fonctions qui sont
constantes sur chacune de ces petits intervalles. L’avantage de ces fonctions,
c’est la simplicité géométrique de leur graphe : « l’aire sous la courbe » est
une notion très claire pour une fonction en escalier.

Definition 14. Une subdivision σ de [a, b] est un ensemble fini de [a, b]
contenant a et b. On notera σ = {x0 < x1 < x2 < · · · < xn}, avec x0 = a
et xn = b. Le pas |σ| est l’écart maximal entre deux points successifs de la
subdivision :

|σ| = max{xi − xi−1 , | i = 1, 2, . . . , n}.

Exemple 22. L’exemple typique de subdivision est celui où cet écart
est constant : xi+1 − xi = |σ| = b−a

n pour tout i. Cela revient à dire que
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xi = a + i b−an pour i = 0, . . . , n. On dit alors que σ est une subdivision
régulière.

On dira que la subdivision σ′ est plus fine que la subdivision σ si σ ⊂ σ′ :
on a plus de points dans la subdivision σ′, chaque intervalle ]x′i−1, x

′
i[ délimité

par σ′ et inclus dans un intervalle délimité par σ et les pas vérifient |σ′| ≤ |σ|.
De façon générale, la réunion σ ∪ τ des deux subdivisions σ et τ est une
subdivision plus fine que les deux subdivisions d’origine.

Definition 15. Une fonction f : [a, b]→ R est dite en escalier s’il existe
une subdivision σ = {x0 < x1 < · · · < xn} de [a, b] telle que f est constante
sur chacun des intervalles ouverts ]xi−1,xi[ pour i ∈ {1, 2, . . . , n}.

On notera E ou E([a,b]) l’ensemble des fonctions en escalier sur [a, b] et on
dira que la subdivision σ est adaptée à la fonction en escalier f , ou bien que
f est associée à la subdivision σ. Dans cette définition, on peut remarquer
que les valeurs prises par la fonction aux points xi sont complètement libres :
on n’y impose rien.

•

•

•

•

•

a = x0 x1 x2 x3 x4 = b

Figure 4. Une fonction en escalier

Il est utile d’introduire la fonction indicatrice χX d’une partie X de R :
c’est par définition la fonction qui vérifie

χX(x) = 1 si x ∈ X et χX(x) = 0 si x /∈ X .

Les fonctions indicatrices permettent de bâtir des exemples de fonctions en
escalier : χ[0,1] ou 3χ[1,2[ − χ]2,3[ + 17χ{5} sont des fonctions en escalier sur
[0, 10], associées à la subdivision {0, 1, 2, 3, 5, 10}.

De façon générale, considérons une fonction en escalier f associée à une
subdivision σ = {x0 < x1 < · · · < xn}. Pour i = 1, . . . , n, on définit les
milieux mi = (xi−1 + xi)/2 des intervalles ]xi−1,xi[ et ainsi une nouvelle
fonction en escalier

g =
n∑
i=1

f(mi)χ]xi−1,xi[.

Alors les fonctions f et g prennent des valeurs identiques sur les intervalles
]xi−1,xi[ pour i ∈ {1, 2, . . . , n}.
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En particulier, le graphe d’une fonction en escalier, avec l’axe des abs-
cisses, permet de délimiter un nombre fini de rectangles de la forme, pour
i ∈ {1, 2, . . . , n} : [xi−1,xi]× [0, f(mi)] si f(mi) ≥ 0 ou [xi−1,xi]× [f(mi),0]
si f(mi) ≤ 0 ; ces rectangles sont situés soit au-dessus de l’axe des abscisses,
soit au-dessous.

Definition 16. L’intégrale d’une fonction en escalier est définie comme
la différence entre, d’une part, la somme des aires des rectangles délimités
par la fonction en escalier qui sont situés au-dessus de l’axe des abscisses et,
d’autre part, la somme des aires des rectangles qui sont situés au-dessous
de cet axe. Autrement dit, si f est une fonction en escalier associée à la
subdivision σ = {x0 < x1 < · · · < xn} de [a, b], c’est la quantité∫ b

a
f =

n∑
i=1

(xi − xi−1)f(mi),

où mi = (xi−1 + xi)/2, pour i = 1, . . . , n.

C’est donc l’aire sous la courbe si la fonction en escalier est à valeurs po-
sitives. Sinon, c’est une aire « algébrique » : on compte positivement l’aire si-
tuée au-dessus de l’axe des abscisses et négativement l’aire située au-dessous.

Remarque 29. Dans l’égalité précédente, pour tout i , le point milieu
mi = (xi−1 +xi)/2 de l’intervalle ]xi−1,xi[ peut être remplacé par n’importe
quel point ci de cet intervalle (puisque f y est constante). De plus, les valeurs
de f aux points xi de la subdividision σ n’interviennent pas. De la sorte,
pour la fonction en escalier g =

∑n
i=1 f(mi)χ]xi−1,xi[ construite ci-dessus, on

a
∫ b
a f =

∫ b
a g.

•

•

•

•

•

a = x0 x1 x2 x3 x4 = b

+
+

+

−

Figure 5. L’intégrale de cette fonction en escalier est la dif-
férence entre l’aire en orange et l’aire en rose.

Clairement, une fonction en escalier f peut être associée à plusieurs
subdivisions (et même une infinité). Typiquement, si la subdivision σ est
adaptée à f , toute subdivision plus fine σ′ l’est aussi : les intervalles qu’elle
délimite sont en fait inclus dans ceux de σ, donc f y est constante. Graphi-
quement, cela revient à découper parallèlement à l’axe des ordonnées chacun
des rectangles en une réunion finie de rectangles.
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Proposition 21. La valeur de
∫ b
a f ne dépend pas de la subdivision

adaptée à la fonction en escalier f .

Démonstration. Soient σ et τ deux subdivisions adaptées à f . Alors la sub-
division σ ∪ τ est plus fine que les subdivisions σ et τ . En usant de cette
construction, il est suffisant de montrer l’égalité de la valeur de l’intégrale
calculée à partir de deux subdivisions dont l’une est plus fine que l’autre. Or
les rectangles associés au graphe de f et à la subdivision la plus fine peuvent
être réunis pour reconstituer exactement les rectangles associés au graphe de
f pour l’autre subdivision, ce qui, en raisonnant en termes d’aires, permet
de conclure. ♦

Test : fonction en escalier constante

Montrer qu’une fonction f qui est constante sur l’intervalle [a,b] ap-
partient à l’ensemble E et calculer son intégrale. Déterminer une pri-

mitive F et montrer l’identité
∫ b
a f = F (b) − F (a). Pour tout point

c ∈]a,b[ , montrer que l’intégrale de f quand elle est associée à la subdi-
vision σ = {a < c < b} est identique à la valeur obtenue précédemment.

Proposition 22 (propriétés de l’intégrale des fonctions en escalier).
Soient f, g des fonctions en escalier sur [a, b].

(1) (Linéarité) Pour tout λ ∈ R, la fonction f + λg est en escalier et∫ b
a (f + λg) =

∫ b
a f + λ

∫ b
a g.

(2) (Relation de Chasles) Pour tout c ∈]a, b[, f se restreint en des fonc-

tions en escalier sur [a, c] et sur [c, b] vérifiant :
∫ b
a f =

∫ c
a f +

∫ b
c f .

(3) (Croissance) Si f ≤ g,
∫ b
a f ≤

∫ b
a g.

(4) (Lien avec la valeur absolue) La fonction |f | est en escalier et vérifie∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.
Démonstration.

(1) Soient σ et τ des subdivisions adaptées respectivement à f et g. La
subdivision σ∪τ = {x0 < x1 < · · · < xn} est plus fine que σ et τ donc
adaptée à f et g. Et on voit que, pour tout indice i, la fonction f+λ g
est constante à la valeur f(mi) + λ g(mi) sur l’intervalle ]xi−1,xi[, en
notant mi le milieu de cet intervalle. Donc f + λ g est une fonction
en escalier et son intégrale vaut par définition

n∑
i=1

(xi − xi−1)(f(mi) + λg(mi)),

ce qu’on peut développer en
n∑
i=1

(xi − xi−1)f(mi) + λ
n∑
i=1

(xi − xi−1)g(mi) =
∫ b

a
f + λ

∫ b

a
g.

(2) Soit σ une subdivision de [a, b] adaptée à f . Soit τ = {x0 < x1 <
· · · < xn} la subdivision plus fine (dont adaptée à f) obtenue en
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ajoutant le point c à σ : on xk = c pour un indice k. Alors f est
constante sur chaque intervalle ]xi−1,xi[, τg = {xi | i ≤ k} est une
subdivision de [a, c] et τd = {xi | i ≥ k} est une subdivision de [c, b].
Donc f est en escalier sur [a, c] et [c, b], avec les formules∫ c

a
f =

k∑
i=1

(xi − xi−1)f(mi) et

∫ b

c
f =

n∑
i=k+1

(xi − xi−1)f(mi),

d’où l’on déduit :∫ b

a
f =

n∑
i=1

(xi − xi−1)f(mi) =
∫ c

a
f +

∫ b

c
f.

(3) Avec les notations utilisées en (1), puisque f ≤ g, on trouve∫ b

a
f =

n∑
i=1

(xi − xi−1)f(mi) ≤
n∑
i=1

(xi − xi−1)g(mi) =
∫ b

a
g.

(4) Toujours avec les mêmes notations, la fonction |f | est constante à la
valeur |f(mi)| sur chaque intervalle ]xi−1,xi[, donc c’est une fonction
en escalier et son intégrale est

∑n
i=1(xi − xi−1)|f(mi)|. Mais alors,

par inégalité triangulaire, on trouve :∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

(xi − xi−1)f(mi)
∣∣∣∣∣ ≤

n∑
i=1

(xi − xi−1)|f(mi)| =
∫ b

a
|f |.

♦

4.3. Intégrales inférieure et supérieure. Dans ce paragraphe, on
considère une fonction f : [a, b]→ R qu’on suppose bornée. On veut définir
son intégrale sur [a, b] en pensant que c’est une « aire algébrique sous la
courbe ».

Intuitivement, l’aire d’une figure géométrique peut être calculée en la
remplissant le mieux possible par des figures simples (constituées de tri-
angles, rectangles,...), dont on connâıt bien l’aire. C’est ainsi qu’Archimède
calculait l’aire d’un disque, en l’approchant par des polygônes réguliers avec
de plus en plus de côtés.

De façon analogue, on peut ici regarder les fonctions en escaliers ϕ dont
le graphe est sous celui de f : ϕ ≤ f . Chacune de ces fonctions ϕ a une
intégrale, définie par le paragraphe précédent comme une aire algébrique.
Une manière de concevoir l’intégrale de f est de penser que ce doit être
la plus grande aire obtenue ainsi. Plus précisément, on définit l’intégrale
inférieure de f par une borne supérieure :

Ia,b− (f) = sup
{∫ b

a
ϕ
∣∣∣ ϕ ∈ E([a, b]), ϕ ≤ f

}
.

On parle d’intégrale inférieure parce qu’on approche le graphe de f par
dessous, par des fonctions ϕ ≤ f .

On peut faire une construction similaire en travaillant avec des fonctions
en escalier dont le graphe est au-dessus de celui de f et en regardant la plus
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f

a b

ϕ

Figure 6. Construction de l’intégrale inférieure : c’est la
plus grande aire orange qu’on peut obtenir ainsi.

petite aire obtenue. Cela définit l’intégrale supérieure de f :

Ia,b+ (f) = inf
{∫ b

a
ψ
∣∣∣ ψ ∈ E([a, b]), ψ ≥ f

}
.

a b

ψ

f

Figure 7. Construction de l’intégrale supérieure : c’est la
plus petite aire orange qu’on peut obtenir ainsi.

Remarque 30. Selon le contexte, pour simplifier la notation, on s’au-

torisera à abréger Ia,b± (f) en I±(f) ou Ia,b± .

Les quantités I+(f) et I−(f) sont des réels bien définis pour toute fonc-
tion bornée f sur [a, b], comme le montre la proposition suivante. On remar-
quera que, pour une fonction bornée f , l’ensemble {f(x) | x ∈ [a, b]} est une
partie bornée de R, donc admet une borne supérieure et une borne inférieure
dans R, notées respectivement : M = sup

[a,b]
f et m = inf

[a,b]
f.

La fonction constante à la valeur m (resp. M) est donc une fonction en
escalier inférieure (resp. supérieure) ou égale à f : on peut l’utiliser pour
estimer l’intégrale inférieure (resp. supérieure) de f .

Proposition 23. On dispose des inégalités :

(b− a)m ≤ Ia,b− (f) ≤ Ia,b+ (f) ≤ (b− a)M.
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Démonstration. Soit ϕm la fonction constante à la valeur m sur [a, b]. Alors

ϕm ∈ E([a, b]) et ϕm ≤ f . La définition de Ia,b− (f) donne alors∫ b

a
ϕm ≤ Ia,b− (f).

Puisque
∫ b
a ϕm = m(b− a), cela donne l’inégalité de gauche.

L’inégalité de droite se démontre de la même façon, en considérant la
fonction constante ψM = M , qui vérifie ψM ≥ f .

Enfin, pour l’inégalité du milieu, on considère des fonctions en escalier ϕ
et ψ sur [a, b] vérifiant ϕ ≤ f ≤ ψ. Les propriété de l’intégrale sur E donnent∫ b

a
ϕ ≤

∫ b

a
ψ.

En prenant la borne inférieure sur toutes les fonctions ψ de ce type, on
trouve ∫ b

a
ϕ ≤ Ia,b+ (f).

En prenant la borne supérieure sur toutes les fonctions ϕ qui conviennent,

on arrive à Ia,b− (f) ≤ Ia,b+ (f). ♦

4.4. Intégrabilité. Intuitivement, si on fait un dessin, on sent bien
qu’une fonction raisonnable va avoir des intégrales inférieure et supérieure
égales. Et cette valeur commune sera l’aire sous la courbe.

Test : intégrales supérieure et inférieure de ϕ en escalier

Pour ϕ ∈ E([a,b]) montrer que Ia,b+ (ϕ) = Ia,b− (ϕ) =
∫ b
a ϕ .

Cette situation n’est pas universelle : il existe des fonctions bornées dont
les intégrales inférieures et supérieures diffèrent. Considérons par exemple
la fonction indicatrice χQ de l’ensemble des rationnels : χQ(x) vaut 1 si x
est rationnel et 0 si x est irrationnel. On peut voir que, pour cette fonction,
I0,1

+ = 1 tandis que I0,1
− = 0 (exercice !). L’idée est que dans chaque intervalle

d’une subdivision de [0, 1], il y a un rationnel et un irrationnel ; une fonction
en escalier au-dessus (resp. au-dessous) de χQ a donc ses paliers au-dessus
de 1 (resp. au-dessous de 0).

Énoncé indispensable 19 : intégrabilité

Soit f une fonction bornée sur [a, b]. On dit que f est intégrable sur

[a, b] lorsque Ia,b+ (f) = Ia,b− (f). On note alors

∫ b

a
f la valeur commune

de Ia,b+ (f) et Ia,b− (f) dans ce cas.

Ce qui précède dit que les fonctions en escaliers sont intégrables, tandis
que χQ n’est pas intégrable sur [0, 1].
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Remarque 31. Par définition des bornes inférieure et supérieure, f est
intégrable si et seulement si, pour tout ε > 0, il existe ϕ et ψ ∈ E([a,b])

vérifiant ϕ ≤ f ≤ ψ et

∫ b

a
ψ −

∫ b

a
ϕ =

∫ b

a
(ψ − ϕ) ≤ ε .

Remarque 32. Soit f une fonction intégrable sur [a, b]. Soit g une fonc-
tion égale à f , sauf en un nombre fini de points. Alors g est intégrable sur

[a, b] et
∫ b
a g =

∫ b
a f . C’est parce que l’intégrale d’une fonction en escalier ne

change pas quand on la modifie en un nombre fini de points (l’aire algébrique
sous la courbe ne change pas) : ainsi, les intégrales inférieure et supérieure
de f et g sont les mêmes.

Afin de démontrer que les fonctions continues sont bien intégrables, on a
besoin d’une relation de Chasles pour les intégrales inférieures et supérieures.

Lemme 2. Soient f une fonction bornée sur [a, b] et c ∈ [a, b]. Alors :

Ia,b± (f) = Ia,c± (f) + Ic,b± (f).

Démonstration. Soit ϕ ∈ E([a, b]) telle que ϕ ≤ f . Alors ϕ est en escalier
sur [a, c] et [c, b], de sorte que∫ c

a
ϕ ≤ Ia,c− (f) et

∫ b

c
ϕ ≤ Ic,b− (f).

Par Chasles pour la fonction en escalier ϕ, on en déduit en sommant :∫ b

a
ϕ ≤ Ia,c− (f) + Ic,b− (f).

En passant à la borne supérieure sur ce type de fonction ϕ, on arrive à

Ia,b− (f) ≤ Ia,c− (f) + Ic,b− (f).
Pour démontrer l’inégalité opposée, on se donne ϕ1 ∈ E([a, c]) et ϕ2 ∈

E([c, b]) telles que ϕ1 ≤ f et ϕ2 ≤ f . On définit alors ϕ ∈ E([a, b]) par
ϕ(x) = ϕ1(x) si x ∈ [a, c] et ϕ(x) = ϕ2(x) si x ∈]c, b]. Puisque visiblement
ϕ ≤ f sur [a, b], on a ∫ b

a
ϕ ≤ Ia,b− (f).

Le relation de Chasles pour les fonctions en escalier donne aussi :∫ b

a
ϕ =

∫ c

a
ϕ+

∫ b

c
ϕ =

∫ c

a
ϕ1 +

∫ b

c
ϕ2.

On en tire ∫ c

a
ϕ1 +

∫ b

c
ϕ2 ≤ Ia,b− (f).

En passant à la borne supérieure sur ϕ1, puis ϕ2, on trouve

Ia,c− (f) + Ic,b− (f) ≤ Ia,b− (f).
Et donc il y a égalité. On procède de même pour les intégrales supérieures.
♦

Ce lemme a une conséquence importante, quoique naturelle, si on le
joint à l’inégalité centrale de la proposition 23. Si f est intégrable sur [a, c]
et sur [c, b], alors Ia,c+ = Ia,c− et Ic,b+ = Ic,b− (on omet la dépendance en
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f pour simplifier la notation) donc, en sommant et en utilisant le lemme,

Ia,b+ = Ia,b− : f est intégrable sur [a, b]. Par contre, si f n’est pas intégrable
sur [a, c], Ia,c− < Ia,c+ et le lemme donne

Ia,b− = Ia,c− + Ic,b− < Ia,c+ + Ic,b+ = Ia,b+ ,

de sorte que f n’est pas intégrable sur [a, b]. C’est similaire sur [c, b]. Il y a
donc équivalence entre l’intégrabilité sur le grand intervalle et l’intégrabilité
sur les deux petits qui le constitue. On retiendra la proposition suivante, qui
étend ce phénomène à plusieurs sous-intervalles (par une récurrence facile).

Proposition 24. Soient une fonction f bornée sur [a, b] et une subdi-
vision σ = {x0, . . . , xn} de [a, b]. f est intégrable sur [a, b] si et seulement si
f est intégrable tous les intervalles [xi−1, xi], i = 1, . . . , n.

L’énoncé suivant atteint le but visé : on démontre que toute fonction
continue admet une primitive.

Énoncé indispensable 20 : intégrabilité des fonctions continues
et primitives

Toute fonction continue f sur [a,b] est intégrable sur [a,b]. De plus,

la formule F (x) =
∫ x

a
f(t) dt définit une primitive de f sur [a,b] .

Démonstration. Comme f est continue sur [a,b], f y est bornée. On peut
donc définir, pour tout x ∈ [a, b] :

F±(x) = Ia,x± (f).
Nous allons montrer que les fonction F+ et F− sont deux primitives de f .
Puisque F±(a) = Ia,a± (f) = 0, ces deux primitives sont égales sur l’intervalle
[a, b], ce qui assure l’intégrabilité de f sur [a, x], pour tout x ∈ [a, b], et en
particulier sur [a, b]. Et F = F+ = F− est bien une primitive de f sur [a, b].

Montrons donc que F+ est une primitive de f (le cas de F− étant simi-
laire). Soient x ∈ [a, b] et ε > 0. La continuité de f en x donne un nombre
η > 0 tel que, pour tout y ∈ [a, b] :

|y − x| ≤ η =⇒ f(x)− ε ≤ f(y) ≤ f(x) + ε .

Pour y ∈ [a, b] tel que x < y < x + η, le lemme 2 donne (en omettant la
dépendance en f) :

F+(y) = Ia,y+ = Ia,x+ + Ix,y+ = F+(x) + Ix,y+ ,

de sorte que l’on trouve, avec la proposition 23 et la définition de η :

F+(y)− F+(x)
y − x

=
Ix,y+
y − x

∈ [f(x)− ε,f(x) + ε].

Le cas où x− η < y < x se traite de même (attention : y < x) :

F+(x) = Ia,x+ = Ia,y+ + Iy,x+ = F+(y) + Iy,x+ ,

donc
F+(y)− F+(x)

y − x
=
Iy,x+
x− y

∈ [f(x)− ε,f(x) + ε].
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Cela prouve que lim
y→x

F+(y)− F+(x)
y − x

= f(x). Autrement dit, F+ est déri-

vable, de dérivée f , sur [a, b]. On notera qu’en a (resp. b), il s’agit d’une
dérivée à droite (resp. gauche). ♦

Remarque 33. Ce théorème donne deux moyens d’intégrer les fonctions
continues f sur [a, b]. Si α, β ∈ [a, b] et α ≤ β, puisque f est intégrable sur

[α, β], on peut poser
∫ β
α f = Iα,β± (f). On peut aussi utiliser la primitive

F donnée par le théorème et faire comme au premier semestre en posant∫ β
α f = F (β) − F (α). Ces deux définitions cöıncident grâce à la relation de

Chasles :

F (β)− F (α) = Ia,β± (f)− Ia,α± (f) = Iα,β± (f).

Nous disposons de deux classes de fonctions intégrables : les fonctions
en escalier et les fonctions continues. On peut les inclure dans une famille
plus vaste, celle des fonctions continues par morceaux.

Definition 17. Une fonction f : [a, b] → R est dite continue par mor-
ceaux s’il existe une subdivision σ = {x0 < x1 < . . . < xn} de [a, b] telle que
pour i = 1, . . . , n,

— f est continue sur l’intervalle ]xi−1, xi[,
— f admet une limite finie à droite en xi−1,
— et f admet une limite finie à gauche en xi.

•

•

•

•

•

a = x0 x1 x2 x3 x4 = b

Figure 8. Une fonction continue par morceaux

Cette définition signifie que, pour chaque indice i ∈ [1, n], la restriction
de f à ]xi−1, xi[ se prolonge en une fonction continue fi sur le segment
[xi−1, xi]. La fonction fi est définie explicitement en posant fi(x) = f(x)
pour x ∈]xi−1, xi[, puis fi(xi−1) = limx→x+

i−1
f(x) et fi(xi) = limx→x−i

f(x).
En particulier, les fonctions fi sont bornées (puisque continues sur un

segment) et donc f aussi : si l’on appelle Mi le maximum de chaque fonction
|fi|, on a explicitement

sup
[a,b]
|f | = max(M1, . . . ,Mn, |f(x0)|, . . . , |f(xn)|).
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Énoncé indispensable 21 : intégrabilité des fonctions continues
par morceaux

Toute fonction continue par morceaux sur [a, b] est intégrable.

Démonstration. Soit f une fonction continue par morceaux sur [a, b], asso-
ciée à une subdivision σ = {x0 < x1 < . . . < xn}. La proposition 24 dit
que f est intégrable si et seulement si f est intégrable sur chaque segment
[xi−1, xi]. Or, sur chaque segment [xi−1, xi], f cöıncide avec la fonction fi,
sauf aux points xi−1 et xi : puisque fi est continue donc intégrable, on en
déduit que f est intégrable sur [xi−1, xi], par la remarque 32. ♦

Remarque 34. L’intégrale définie pour les fonctions intégrables a toutes
les propriétés usuelles de l’intégrale des fonctions en escaliers (linéarité, re-
lation de Chasles, croissance, lien avec la valeur absolue). Précisément, on
peut remplacer « en escalier » par « intégrable » dans la proposition 22.
La relation de Chasles, en particulier, découle directement du lemme 2.
Les autres propriétés s’obtiennent aussi par des passages à la borne su-
périeure/inférieure, mais nécessitent réellement l’intégrabilité des fonctions
f et g en jeu. Par exemple, on réalise assez vite que I±(−f) = −I∓(f) et
I−(f) + I−(g) ≤ I−(f + g) ≤ I+(f + g) ≤ I+(f) + I+(g). Et c’est l’intégra-
bilité de f et g qui permet d’en déduire que −f et f + g sont intégrables.

Pour les fonctions continues, ces propriétés se voient facilement en écri-
vant les intégrales comme des différences de valeurs de primitives.

Pour aller plus loin 2 : intégrale de Lebesgue

La théorie de l’intégrale présentée ici est celle de l’intégrale de Rie-
mann. On a vu que la fonction indicatrice des rationnels n’est pas in-
tégrable dans ce cadre. La suite de la licence fera découvrir au lecteur
la théorie de l’intégrale de Lebesgue. Dans ce nouveau cadre, on pourra
intégrer la fonction indicatrice des rationnels sur [0, 1] ! Et que vaut son
intégrale ? 0 ? 1 ? 1/2 ?

La réponse est 0. L’un des aspects fondamentaux de la théorie de
Lebesgue est la notion de mesure : on y mesure la taille des parties de
R. Il se trouve qu’en ce sens les rationnels de [0, 1] forment une partie
de mesure nulle, donc la fonction indicatrice des rationnels est nulle sauf
sur une partie de mesure nulle : c’est pour ça que son intégrale est nulle.
C’est comme si on calculait l’intégrale de Riemann d’une fonction nulle
sauf en un nombre fini de points.

Il ne faudrait pas croire que la théorie de Lebesgue résout tous les
problèmes et rend intégrables toutes les fonctions. Il y a des fonctions
bornées qu’on ne pourra toujours pas intégrer sur un segment. Mais elles
sont plus compliquées à construire.
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4.5. Compléments sur l’intégrale. Pour clore ce chapitre sur l’in-
tégrale, nous allons évoquer quelques résultats classiques qui donnent des
outils souvent utiles.

4.5.1. Formule de la moyenne. Si f est une fonction continue sur un
intervalle [a, b], elle y atteint un minimum m = min

[a,b]
(f) et un maximum

M = max
[a,b]

(f). Les inégalités

m(b− a) ≤
∫ b

a
f ≤ M(b− a)

montrent que la moyenne de f, c’est-à-dire
1

b− a

∫ b

a
f , est dans le segment

[m,M ]. Le théorème des valeurs intermédiaires dit alors que la moyenne est

une valeur atteinte : il existe c ∈ [a, b] tel que
1

b− a

∫ b

a
f = f(c).

L’énoncé suivant généralise ceci au cas d’une moyenne pondérée par une
fonction g.

Énoncé indispensable 22 : formule de la moyenne

Soient f une fonction continue et g une fonction positive et continue
par morceaux sur un intervalle [a, b]. Alors il existe c ∈ [a, b] tel que∫ b

a
fg = f(c)

∫ b

a
g.

Démonstration. En notant M (resp. m) le maximum (resp. minimum) de f ,
on a par définition m ≤ f(t) ≤M pour tout a ≤ t ≤ b et on peut multiplier
cette inégalité par g(t) ≥ 0 pour obtenir mg(t) ≤ f(t)g(t) ≤ Mg(t) . En
intégrant ces inégalités, on obtient

m

∫ b

a
g ≤

∫ b

a
fg ≤ M

∫ b

a
g.

Cela montre que
∫ b
a fg appartient à l’intervalle [Lm,LM ], où L =

∫ b
a g.

Puisque LM (resp. Lm) est le maximum (resp. minimum) de la fonction
continue Lf sur [a, b], le théorème des valeurs intermédiaires dit qu’il existe

c ∈ [a, b] tel que

∫ b

a
fg = Lf(c) = f(c)

∫ b

a
g. ♦

4.5.2. Formules de Taylor. La formule de Taylor avec reste intégral gé-
néralise la formule fondamentale liant une fonction et sa dérivée

f(b)− f(a) =
∫ b

a
f ′(t)dt

en utilisant les dérivées d’ordre supérieur. L’idée est d’intégrer par parties
le membre de droite en∫ b

a
f ′(t)dt =

[
f ′(t)(t− b)

]b
a −

∫ b

a
f ′′(t)(t− b) dt ,
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d’où, après simplification :

f(b) = f(a) + f ′(a)(b− a) +
∫ b

a
f ′′(t)(b− t) dt .

Et on peut recommencer... si f est assez dérivable.

Énoncé indispensable 23 : formule de Taylor avec reste intégral

Soit f une fonction de classe Cn+1 sur un intervalle I de R. Pour
tous a, b ∈ I,

f(b) = f(a)+f ′(a)(b−a)+· · ·+f (n)(a)(b− a)n

n! +
∫ b

a
f (n+1)(t)(b− t)n

n! dt .

Si on préfère éviter les pointillés, on peut écrire cette formule sous la
forme

f(b) =
n∑
k=0

f (k)(a)(b− a)k

k! +
∫ b

a
f (n+1)(t)(b− t)n

n! dt .

Démonstration. On procède par récurrence sur n.

Initialisation. Pour n = 0, la formule est f(b) = f(a) +
∫ b
a f
′(t)dt. Elle

découle du lien entre primitive et intégrale : f est une primitive de f ′.
Hérédité. Supposons la formule démontrée au rang n− 1 :

f(b) = f(a)+f ′(a)(b−a)+. . .+f (n−1)(a)(b− a)n−1

(n− 1)! +
∫ b

a
f (n)(t)(b− t)n−1

(n− 1)! dt .

Pour prouver la formule au rang n, on intègre par parties l’intégrale à droite

(en posant u(t) = f (n)(t) et v′(t) = (b−t)n−1

(n−1)! , de sorte que u′(t) = f (n+1)(t)
et v(t) = − (b−t)n

n! ) :∫ b

a
f (n)(t)(b− t)n−1

(n− 1)! dt =
[
f (n)(t)

(
−(b− t)n

n!

)]b
a
−
∫ b

a
f (n+1)(t)

(
−(b− t)n

n!

)
dt

= f (n)(a)(b− a)n

n! +
∫ b

a
f (n+1)(t)(b− t)n

n! dt .

En combinant cette égalité avec la formule donnée par la récurrence, on
obtient bien la formule recherchée au rang n . ♦

Grâce à la formule de la moyenne, on en déduit une généralisation de
l’égalité des accroissements finis (n = 0 ci-dessous).

Énoncé indispensable 24 : formule de Taylor-Lagrange

Soit f une fonction de classe Cn+1 sur un intervalle I de R. Pour
tous a, b ∈ I, il y a un réel c entre a et b tel que :

f(b) = f(a) +f ′(a)(b−a) + . . .+f (n)(a)(b− a)n

n! +f (n+1)(c)(b− a)n+1

(n+ 1)! .
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Démonstration. Quitte à considérer la fonction g : t 7→ f(−t), on peut
supposer a ≤ b. La formule de la moyenne donne un c ∈ [a, b] tel que∫ b

a
f (n+1)(t)(b− t)n

n! dt = f (n+1)(c)
∫ b

a

(b− t)n

n! dt

et l’intégrale à droite vaut
[
− (b−t)n+1

(n+1)!

]b
a

= (b−a)n+1

(n+1)! . ♦

On en déduit rapidement la formule de Taylor-Young pour les dévelop-
pements limités de fonctions Cn+1 :

f(x) = f(x0) + f ′(x0)(x− x0) + . . .+ f (n)(x0)
n! xn +O((x− x0)n+1)

quand x→ x0.
Pour voir cette formule asymptotique, on pose a = x0 et b = x dans la

formule de Taylor-Lagrange. Le terme de reste est f (n+1)(c) (x−x0)n+1

(n+1)! , avec

c ∈ [x0, x]. Par continuité, f (n+1) est bornée au voisinage de x0. On voit
donc que le reste est borné par une constante fois |x−x0|n+1 si x est proche
de x0.

Il faut bien remarquer que la formule de Taylor avec reste intégral est
beaucoup plus forte que la formule de Taylor-Young. Son reste est explicite :
on a toute l’information, toute la précision voulue. Et elle a une portée bien
plus grande : elle est valable pour des points a et b pas forcément proches.

4.5.3. Sommes de Riemann.

Definition 18. Une subdivision marquée (σ, θ) d’un intervalle [a, b] est
la donnée d’une subdivision σ = {x0 < x1 < . . . < xn} de [a, b] et d’un
marquage θ = {y1, y1, . . . , yn} où chaque yi est dans l’intervalle [xi−1, xi].

Autrement dit, on choisit un point dans chaque intervalle défini par la
subdivision.

Definition 19. Soit (σ, θ) une subdivision marquée de [a, b]. Soit f
une fonction définie sur [a, b]. La somme de Riemann de f associée à la
subdivision marquée (σ, θ) est

S(f, σ, θ) =
n∑
i=1

(xi − xi−1)f(yi).

On peut voir S(f, σ, θ) comme l’intégrale d’une fonction en escalier qui
prend la valeur f(yi) sur l’intervalle ]xi−1, xi[ , pour i ∈ {1, . . . , n}.

Exemple 23. Soit σ = {0, 1
n ,

2
n , . . . ,

n−1
n , 1} la subdivision régulière de

[0, 1] en n intervalles. Si on prend le marquage θ1 = {0, 1
n ,

2
n , . . . ,

n−1
n }, on

trouve S(f, σ, θ1) = 1
n

n−1∑
k=0

f

(
k

n

)
. Pour le marquage θ2 = { 1

n ,
2
n , . . . ,

n−1
n , n},

c’est S(f, σ, θ2) = 1
n

n∑
k=1

f

(
k

n

)
.On peut aussi marquer au milieu de chaque

intervalle, etc.
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Le théorème suivant est vrai.

Énoncé indispensable 25 : somme de Riemann et intégrale

Soit f une fonction intégrable sur [a, b] et (σn, θn) une suite de sub-
divisions marquées de [a, b] . Si on suppose que le pas de σn tend vers 0 ,
alors

S(f, σn, θn) n→∞−−−→
∫ b

a
f(t) dt .

Nous montrerons plutôt le théorème plus précis qu’on obtient en suppo-
sant de plus que f est C1 .

Théorème 7. Soient f une fonction de classe C1 sur [a, b] et (σ, θ) une
subdivision marquée de [a, b] . Alors :∣∣∣∣∣

∫ b

a
f(t) dt− S(f, σ, θ)

∣∣∣∣∣ ≤ |σ|(b− a) sup
[a,b]
|f ′| ,

où |σ| est le pas de la subdivision σ .

Démonstration. Soit ϕ la fonction en escalier telle que ϕ(xi) = f(xi) pour
i = 0, . . . , n et dont la valeur sur chaque intervalle ]xi−1, xi[ est f(yi), pour
i = 1, . . . , n. On a :∣∣∣∣∣

∫ b

a
f(t) dt− S(f, σ, θ)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a
(f − ϕ)(t) dt

∣∣∣∣∣ ≤
∫ b

a
|f − ϕ|(t) dt .

Montrons maintenant que |f − ϕ| ≤ |σ| sup[a,b] |f ′| ce qui permettra de
conclure en intégrant entre a et b . L’inégalité est vraie aux points xi, puisque
f(xi) = ϕ(xi) pour tout i. Reste à considérer un point x de l’un des inter-
valles de la subdivision, ]xi−1, xi[ . Alors on a |f(x)− ϕ(x)| = |f(x)− f(yi)|
et, d’après l’inégalité des accroissements finis, cette dernière grandeur est
elle-même inférieure à |x− yi| sup[a,b] |f ′| . Or yi et x sont dans le même in-

tervalle de la subdivision σ, donc |x − yi| ≤ |σ| . Ceci prouve qu’on a bien
|f(x)− ϕ(x)| ≤ |σ| sup[a,b] |f ′|. ♦

Exemple 24. Typiquement, on peut considérer l’exemple de la subdi-
vision régulière de [0, 1] en n intervalles, avec le marquage standard θ1. Si f
est une fonction C1 sur [0, 1] ,∣∣∣∣∣

∫ 1

0
f(t)dt− 1

n

n−1∑
k=0

f

(
k

n

)∣∣∣∣∣ ≤ sup[0,1] |f ′|
n

.

donc
1
n

n−1∑
k=0

f

(
k

n

)
−−−→
n→∞

∫ 1

0
f(t)dt. Avec le marquage θ2, on voit de même

que
1
n

n∑
k=1

f

(
k

n

)
−−−→
n→∞

∫ 1

0
f(t)dt. On peut ainsi calculer des limites qu’on

ne saurait pas traiter autrement. Par exemple, en posant f(x) = 1
1+x , on
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trouve

lim
n→+∞

n∑
k=1

1
n+ k

=
∫ 1

0

dt

1 + t
= ln 2.

4.5.4. Calculs approchés d’intégrales. Un problème important est de sa-
voir en pratique calculer des valeurs approchées d’intégrales. Dans ce but,
on peut approcher l’intégrande par des fonctions en escalier, ou affine par
morceaux, ou plus complexes... Le point de départ est le théorème précédent
sur les sommes de Riemann : une somme de Riemann n’est pas forcément
difficile à calculer et peut fournir une approximation de l’intégrale. Dans
l’exemple ci-dessus, on a vu que l’erreur commise est « en 1/n », c’est-à-dire
majorée par une constante fois 1/n.

On peut, sans augmenter le nombre de calculs à faire (calculer n fois
une valeur de la fonction), obtenir une approximation en 1/n2, grâce à la
méthode des points milieux. C’est ce que nous présentons maintenant pour
compléter cette section.

Soient n un entier strictement positif et f une fonction régulière (de
classe C2) sur [a, b] . La méthode des rectangles consiste à utiliser la somme
de Riemann S(f, σ, θ) avec :

xi = a+ i
b− a
n

et yi = xi−1 pour i ∈ {1, . . . , n} .

Comme f est de classe C1, cette somme de Riemann approche l’intégrale de
f en respectant l’estimation suivante∣∣∣∣∣

∫ b

a
f(t) dt− S(f, σ, θ)

∣∣∣∣∣ ≤ (b− a)2

n
sup
[a,b]
|f ′| .

Remarque 35. Pour f(x) = x sur [0,1] , il est facile de vérifier que∫ b
a f(t) dt = S(f, σ, θ) + 1

2n . Ainsi la vitesse de convergence en 1
n ne peut

être améliorée sans changer de méthode.

Test : deux calculs exacts de l’erreur

Démontrer le résultat de la remarque 35 et montrer que
∫ b
a f(t) dt =

S(f, σ, θ) lorsqu’on choisit yi = xi−1 + 1
2n pour i ∈ {1, . . . , n} .

Plus généralement, la méthode des points milieux consiste à garder la
même subdivision (les xi), mais en changeant le marquage : on choisit yi =
xi−1 + b−a

2n = xi−1+xi
2 pour i ∈ {1, . . . , n}. Au lieu de marquer avec le point

gauche de chaque intervalle, on marque au milieu. Dans ce cas, on va montrer
que la somme de Riemann approche l’intégrale avec une précision en 1/n2.

Théorème 8. Si f est de classe C2 , la méthode des points milieux
donne : ∣∣∣∣∣

∫ b

a
f(t) dt− S(f, σ, θ)

∣∣∣∣∣ ≤ (b− a)3

24n2 sup
[a,b]
|f ′′| .
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Démonstration. Soit ϕ une fonction en escalier dont la valeur sur l’intervalle
]xi−1, xi[ est f(yi) , pour i ∈ {1, . . . , n} . On a :∫ b

a
f(t) dt− S(f, σ, θ) =

∫ b

a
(f − ϕ)(t) dt =

n∑
i=1

∫ xi

xi−1
(f − ϕ)(t) dt.

Pour tout i ∈ {1, . . . , n} et pour tout t ∈ ]xi−1,xi[, la définition de ϕ donne
(f − ϕ)(t) = f(t)− f(yi). La formule de Taylor-Lagrange à l’ordre 2 donne
alors un point ct,i dans l’intervalle délimité par yi et t tel que :

(f − ϕ)(t) = f(t)− f(yi) = (t− yi)f ′(yi) + (t− yi)2

2 f ′′(ct,i),

de sorte que∫ xi

xi−1
(f − ϕ)(t) dt = f ′(yi)

∫ xi

xi−1
(t− yi) dt+ 1

2

∫ xi

xi−1
(t− yi)2f ′′(ct,i) dt

La point clef, c’est que la première intégrale est nulle. En effet, elle vaut∫ xi

xi−1
(t− yi) dt = (xi − yi)2 − (xi−1 − yi)2

2 = 0,

parce que yi est le milieu du segment [xi−1, xi], ce qui signifie que xi − yi =
yi − xi−1 = b−a

2n . Ensuite, le second terme se majore par∣∣∣∣∣12
∫ xi

xi−1
(t− yi)2f ′′(ct,i) dt

∣∣∣∣∣ ≤ 1
2 sup

[a,b]
|f ′′|

∫ xi

xi−1
(t− yi)2 dt = (b− a)3

24n3 sup
[a,b]
|f ′′|.

Lorsqu’on somme de i = 1 à i = n, on obtient finalement∣∣∣∣∣
∫ b

a
f(t) dt− S(f, σ, θ)

∣∣∣∣∣ ≤ n(b− a)3

24n3 sup
[a,b]
|f ′′|.

Et c’est bien le résultat annoncé. ♦





Chapitre 3

Algèbre linéaire

1. Espaces vectoriels

1.1. Espaces vectoriels. A partir de l’ensemble Rn et de ses opéra-
tions naturelles, nous allons dégager une liste de propriétés (ou axiomes)
décrivant la structure d’espace vectoriel, qui est un moyen de faire du calcul
vectoriel avec toutes sortes d’objets mathématiques. Nous donnerons rapi-
dement des exemples qui couvrent tout le spectre des mathématiques : la
géométrie (plan, espace), l’algèbre (espaces de polynômes), l’analyse (espaces
de fonctions)... Les outils que nous allons développer ont donc une portée
universelle en mathématiques, et au-delà.

Rappelons d’abord que pour un entier n ≥ 1, Rn désigne l’ensemble des
n-uplets de réels, c’est-à-dire

Rn = {(x1, . . . , xn) | x1, . . . , xn ∈ R}.

Sur Rn est naturellement définie une addition, construite à partir de celle
de R sur chacune des composantes :

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

Il est aussi possible de définir le produit d’un réel λ par un élément de Rn :

λ(x1, . . . , xn) = (λx1, . . . , λxn).

Nous avons donc défini deux opérations sur Rn. La première, l’addition,
associe à deux éléments x = (x1, . . . , xn) et y = (y1, . . . , yn) de Rn un
autre élément x+ y de Rn. On dit que c’est une loi interne. La seconde, la
multiplication par un réel, associe à un réel λ et un élément x = (x1, . . . , xn)
de Rn un nouvel élément λx de Rn, on dit que c’est une loi externe.

Examinons maintenant les règles auxquelles obéissent ces lois. Nous n’en
retiendrons que celles qui, par l’usage, se sont montrées les plus pertinentes
en vue de la généralisation annoncée.

Les règles de l’addition. On vérifie facilement, à partir des propriétés
usuelles de l’addition des réels, que l’addition dans Rn vérifie les propriétés
suivantes :

(1) (x1, . . . , xn) + (0, . . . , 0) = (x1, . . . , xn),
(2) (x1, . . . , xn) + (−x1, . . . ,−xn) = (0, . . . , 0),
(3)

(
(x1, . . . , xn) + (y1, . . . , yn)

)
+ (z1, . . . , zn)

= (x1, . . . , xn) +
(
(y1, . . . , yn) + (z1, . . . , zn)

)
,

(4) (x1, . . . , xn) + (y1, . . . , yn) = (y1, . . . , yn) + (x1, . . . , xn),
71
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quels que soient les éléments (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) de Rn.
En vertu de (1), on dit que l’élément (0, . . . , 0) est le neutre de l’ad-

dition et, en vertu de (2) , que l’élément (−x1, . . . ,−xn) est le symétrique
de (x1, . . . , xn). La propriété (3) s’appelle l’associativité de l’addition, la (4)
s’appelle la commutativité de l’addition.

Les règles de la multiplication par un réel. On vérifie facilement, à
partir des propriétés usuelles de l’addition et de la multiplication des réels,
que la loi externe précédemment définie vérifie les propriétés suivantes :

(1) 1(x1, . . . , xn) = (x1, . . . , xn),
(2) (λµ)(x1, . . . , xn) = λ[µ(x1, . . . , xn)],
(3) (λ+ µ)(x1, . . . , xn) = λ(x1, . . . , xn) + µ(x1, . . . , xn),
(4) λ[(x1, . . . , xn) + (y1, . . . , yn)] = λ(x1, . . . , xn) + λ(y1, . . . , yn),

ceci pour tous réels λ et µ et tous (x1, . . . , xn) ∈ Rn et (y1, . . . , yn) ∈ Rn.
Les deux premières propriétés expriment la compatibilité entre le produit

au sein des réels et la multiplication (externe) par un réel. Les deux autres
expriment la distributivité de la multiplication par rapport à l’addition.

Dans ce qu’on vient de décrire, on peut remplacer les nombres réels par
les nombres complexes : ça ne change rien. Dans la suite, le symbole K
désignera indifféremment R ou C. Nous travaillerons toujours avec des
nombres dans K, qu’on appelera parfois des scalaires.

Nous allons maintenant donner une définition générale de ce que l’on
appelle un espace vectoriel, directement inspirée des propriétés que nous
venons d’énumérer.

Énoncé indispensable 1 : espace vectoriel

Un K-espace vectoriel est un ensemble E muni d’une loi interne +
(dite addition) et d’une loi externe · (dite multiplication par un scalaire).

L’addition + est une application de E × E dans E qui vérifie les
propriétés suivantes :

(1) il existe un élément de E, noté 0, qui vérifie x + 0 = 0 + x = x
pour tout x ∈ E ;

(2) pour tout x ∈ E, il existe un élément x′ de E, qui vérifie x+x′ =
x′ + x = 0 ;

(3) pour tous x, y et z dans E, (x+ y) + z = x+ (y + z) ;

(4) pour tous x et y dans E, x+ y = y + x.

La multiplication par un scalaire · est une application de K × E
dans E qui vérifie les propriétés suivantes, pour tous λ, µ ∈ K et tous
x, y ∈ E :

(1) 1 · x = x ;

(2) (λµ) · x = λ.(µ · x) ;

(3) (λ+ µ) · x = λ · x+ µ · x ;

(4) λ · (x+ y) = λ · x+ λ · y.
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Remarques 5. — Au lieu de « K-espace vectoriel », on dit parfois « es-
pace vectoriel sur K » et très souvent « espace vectoriel ». Les éléments
d’un espace vectoriel E sont appelés vecteurs, par opposition aux scalaires,
qui sont les éléments de K (des nombres).

— Le lecteur pointilleux notera qu’un espace vectoriel serait plutôt le triplet
(E,+, .), puisque les lois font partie de la notion. En fait, tout le monde
parle de l’espace vectoriel E et ça n’empêche pas la Terre de tourner.

— Dans la premier axiome de l’addition, l’élément 0 est un élément de E et
pas le 0 de R ou C, donc on pourrait craindre un conflit de notation. En
pratique, ça n’est pas trop gênant. Occasionnellement, on le notera 0E .
On peut noter que ce 0 est unique : si un élément 0′ de E vérifie aussi
x + 0′ = 0′ + x = x pour tout x de E, on peut combiner les propriétés de
0 et 0′ pour écrire 0′ = 0′ + 0 = 0. On dit que 0 est l’élément neutre de
l’addition.

— De même, on vérifie l’unicité de l’élément x′ dans la deuxième propriété et
on dit que x′ est le symétrique de x pour l’addition. On le note −x. Cela
donne une notion de soustraction : on notera x− y pour x+ (−y).

— La commutativité de l’addition (4) donne la possibilité de simplifier l’écri-
ture des expressions en en intervertissant les termes de manière arbitraire,
alors que l’associativité (3) permet de les regrouper arbitrairement, “sans
prendre garde aux parenthèses”.

— Concernant la loi externe, on omet presque toujours le · dans les expressions,
si bien que l’élément λ · x se note λx : en pratique, on peut de toute façon
calculer « comme d’habitude », grâce aux axiomes.

Test : calcul comme d’habitude

Vérifier que si x, y, z, u, v sont des éléments d’un C-espace vectoriel,

3x+ 5y + i
(
(z + u) + v

)
= 4x+ i(z + v − iy) + 4y + iu− x+ iu.

La propriété suivante est naturelle mais pas si anodine.

Proposition 25. Soit x un élément d’un K-espace vectoriel E et λ ∈ K.
On a λ · x = 0 si et seulement si λ = 0 ou x = 0.

Démonstration. Pour le sens ⇐, on suppose d’abord λ = 0. Partons de
l’égalité 0 = 0 + 0 dans K et multiplions par x : par distributivité, 0 · x =
(0 + 0) · x = 0 · x + 0 · x. En soustrayant 0 · x, on arrive à 0 = 0 · x. Si on
suppose x = 0, c’est pareil, en partant de l’égalité 0 = 0 + 0 dans E, qu’on
mulitplie par λ : on trouve λ ·0 = λ ·0 +λ ·0. En soustrayant λ ·0, on trouve
bien 0 = λ · 0.

Pour le sens ⇒, on suppose λ · x = 0. De deux choses l’une : soit λ = 0,
soit λ 6= 0. Dans le second cas, λ a un inverse, donc on peut multiplier
l’équation par 1

λ pour trouver 1
λ · (λ · x) = 1

λ · 0. Le membre de droite est
nul par le sens ⇐. Grâce aux axiomes vérifiés par ·, le membre de gauche se
simplifie : 1

λ · (λ · x) = ( 1
λ × λ) · x = 1 · x = x. On aboutit à x = 0. ♦

Remarque 36. On pourrait avoir peur de confondre le vecteur (−1) · x
avec le symétrique −x de x. Pas de problème : ils sont égaux puisque

x+ (−1) · x = 1 · x+ (−1) · x = (1 + (−1)) · x = 0 · x = 0.
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Remarque 37. Pourquoi K = R ou C ? A vrai dire, on pourrait aussi
travailler avec les nombres rationnels (K = Q)... mais pas avec les nombres
entiers. La notion d’espace vectoriel sur K nécessite de pouvoir additionner,
multiplier, soustraire et surtout diviser les éléments de K. Par exemple, dans
la preuve de la proposition, on a divisé par λ. Presque tout ce qu’on va dire
restera vrai si K vérife une liste d’axiomes, ceux de la structure de corps,
notion étudiée dans un cours ultérieur. Si on veut vraiment se passer de
la division dans K, on peut... et cela conduit à la notion de module, une
structure plus générale que celle d’espace vectoriel, mais où par exemple la
proposition ci-dessus a tendance à être fausse.

Les exemples suivants sont fondamentaux.

Exemple 25. Rn est un R-espace vectoriel. En particulier, la droite
réelle et surtout l’ensemble des vecteurs du plan (R2) ou de l’espace (R3)
sont des exemples géométriques modèles, qui permettent de faire des dessins.
C’est ce cadre visuel simple qu’on cherche à généraliser pour appréhender
des espaces plus compliqués.

Moins visuel, mais formellement analogue, Cn est un C-espace vectoriel.

Exemple 26. L’ensemble Mn,p(K) des matrices à n lignes et p colonnes
et à coefficients dans K, muni de l’addition usuelle des matrices et de la
multiplication d’une matrice par un nombre (réel ou complexe), est un K-
espace vectoriel. Ici, le neutre est la matrice nulle.

Exemple 27. L’ensemble CN des suites complexes, muni de l’addition
usuelle et de la multiplication par un élément de C (terme à terme), est un
C-espace vectoriel. L’ensemble RN des suites réelles est un R-espace vectoriel.
Ici, le neutre est la suite constante à la valeur 0.

Exemple 28. L’ensemble K[X] des polynômes à coefficients dans K est
un K-espace vectoriel. Son neutre est le polynôme nul.

Exemple 29. Soient A un ensemble quelconque, E un K-espace vectoriel
et EA l’ensemble des fonctions de A dans E. On peut mimer le cas des suites
et définir « terme à terme » des opérations : pour f, g ∈ EA et λ ∈ K, on
définit f + g : A → E et λ · f : A → E par (f + g)(x) = f(x) +E g(x) et
λ ·E f(x) = λf(x), pour tout x ∈ A. On vérifie alors que EA est un espace
vectoriel sur K. Son neutre est la fonction nulle (constante à la valeur 0E).

Exemple 30. Tout C-espace vectoriel est naturellement un R-espace
vectoriel, par restriction des lois, en utilisant l’inclusion R ⊂ C. En parti-
culier, on peut regarder l’ensemble C comme un C-espace vectoriel, mais
aussi comme un R-espace vectoriel. Cela offre deux regards différents sur un
même ensemble, on y reviendra.

Exemple 31. L’ensemble vide est-il un espace vectoriel ? Non, puisqu’un
espace vectoriel doit contenir un élément neutre 0 ! Le plus petit qu’on puisse
imaginer est le K-espace vectoriel trivial {0}, avec les seules lois auxquelles
il peut obéir (0 + 0 = 0 et λ · 0 = 0 pour tout λ ∈ K).

1.2. Sous-espaces vectoriels. Dans un espace vectoriel, il y a des
parties naturelles vis-à-vis des lois définissant la structure d’espace vectoriel.
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Par exemple, dans l’espace vectoriel R2, considérons la droite F passant par
l’origine et de pente 2 : F = {(x, 2x) | x ∈ R}. Elle respecte les lois au sens
où on peut additionner ses éléments, les multiplier par un réel, et obtenir
un nouvel élément de F . Ainsi, cette partie F est naturellement elle-même
un espace vectoriel. Il en irait de même de tout plan passant par l’origine.
Mais un cercle, ou une droite évitant l’origine, ne conviendraient pas.

Énoncé indispensable 2 : sous-espace vectoriel

Soit E un K-espace vectoriel. Un sous-espace vectoriel de E est une
partie F de E telle que

(1) F n’est pas vide ;

(2) ∀x, y ∈ F, x+ y ∈ F ;

(3) ∀λ ∈ K,∀x ∈ F, λ · x ∈ F .

On retiendra qu’un sous-espace vectoriel est une partie non vide qui est
laissée stable par les lois.

Remarque 38. Le premier axiome dit qu’un sous-espace vectoriel F
contient toujours un élément x. Par le troisième, on en déduit que 0 · x = 0
est dans F . Ainsi, un sous-espace vectoriel contient toujours l’élément neutre
0. C’est d’ailleurs le moyen usuel de vérifier qu’il n’est pas vide : tester si 0
est dedans.

Un sous-espace vectoriel hérite naturellement d’une structure d’espace
vectoriel. Notons + et · les lois de l’espace vectoriel E et considérons un sous-
espace F de E. On peut définir des lois +F : F ×F → F et ·F : K×F → F
en posant simplement, pour x, y ∈ F et λ ∈ K :

x+F y = x+ y et λ ·F x = λ · x.

La définition d’un sous-espace vectoriel fait que ces formules donnent bien
des éléments de F . Et on peut vérifier que ces lois vérifient les axiomes d’un
espace vectoriel. Entre autres, l’élément neutre de F étant bien sûr celui de
E (qui est dans F par la remarque ci-dessus), le symétrique de x ∈ F est
(−1) · x ∈ F , etc.

Donnons quelques exemples.

Exemple 32. La droite F = {(x, 2x) | x ∈ R} est un sous-espace
vectoriel de R2. En effet, (0, 0) est bien dans F et pour tous x, y, λ ∈ R,
(x, 2x) + (y, 2y) = ((x+ y), 2(x+ y)) et λ(x, 2x) = (λx, 2λx).

Exemple 33. L’ensemble F des suites complexes convergentes est un
sous-espace vectoriel de CN. La suite nulle est en effet convergente, de même
que la somme de deux suites convergentes et le produit d’une suite conver-
gente par une constante.

Exemple 34. L’ensemble F des fonctions dérivables sur R est un sous-
espace vectoriel de RR (l’espace vectoriel de toutes les fonctions de R dans
R). La fonction nulle est en effet dérivable, de même que la somme de deux
fonctions dérivables et le produit d’une fonction dérivable par une constante.
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Exemple 35. Tout espace vectoriel E contient des sous-espaces évi-
dents : E, mais aussi {0}.

La notion suivante est très utile.

Énoncé indispensable 3 : combinaison linéaire

Soit E un espace vectoriel. On dit qu’un élément x de E est une
combinaison linéaire des éléments x1, . . . , xn de E s’il s’écrit

x = λ1x1 + · · ·+ λnxn

pour certains scalaires λ1, . . . , λn. On notera Vect(x1, . . . , xn) l’ensemble
de toutes les combinaisons linéaires des éléments x1, . . . , xn :

Vect(x1, . . . , xn) = {λ1x1 + · · ·+ λnxn | ∀i, λi ∈ K}.

On utilisera aussi la notation x =
n∑
i=1

λixi.

Remarque 39. On vérifie rapidement qu’une partie non vide F d’un
espace vectoriel E est un sous-espace vectoriel si et seulement si toute com-
binaison linéaire d’éléments de F est un élément de F .

Le sens ⇒ consiste à utiliser directement les axiomes d’un sous-espace
vectoriel : pour λ1, . . . , λn ∈ K et x1, . . . , xn ∈ F , on a λixi ∈ F pour tout
i, de sorte que leur somme est aussi dans F .

Le sens ⇐ consiste à observer que les expressions x + y et λx sont des
combinaisons linéaires des éléments x et y de F .

Proposition 26. Soient x1, . . . , xn des vecteurs d’un espace vectoriel
E. Alors Vect(x1, . . . , xn) est un sous-espace vectoriel de E et il est inclus
dans tout sous-espace F contenant x1, . . . , xn.

Ainsi, Vect(x1, . . . , xn) est le plus petit sous-espace vectoriel de E qui
contient x1, . . . , xn. On dit que c’est le sous-espace engendré par les vecteurs
x1, . . . , xn.

Démonstration. Notons V = Vect(x1, . . . , xn). En écrivant 0 =
∑
i 0 · xi, on

voit que V contient 0 donc n’est pas vide. Pour x, y ∈ V , on peut écrire
x =

∑n
i=1 λixi et y =

∑n
i=1 µixi pour certains scalaires λi et µi. Donc pour

tout α ∈ K :

x+ y =
n∑
i=1

(λi + µi)xi ∈ V et αx =
n∑
i=1

(αλi)xi ∈ V.

Cela montre que V est un sous-espace vectoriel de E.
Si F est un sous-espace vectoriel de E contenant x1, . . . , xn, il contient

leurs combinaisons linéaires (cf. remarque ci-dessus), donc V ⊂ F . ♦

Exemple 36. Dans R3, muni de ses coordonnées usuelles x, y, z, si on
note v = (1, 0, 0) et w = (0, 0, 1), Vect(v) est la droite Ox et Vect(v, w) est
le plan d’équation y = 0.

Une autre de façon de construire des sous-espaces est de prendre des
intersections.
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Proposition 27. Si F1 et F2 sont deux sous-espaces d’un espace vecto-
riel E, l’intersection F1 ∩ F2 est encore un sous-espace-vectoriel de E.

Démonstration. Le neutre 0 est dans les sous-espaces F1 et F2, donc aussi
dans F1∩F2, qui n’est donc pas vide. Si x1, . . . xn sont dans F1∩F2, ils sont
dans les sous-espaces F1 et F2, donc leurs combinaisons linéaires sont aussi
dans F1 et dans F2, donc dans F1 ∩ F2. ♦

Remarque 40. Avec la même preuve, on voit qu’une intersection d’un
nombre arbitraire, même infini, de sous-espaces de E est encore un sous-
espace de E. Ceci autorise la construction suivante.

Si A est une partie quelconque d’un espace vectoriel E, il y a au moins
un sous-espace qui le contient, E. On peut donc considérer l’intersection
FA de tous les sous-espaces vectoriels de E qui contiennent A : FA est un
sous-espace de E. Et si un sous-espace contient A, il doit contenir FA, par
construction. On peut donc appeler FA le sous-espace engendré par A.

Dans le cas où A = {x1, . . . , xn}, on retrouve FA = Vect(x1, . . . , xn). En
fait, pour toute partie (non vide) A, on peut noter Vect(A) l’ensemble des
combinaisons linéaires d’un nombre fini (quelconque) d’éléments de A. On
vérifie que c’est un sous-espace contenant A, donc FA ⊂ Vect(A). Et, comme
FA est un sous-espace et contient A, il contient les combinaisons linéaires
d’éléments de A, donc Vect(A) ⊂ FA. Ainsi, FA = Vect(A).

L’union de deux sous-espaces n’est presque jamais un sous-espace : à la
place, on va considérer leur somme.

Definition 20. Soient F1 et F2 deux sous-espaces vectoriels de E. La
somme de F1 et F2 est définie par

F1 + F2 = {x1 + x2 | x1 ∈ F1, x2 ∈ F2}.

On peut vérifier rapidement que c’est un sous-espace vectoriel. En fait,
c’est le sous-espace vectoriel engendré par l’union F1 ∪ F2.

Test : la croix

On se place dans le plan R2. Montrer que l’axe des abscisses et l’axe
des ordonnées sont des sous-espaces vectoriels, mais que leur union ne
l’est pas. Quelle est leur somme ?

1.3. Bases. Dans l’espace vectoriel Rn, tout élément (x1, . . . , xn) est
déterminé de manière univoque par ses composantes x1, . . . , xn. Dit comme
ça, c’est très spécifique à l’ensemble Rn. On va l’exprimer autrement, en
faisant intervenir sa structure d’espace vectoriel.

Pour 1 ≤ k ≤ n, notons ek l’élément de Rn dont toutes les composantes
sont nulles, sauf la k-ième, qui est égale à 1. Ainsi, dans R3 :

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Dire que x = (x1, . . . , xn), c’est exactement dire que

x = x1e1 + . . .+ xnxn.
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Ainsi, le vecteur x peut s’écrire comme une combinaison linéaire de e1, . . . , en.
Et il y a une seule manière de le faire : les coefficients sont les composantes
de x. C’est ce point de vue qui est transposable aux espaces vectoriels, pour
peu qu’on ait l’équivalent de cette famille de vecteurs (e1, . . . , en).

On se place dans un K-espace vectoriel E pour le reste du paragraphe.

Énoncé indispensable 4 : famille génératrice

Soient v1, . . . , vn des vecteurs de E. On dit que (v1, . . . , vn) est une
famille génératrice de E lorsque Vect(v1, . . . , vn) = E.

En d’autres termes, tout élément x de E est une combinaison linéaire
des vecteurs v1, . . . , vn : il existe des scalaires λ1, . . . , λn tels que

x = λ1v1 + · · ·+ λnvn.

Exemple 37. Dans R2, on considère les vecteurs v1 = (1, 0), v2 = (−1, 1)
et v3 = (0,−1). La famille (v1, v2, v3) est génératrice puisque tout élément
x = (x1, x2) ∈ R2 s’écrit

x = (x1 +x2)v1 +x2 v2 +0 v3 ou bien x = 2x1v1 +x1v2 +(x1−x2)v3.

Dans la définition d’une famille génératrice, on demande l’existence d’une
écriture sous forme de combinaison linéaire. La notion suivante a trait à
l’unicité d’une telle écriture.

Énoncé indispensable 5 : famille libre

Soient v1, . . . , vn des vecteurs de E. On dit que (v1, . . . , vn) est une
famille libre lorsque pour tous scalaires λ1, . . . , λn :

λ1v1 + · · ·+ λnvn = 0 =⇒ λ1 = · · · = λn = 0.

Dans ce cas, on dit aussi que v1, . . . , vn sont des vecteurs linéairement
indépendants.

Le contraire d’une famille libre est une famille liée. La famille (v1, . . . , vn)
est liée si et seulement s’il existe des scalaires λ1, . . . , λn tels que

λ1v1 + · · ·+ λnvn = 0 et (λ1, . . . , λn) 6= (0, . . . , 0).
Ainsi, l’un des coefficients, λk, n’est pas nul et on peut écrire :

xk = − 1
λk

∑
i 6=k

λivi.

Dans une famille liée, l’un des éléments est une combinaison linéaire des
autres.

Test : familles manifestement liées

Soient v et w deux vecteurs d’un espace vectoriel. Prouver que les
familles (0, v, w) et (v, v, w) sont liées.
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Exemple 38. Dans R2, si on reprend les vecteurs v1 = (1, 0), v2 =
(−1, 1) et v3 = (0,−1), on voit que la famille (v1, v2, v3) est liée, puisque
v1 + v2 + v3 = 0.

Par contre, la famille (v1, v2) est libre car, si λ1 et λ2 sont des réels tels
que λ1v1 + λ2v2 = 0, on trouve (λ1 − λ2, λ2) = (0, 0), donc λ1 − λ2 = 0 et
λ2 = 0, ce qui impose λ1 = λ2 = 0.

Exemple 39. Plaçons-nous dans l’espace vectoriel E = RR∗+ des fonc-
tions réelles définies sur R∗+. On y considère les vecteurs exp et ln. Pour
vérifier qu’ils sont linéairement indépendants, on se donne des réels λ1 et λ2
tels que λ1 exp +λ2 ln = 0. Cela signifie :

∀x > 0, λ1 exp(x) + λ2 ln(x) = 0.
Si on choisit x = 1, on trouve λ1 e+0 = 0, donc λ1 = 0. Si on choisit ensuite
x = e par exemple, on trouve aussi λ2 = 0. Cela prouve que (exp, ln) est
une famille libre.

Soient (v1, . . . , vn) une famille libre et x ∈ Vect(x1, . . . , xn). Si on a deux
écritures x =

∑
i λivi et x =

∑
i µivi, on peut faire leur différence pour

trouver
∑
i(λi − µi)vi = 0. La liberté de la famille impose que λi − µi soit

nul, i.e. λi = µi, pour tout i. En ce sens, il y a unicité de l’écriture sous
forme de combinaison linéaire.

Énoncé indispensable 6 : base

Une base d’un espace vectoriel est une famille à la fois libre et géné-
ratrice.

Proposition 28. Soit (v1, . . . , vn) une base de E. Alors, pour tout vec-
teur x de E, il existe des scalaires λ1, . . . , λn uniques tels que

x = λ1v1 + · · ·+ λnvn.

Les scalaires λ1, . . . , λn sont les coordonnées de x dans la base (v1, . . . , vn).
Bien sûr, ils dépendent de la base qu’on utilise !

Démonstration. L’existence d’une telle écriture est la définition d’une famille
génératrice. L’unicité vient de la liberté, comme on l’a vu ci-dessus. ♦

Exemple 40. La famille (e1, . . . , en) introduite plus haut est une base
de Rn. On l’appelle la base canonique de Rn en raison de son caractère très
spécial : les coordonnées de x = (x1, . . . , xn) sont ses composantes x1, . . . , xn.

La même famille est une base du C-espace vectoriel Cn.

Exemple 41. Les vecteurs v1 = (1, 0) et v2 = (−1, 1) forment une
base (v1, v2) de R2. Les coordonnées de x = (x1, x2) dans cette base sont
x1 + x2, x2.

Remarque 41. Soit (v1, . . . , vn) une famille de n vecteurs de Rn (on
comprendra pourquoi on a choisi précisément n vecteurs dans le paragraphe
suivant). Chaque vecteur vj est un n-uplet : vj = (a1j , . . . , anj). Cela défi-
nit une matrice A = (aij) ∈ Mn(R) : la j-ième colonne de A contient les
composantes de vj . Dire que (v1, . . . , vn) est une base, c’est dire que pour
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tout vecteur y = (y1, . . . , yn) de Rn, il existe un unique (λ1, . . . , λn) ∈ Rn
tel que

∑n
j=1 λjvj = y, ou encore, si on écrit cette identité composante par

composante :

∀i = 1, . . . , n,
n∑
j=1

aijλj = yi.

On reconnâıt un système linéaire associé à la matrice A, d’inconnues λ1, ...,
λn et de second membre y. La famille est une base si et seulement ce type
de système admet toujours une unique solution, c’est-à-dire si la matrice A
est inversible.

Ainsi, décider si une famille de n vecteurs de Rn est une base revient à
étudier l’inversibilité de la matrice carrée associée, par exemple en calculant
son déterminant.

Remarque 42. Il n’est pas complètement vain de parler de la famille
vide, celle qui n’a aucun élément... L’espace vectoriel qu’elle engendre est le
plus petit sous-espace vectoriel la contenant, à savoir {0}. C’est une famille
libre, puisqu’aucune équation ne relie ses éléments. C’est donc une base de
l’espace vectoriel trivial {0}.

1.4. La dimension d’un espace vectoriel.

Definition 21. Un espace vectoriel est dit finiment engendré s’il pos-
sède une famille génératrice (v1, . . . , vn).

Plusieurs expressions sont synonymes de « finiment engendré » : on parle
aussi d’espaces vectoriels de type fini ou bien de dimension finie. C’est sur
ces espaces que nous allons travailler pour définir la dimension. Quand il n’y
a pas de famille génératrice (finie), on dit souvent que l’espace vectoriel est
de dimension infinie.

Exemple 42. L’espace vectoriel K[X] des polynômes à coefficients dans
K n’est pas finiment engendré, il est de dimension infinie. Pour le com-
prendre, on considère une famille quelconque (P1, . . . , Pn) de K[X]. Chacun
de ces polynômes a un degré. Notons d le plus grand des degré des poly-
nômes P1, ..., Pn. Alors toute combinaison linéaire des Pi est un polynôme
de degré au plus d. Donc Xd+1 n’est pas dans Vect(P1, . . . , Pn). Cela montre
que cette famille n’est pas génératrice.

Par contre, le sous-espace Kd[X] des polynômes de degré au plus d est
finiment engendré, puisque (1, X,X2, . . . , Xd) en est une base.

Commençons par montrer un théorème d’extraction de base, affirmant
qu’il est possible d’extraire une base d’une famille génératrice quelconque.

Théorème 9. Si (v1, . . . , vn) une famille génératrice de l’espace vectoriel
E, on peut en extraire une base : il existe w1, . . . , wp ∈ {v1, . . . , vn} tels que
(w1, . . . , wp) est une base.

Autrement dit, en sélectionnant certains des vecteurs vi, on obtient une
famille qui est encore génératrice, mais qui de plus est libre.

Démonstration. Soit G l’ensemble des familles génératrices (w1, . . . , wp) telles
que p ≤ n et pour tout indice j, wj ∈ {v1, . . . , vn}. C’est un ensemble fini (il
a moins de nn éléments) et il n’est pas vide puisqu’il contient (v1, . . . , vn).
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On peut donc trouver dans G une famille (w1, . . . , wp) de cardinal minimal,
c’est-à-dire avec p minimal.

Par construction, (w1, . . . , wp) est génératrice. Supposons que cette fa-
mille est liée, de sorte que l’un des vecteurs est combinaison linéaire des
autres. Quitte à changer la numérotation, on peut supposer que c’est le
dernier :

wp =
p−1∑
i=0

αiwi,

pour des scalaires αi. Comme la famille (w1, . . . , wp) est génératrice, pour
tout x de E, on a alors des scalaires xi tels que

x =
p∑
i=0

xiwi =
p−1∑
i=0

(xi + xpαi)wi.

Cela montre que (w1, . . . , wp−1) est une famille génératrice. Comme elle
ne compte que p − 1 éléments, cela contredit la minimalité de p. Donc
(w1, . . . , wp) est aussi libre : c’est une base. ♦

Puisqu’un espace vectoriel finiment engendré possède une famille géné-
ratrice par définition, on peut en extraire une base.

Corollaire 5. Tout espace vectoriel finiment engendré possède une
base.

Nous pouvons maintenant adopter l’attitude inverse et montrer que toute
famille libre est contenue dans une base : c’est le théorème de la base incom-
plète. Commençons par un petit lemme qui contient l’essence du théorème.

Lemme 3. Soit (v1, . . . , vp) une famille libre de l’espace vectoriel E. Soit
un vecteur w ∈ E tel que w /∈ Vect(v1, . . . , vp). Alors (v1, . . . , vp, w) est une
famille libre.

Démonstration. Soient des scalaires λ1, . . . , λp+1 tels que

λ1v1 + · · ·+ λpvp + λp+1w = 0.

Si λp+1 n’est pas nul, on peut écrire w = −
p∑
i=1

λi
λp+1

vi, ce qui contredit l’hy-

pothèse w /∈ Vect(v1, . . . , vp). Donc λp+1 = 0. Et la liberté de (v1, . . . , vp)
impose alors λ1 = · · · = λp = 0. Donc tous les coefficients sont en fait
nuls. ♦

L’énoncé précis du théorème de la base incomplète est le suivant.

Théorème 10. Soit L = (v1, . . . , vp) une famille libre de l’espace vecto-
riel E. Soit G = (w1, . . . , wq) une famille génératrice de E. On peut alors
compléter L en une base (v1, . . . , vp, vp+1, . . . , vp+m), en choisissant des vec-
teurs vp+i ∈ {w1, . . . , wq}, i = 1, . . . ,m.

Démonstration. La preuve est un algorithme. On le commence en posant
L′ = L = (v1, . . . , vp). C’est une famille libre par hypothèse. Puis on va
(éventuellement) modifier L′ au cours des q étapes suivantes. Pour j allant
de 1 à q :
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— si wj ∈ VectL′, on ne fait rien et on passe à l’étape suivante ;
— sinon, on ajoute wj à L′, qui reste une famille libre d’après le lemme ;

puis on passe à l’étape suivante avec ce nouveau L′.
A l’issue de ces opérations, on dispose d’une famille libre

L′ = (v1, . . . , vp, vp+1, . . . , vp+m),

avec 0 ≤ m ≤ q. Elle est construite de sorte que tous les vecteurs de G sont
dans VectL′. On en déduit que VectG est inclus dans le sous-espace VectL′.
Puisque G est génératrice, VectG = E. On en déduit que VectL′ = E : la
famille L′ est génératrice. C’est donc une base. ♦

Nous en arrivons maintenant au point le plus délicat de notre démarche,
que l’on pourrait qualifier de lemme de comparaison.

Lemme 4. Si un espace vectoriel E possède une famille génératrice à n
éléments, alors toute famille d’au moins n+ 1 vecteurs est liée.

Démonstration. Elle se fait par récurrence sur n. L’initialisation, pour n = 0,
est immédiate : dans ce cas, E = {0} et toute famille contenant au moins
un élément contient en fait 0, donc est liée.

Pour démontrer l’hérédité, on suppose l’énoncé vrai au rang n−1. Et on
se donne un espace vectoriel E avec une famille génératrice G = (w1, . . . , wn)
et une famille quelconque (v1, . . . , vp), avec p > n. Il s’agit de montrer que
(v1, . . . , vp) est liée. Puisque G est génératirce, on peut écrire pour tout
indice j = 1, . . . , p :

vj =
n∑
i=1

aijwi,

où les aij sont des scalaires.
Si tous les coefficients anj sont nuls, les vecteurs v1, . . . , vp sont tous dans

l’espace vectoriel F = Vect(w1, . . . , wn−1) et on peut appliquer l’hypothèse
de récurrence dans F pour voir que la famille (v1, . . . , vp) est liée.

On peut donc supposer que l’un des coefficients anj n’est pas nul. Quitte
à renuméroter les vecteurs, on peut même supposer que anp 6= 0. Alors pour
j = 1, . . . , p− 1 :

vj −
anj
anp

vp =
n−1∑
i=1

(
aij −

anj
anp

aip

)
wi

La somme à droite n’a que n − 1 termes puisque le terme pour i = n est
nul par choix des coefficients. Cela montre que les vecteurs vj − anj

anp
vp sont

dans F = Vect(w1, . . . , wn−1) pour tous les indices j = 1, . . . , p− 1. Puisque
p − 1 > n − 1, on peut appliquer l’hypothèse de récurrence dans F pour
trouver des scalaires λ1, ..., λp−1 tels que

p−1∑
j=1

λj

(
vj −

anj
anp

vp

)
= 0,
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avec au moins l’un des scalaires λj non nuls. Comme cela se réécrit

p−1∑
j=1

λjvj −

p−1∑
j=1

anj
anp

 vp = 0,

cela montre que la famille (v1, . . . , vp) est liée. ♦

Remarque 43. Au lieu de démontrer ce lemme par récurrence, on peut
faire appel à la théorie des systèmes linéaires. Reprenons les notations de
la preuve : on a une famille génératrice G = (w1, . . . , wn) et on cherche à
prouver que toute famille (v1, . . . , vp) avec p > n est liée. On cherche donc
X = (λ1, . . . , λp) ∈ Kp non nul tel que

∑
j λjvj = 0. Si on introduit la

matrice A = (aij) ∈Mn,p(K) telle que

∀j = 1, . . . , p, vj =
n∑
i=1

aijwi,

on voit qu’il suffit d’avoir
∑
j aijλj = 0 pour tout indice i = 1, . . . , n. Il suffit

donc de trouver une solution non nulle X du système linéaire homogène
AX = 0. Or c’est un système de n équations à p inconnues, avec p > n :
comme il y a plus d’inconnues que d’équations, il n’y a jamais unicité de
la solution (au plus n variables peuvent être fixées, les p − n autres étant
libres). Il y a donc une solution X non nulle et la famille est liée.

Ce lemme de comparaison dit qu’une famille libre quelconque a tou-
jours au plus autant d’éléments qu’une famille génératrice quelconque. Nous
sommes maintenant en mesure d’énoncer le résultat principal de ce chapitre,
qui est une conséquence presque immédiate de ce constat.

Énoncé indispensable 7 : dimension

Dans un espace vectoriel finiment engendré E, toutes les bases ont
le même nombre d’éléments : on l’appelle la dimension de E.

Démonstration. Soient B1 et B2 deux bases de E, comptant respectivement
n1 et n2 éléments. Par le lemme de comparaison précédent, n1 ≤ n2, puisque
B2 est génératrice et B1 est libre. En inversant les rôles de B1 et B2, on
trouve aussi n2 ≤ n1. Donc n1 = n2. ♦

La dimension de E est notée dimE ou parfois dimK(E) si l’on veut
préciser les scalaires choisis.

Exemple 43. La base canonique de Kn compte n éléments donc on a
bien dimKn = n.

Exemple 44. La dimension de Kd[X] est d+ 1, puisque (1, X, . . . ,Xd)
en est une base.

Exemple 45. La dimension de Mn,p(K) est np. Pour le voir, on note
Ekl ∈ Mn,p(K) la matrice ayant un coefficient 1 en position (k, l) et des 0
partout ailleurs et on observe que la famille des matrices Ekl, pour 1 ≤ k ≤ n
et 1 ≤ l ≤ p, constitue une base de Mn,p(K).
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Exemple 46. Attention, C est bien un C-espace vectoriel de dimension
1, dont (1) est une base (tout nombre complexe s’écrit de façon unique
z = z · 1). Mais c’est aussi un R-espace vectoriel de dimension 2, dont (1, i)
est une base (tout nombre complexe s’écrit de façon unique x · 1 + y · i, avec
x, y ∈ R).

De façon générale, si E un C-espace vectoriel finiment engendré, E est
aussi un R-espace vectoriel finiment engendré et dimR(E) = 2 dimC(E).

Tirons enfin quelques conséquences très utiles des résultats précédents.

Proposition 29. Dans un espace vectoriel E de dimension d,
— une famille libre de E a au plus d éléments,
— toute famille libre de cardinal d est une base,
— une famille génératrice de E a au moins d éléments,
— toute famille génératrice de cardinal d est une base.

Démonstration. On dispose d’une base possédant d éléments. Le lemme de
comparaison dit qu’une famille libre a moins d’éléments qu’une famille gé-
nératrice. Puisqu’on dispose d’une famille libre et génératrice à d éléments,
il suit que toute famille libre (resp. génératrice) a moins (resp. plus) de d
éléments. Cela donne la première et la troisième propriétés.

Si une famille libre de cardinal d n’est pas une base, c’est qu’elle n’est pas
génératrice. Le théorème de la base incomplète permet de la compléter en
une base, qui aura donc au moins d+1 éléments, ce qui n’est pas compatible
avec la dimension. D’où la deuxième propriété.

Si une famille génératrice de cardinal d n’est pas une base, c’est qu’elle
n’est pas libre. Le théorème de la base extraite permet d’en extraire une
base, qui aura donc au plus d− 1 éléments, ce qui n’est pas compatible avec
la dimension. D’où la quatrième propriété. ♦

1.5. Sous-espaces et dimension. Commençons par une propriété très
naturelle.

Théorème 11. Soit E un espace vectoriel de dimension finie d. Alors
tout sous-espace vectoriel F de E est finiment engendré, avec dimF ≤ d. Si
de plus F est de dimension d, alors F = E.

Démonstration. Les familles libres de F sont aussi des familles libres de E,
donc elles ont au plus d éléments. Notons p le plus grand cardinal d’une
famille libre de F : p ≤ d. Soit (v1, . . . , vp) une famille libre de F ayant ce
cardinal maximal, p.

Soit w ∈ F . Si w /∈ Vect(v1, . . . , vp), la famille (v1, . . . , vp, w) est encore
libre d’après le lemme 3, ce qui contredit la maximalité de p. Donc tout vec-
teur w de F est dans Vect(v1, . . . , vp) : la famille (v1, . . . , vp) est génératrice
de F . C’est donc une base de F : dimF = p ≤ d.

Si de plus dimF = d, on a p = d, donc (v1, . . . , vd) est une famille libre
de E de cardinal d = dimE : c’est une base de E. Comme c’est aussi une
base de F , il vient F = Vect(v1, . . . , vd) = E. ♦

Nous avons vu que l’intersection F ∩ G et la somme F + G de deux
sous-espaces vectoriels F et G sont aussi des sous-espace vectoriels. Si F et
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G sont de dimension finie, leur intersection l’est aussi, comme sous-espace
de F par exemple, et on va voir que leur somme l’est aussi ; de plus, une
formule relie les dimensions de tous ces sous-espaces.

Proposition 30. Soit E un espace vectoriel et F , G deux sous-espaces
vectoriels de dimension finie de E. Alors F +G est de dimension finie et

dim(F +G) = dimF + dimG− dim(F ∩G).

Démonstration. La preuve consiste à produire une base convenable de F+G
en partant d’une base de F ∩G. Fixons donc une base B = (e1, . . . , em) de
F ∩ G. Puisque c’est une famille libre de F , on peut la compléter en une
base BF = (e1, . . . , em, v1, . . . , vp) de F . Puisque c’est aussi une famille libre
de G, on peut la compléter en une base BG = (e1, . . . , em, w1, . . . , wq) de G.

Par construction, dim(F ∩ G) = m, dimF = m + p et dimG = m + q.
On va montrer que B′ = (e1, . . . , em, v1, . . . , vp, w1, . . . , wq) est une base de
F +G. Cela prouvera la formule, puisqu’alors on aura :

dim(F+G) = m+p+q = (m+p)+(m+q)−m = dimF+dimG−dim(F∩G).

Pour voir que B′ est génératrice, on prend un vecteur x de F + G. Il
s’écrit x = xF + xG, avec xF ∈ F et xG ∈ G. Par construction, xF (resp.
xG) est une combinaison linéaire dél l’ements de BF (resp. BG). Donc x est
une combinaison linéaire des vecteurs ei, vj et wk. Cela prouve que B′ est
génératrice.

Pour voir que B′ est libre, on se donne des scalaires λi, µj et νk tels que

m∑
i=1

λiei +
p∑
j=1

µjvj +
q∑

k=1
νkwk = 0.

Alors le vecteur

x =
m∑
i=1

λiei +
p∑
j=1

µjvj = −
q∑

k=1
νkwk

est dans F (combinaison linéaire des ei et vj) mais aussi dansG (combinaison
linéaire des wk). Donc x est dans F ∩G, dont une base est B :

x =
m∑
i=1

αiei

pour certains scalaires αi. Mais alors

m∑
i=1

αiei +
q∑

k=1
νkwk = 0

et la liberté de la base BG montre que les coefficients αi et νk sont nuls. En
particulier, x = 0 donc

m∑
i=1

λiei +
p∑
j=1

µjvj = 0.

Par liberté de BF , les coefficients λi et µj sont nuls. Ceci prouve que B′ est
libre. ♦
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Quand deux sous-espaces F et G vérifient F ∩ G = {0}, on dit qu’ils
sont en somme directe et on note leur somme F +G = F ⊕G. Dans ce cas,
la formule ci-dessus se simplifie en :

dimF ⊕G = dimF + dimG.

Ce n’est pas le seul intérêt de cette notion ! En fait, quand F et G sont en
somme directe, tout élément x de F+G s’écrit de façon unique x = xF +xG,
avec xF ∈ F et xG ∈ G. En effet, si on a une autre décomposition de ce
type, x = x′F +x′G, on a x′F −xF = xG−x′G. Le membre de gauche est dans
F , le membre de droite dans G. Comme ils sont égaux, ils sont tous les deux
dans F ∩G, donc nuls : x′F = xF et x′G = xG.

On y reviendra quand on parlera de projecteurs, puis on généralisera
cette notion de somme directe pour bien comprendre la diagonalisation, à la
fin de ce cours.

1.6. Produits d’espaces vectoriels. Soient E1 et E2 deux K-espaces
vectoriels. On va étudier la structure d’espace vectoriel portée naturelle-
ment par leur produit. Rappelons que le produit (ou produit cartésien) des
ensembles E1 et E2 est l’ensemble

E1 × E2 = {(x1, x2) | x1 ∈ E1, x2 ∈ E2}

et que le couple (x1, x2) désigne la donnée d’un élément x1 de E1 et d’un
élément x2 de E2. Les lois d’espace vectoriel de E1 et E2 permettent de
définir des lois analogues sur le produit E1×E2 : pour x1, y1 ∈ E1, x2, y2 ∈ E2
et λ ∈ K, on pose

(x1, x2) + (y1, y2) = (x1 +y1, x2 +y2) et λ · (x1, x2) = (λ ·x1, λ ·x2).

On vérifie rapidement que ces lois font de E1 × E2 un K-espace vectoriel.
Par exemple, on peut prendre E1 = Rp et E2 = Rq et le produit est

simplement l’espace vectoriel Rp+q (essentiellement, la donnée de p réels et
q réels, c’est la donnée de p+ q réels).

Proposition 31. Si E1 et E2 sont deux K-espaces vectoriels de dimen-
sion finie, E × F est aussi de dimension finie et

dim(E1 × E2) = dimE1 + dimE2.

Démonstration. Soient B1 = (a1, . . . , ap) une base de E1 et B2 = (b1, . . . , bp)
une base de E2, de sorte que p = dimE1 et q = dimE2. La proposition sera
démontrée si on vérifie que B = ((a1, 0), . . . , (ap, 0), (0, b1), . . . , (0, bp)) est
une base de E1 × E2.

Soient des scalaires λ1, . . . , λp, µ1, . . . , µq tels que

p∑
i=1

λi(ai, 0) +
q∑
j=1

µj(0, bj) = 0.

La définition des lois fait que le couple
(∑p

i=1 λiai,
∑q
j=1 µjbj

)
est nul, de

sorte que
∑p
i=1 λiai et

∑q
j=1 µjbj sont nuls. La liberté des familles B1 et B2

implique alors que tous les coefficients λi et µj sont nuls. Donc B est libre.
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Soit (a, b) ∈ E1 × E2. Comme B1 et B2 sont génératrices, il existe des
scalaires λ1, . . . , λp, µ1, . . . , µq tels que a =

∑p
i=1 λiai et b =

∑q
j=1 µjbj .

Alors :

(a, b) =
p∑
i=1

λi(ai, 0) +
q∑
j=1

µj(0, bj).

Cela prouve que B est une famille génératrice de E1 × E2. ♦

Remarque 44. On peut noter une ressemblance formelle avec le cas de
sommes directes. La différence essentielle est que E1 et E2, dans ce para-
graphe, ne sont a priori pas des sous-espaces d’un même espace ambiant...
Mais on peut s’y ramener, en introduisant E′1 = E1×{0} et E′2 = {0}×E2.
Ce sont des sous-espaces vectoriels de E1 ×E2 dont l’intersection est {0} et
la somme est E1 × E2, par l’identité (a, b) = (a, 0) + (0, b). On peut donc
toujours écrire : E1 × E2 = E′1 ⊕ E′2.

Supposons E1 et E2 de dimension finie. Si (a1, . . . , ap) est une base de E1,
la famille ((a1, 0), . . . , (ap, 0)) est une base de E′1, donc E′1 est de dimension
dimE1. La situation de E′2 est similaire. D’après le résultat sur les sommes
directes, E1×E2 est donc de dimension dimE′1 +dimE′2 = dimE1 +dimE2.

Si on se donne m K-espaces vectoriels E1, . . . , Em, on peut de même
former leur produit

E1 × · · · × Em = {(x1, . . . , xm) | x1 ∈ E1, . . . , xm ∈ Em}

et c’est naturellement un K-espace vectoriel, par une construction analogue.
Si chacun des espaces en jeu est de dimension finie, leur produit l’est aussi
et on obtient la formule

dim (E1 × · · · × Em) =
m∑
i=1

dimEi

par une preuve similaire.
On peut vérifier cette formule sur le cas Rm = R× . . .R, par exemple.

1.7. Application aux suites récurrentes d’ordre deux. Dans ce
paragraphe, on va utiliser les notions d’algèbre linéaire développées ci-dessus
pour étudier les suites récurrentes d’ordre deux qui sont linéaires et à co-
efficients constants. On va voir que cela mène à des formules explicites.
Concrètement, on se fixe trois nombres complexes a, b, c ∈ C et on suppose
que le premier n’est pas nul : a ∈ C∗. Les suites (un) qui nous intéressent
sont celles qui vérifient la relation de récurrence

aun+2 + bun+1 + cun = 0

pour tout n ∈ N. Par exemple, la suite de Fibonacci est de ce type, avec
a = 1, b = c = −1.

On se place dans l’espace vectoriel E des suites (à valeurs complexes) et
on pose

F = {u = (un) ∈ E/∀n ∈ N, aun+2 + bun+1 + cun = 0}.
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On vérifie aisément que la suite nulle est dans F et que , pour tous u, u′ ∈ F
et α, β ∈ C, la suite u′′ = αu+ βu′ vérifie, pour tout indice n :

au′′n+2 + bu′′n+1 + cu′′n = α (aun+2 + bun+1 + cun) + β
(
au′n+2 + bu′n+1 + cu′n

)
= 0.

Donc F est un sous-espace vectoriel de E.
Comme E est de dimension infinie, il n’est pas clair que F le soit. C’est

néanmoins vrai, pour la raison suivante. Chaque élément u de F est en-
tièrement déterminé par ses deux premiers termes, u0 et u1. En effet, les
termes suivants se calculent de proche en proche par la relation de récur-
rence un+2 = − b

aun+1 − c
aun = 0 : pour n = 0, on trouve une expression de

u2 en fonction de u0 et u1 ; pour n = 1, c’est u3 qui se trouve déterminé en
fonction de u1 et u2, donc de u0 et u1, etc.

On peut donc définir un élément v = (vn) de F en décidant par exemple
que v0 = 1 et v1 = 0. De même, il existe un unique élément w de F vérifiant
w0 = 0 et w1 = 1.

Lemme 5. La famille (v, w) est une base de l’espace vectoriel F , qui est
donc de dimension deux.

Démonstration. Pour montrer que (v, w) est libre, on suppose que λv+µw =
0, avec λ, µ ∈ C. Cela signifie que λvn + µwn = 0 pour tout n. Pour n = 0
et n = 1, cela donne λ+ 0 = 0 et 0 + µ = 0. Donc λ = µ = 0 et on a prouvé
que la famille est libre.

Pour montrer que (v, w) est génératrice, on se donne u ∈ F et on observe
que la suite u′ = u0v + u1w est dans F (combinaison linéaire d’éléments de
F ), donc est entièrement déterminée par ses deux premiers termes. Or le
choix de v et w fait que u′0 = u0 et u′1 = u1. On en déduit que u′ = u,
de sorte que u est une combinaison linéaire de v et w. Cela montre que la
famille est génératrice.

Ainsi, (v, w) est une base de F . L’espace F possède donc une base com-
portant deux éléments : F est de dimension deux. ♦

On peut remarquer que v et w sont calculables dans le cas où c = 0.
Dans ce cas, la relation de récurrence double s’écrit : un+2 = − b

aun+1 pour

tout n ∈ N, c’est-à-dire un+1 = − b
aun pour tout n ≥ 1. On trouve ainsi

d’une part v0 = 1 et vn = 0 pour tout n ≥ 1, et d’autre part w0 = 0 puis
wn = (−b/a)n−1 pour tout n ≥ 1.

On va maintenant supposer c 6= 0. Le problème est alors que la base
(v, w) n’est en général pas explicite : on n’a pas d’expression évidente pour
v176. Pour trouver une base plus pratique, on cherche des éléments u = (un)
de F sous la forme : un = λn, pour tout n ∈ N. Ici, λ est un nombre complexe
restant à choisir. Une telle suite u est dans F si et seulement si

∀n ∈ N, aλn+2 + bλn+1 + cλn = 0.

En factorisant par λn, on voit que u est dans F dès que aλ2 +bλ+c = 0. On
introduit donc le trinôme du second degré P = aX2 +bX+c et on distingue
deux cas, selon son nombre de racines. Observons au passage que 0 n’est pas
racine de P puisqu’on a supposé c 6= 0.
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Premier cas. Si P a deux racines complexes distinctes λ+ 6= λ− (i.e. si
le discriminant n’est pas nul), on pose u± = (λn±). Montrons que (u+, u−) est
une base de F . Puisque F est de dimension deux et cette famille compte deux
éléments, il suffit de vérifier qu’elle est libre. Or l’équation αu+ + βu− = 0
(α, β ∈ C) signifie que αλn+ + βλn− = 0 pour tout indice n. Pour n = 0
et n = 1, cela donne α + β = 0 et αλ+ + βλ− = 0. Donc β = −α et
α(λ+−λ−) = 0. Comme λ+−λ− 6= 0, on en tire α = β = 0. Ainsi, (u+, u−)
est une base de F dans ce cas.

Second cas. Si P a une seule racine complexe λ, le discriminant b2−4ac
est nul et la racine est donnée par λ = − b

2a . Comme dans le premier cas, la
suite z = (λn) est dans F . En fait, dans ce cas, y = (nλn) est aussi dans F :
pour n ∈ N,

ayn+2 + byn+1 + cyn = a(n+ 2)λn+2 + b(n+ 1)λn+1 + cnλn

= nλnP (λ) + (2aλ+ b)λn+1

= 0.

Vérifions que la famille (y, z) est libre, en supposant αy + βz = 0, soit
(αn + β)λn pour tout n ∈ N. Pour n = 0, on trouve directement β = 0.
En prenant par exemple n = 1, on en déduit aussi α = 0. Donc la famille
est libre et constitue même une base de F , puisqu’elle a le bon nombre
d’éléments.

On retiendra le théorème suivant.

Énoncé indispensable 8 : suites récurrentes d’ordre deux

Soient a, b, c ∈ C, avec a 6= 0 et c 6= 0, et P = aX2 + bX + c. Soit
(un) une suite telle que aun+2 + bun+1 + cun = 0 pour tout indice n.

Si P admet deux racines complexes λ+ 6= λ−, il existe A,B ∈ C tels
que un = Aλn+ +Bλn− pour tout indice n.

Si P admet une seule racine complexe λ, il existe A,B ∈ C tels que
un = (An+B)λn pour tout indice n.

Exemple 47. Considérons la suite de Fibonacci (un) : u0 = u1 = 1
et un+2 − un+1 − un = 0 pour tout n. Dans ce cas, P = X2 − X − 1
est de discriminant 5, de sorte qu’on dispose de deux racines λ± = 1±

√
5

2 .
On sait donc qu’il existe des constantes A et B telles que pour tout n :
un = Aλn+ + Bλn−. Pour calculer A et B ,on utilise les données initiales :
u0 = u1 = 1 se traduit par A+B = 1 et Aλ+ +Bλ− = 1. Après calcul, on
trouve A = λ+/

√
5 et B = −λ−/

√
5. D’où l’expression :

∀n ∈ N, un =

(
1+
√

5
2

)n+1
−
(

1−
√

5
2

)n+1

√
5

.

Remarque 45. Une situation complètement similaire se présente quand
on étudie les équations différentielles d’ordre deux qui sont linéaires et à co-
efficients constants. Etant donnés a ∈ C∗, b, c ∈ C, on peut considérer l’en-
semble F des fonctions lisses y : R→ C qui vérifient l’équation différentielle
ay′′+ by′+ cy = 0. On vérifie aisément que F est un sous-espace vectoriel de
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l’espace vectoriel des fonctions lisses de R dans C. Et le cours d’analyse du
premier semestre montre que F est de dimension deux, avec une base (y1, y2)
s’exprimant en termes des racines du trinôme P = aX2 + bX + c. Si P a
deux racines distinctes λ1 6= λ2, les fonctions yk : t 7→ exp(λkt) conviennent
(k = 1, 2). Si P n’a qu’une racine λ, on peut prendre y1 : t 7→ exp(λt) et
y2 : t 7→ t exp(λt).

La dimension de F reflète une propriété générale des solutions aux équa-
tions différentielles d’ordre deux : toute solution y sur un intervalle I est
entièrement déterminée par sa position initiale y(t0) et sa vitesse initiale
y′(t0), en un temps t0 ∈ I. Les éléments de F peuvent donc se paramétrer
par ces deux nombres : la dimension est deux.
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2. Applications linéaires

2.1. Définition et premières propriétes. On pose K = R ou C. Une
application linéaire entre deux K-espaces vectoriels est une application qui
respecte les lois.

Énoncé indispensable 9 : application linéaire

Soient E et F deux K-espaces vectoriels. Une application f de E
dans F est dite linéaire si elle satisfait aux deux conditions suivantes.

(1) Pour tous vecteurs u et v de E, f(u+ v) = f(u) + f(v).
(2) Pour tout vecteur u de E et pour tout scalaire λ de K, f(λu) =

λf(u).

Pour insister sur K, on dit parfois K-linéaire. L’ensemble des applications
linéaires de E dans F est noté LK(E,F ) ou L(E,F ).

On peut noter qu’une application linéaire f vérifie forcément :

f(0) = 0.
Cela résulte de la première partie de la définition ci-dessus : f(0) = f(0+0) =
f(0) + f(0) ; en soustrayant f(0), il reste 0 = f(0). Cela fournit un premier
test pour savoir si une application est linéaire ou non. Par exemple, une
application constante non nulle ne peut pas être linéaire.

Pour démontrer qu’une application est linéaire, on peut utiliser une pro-
priété plus ”concentrée” donnée par la caractérisation suivante.

Proposition 32 (Caractérisation d’une application linéaire). Soient E
et F deux K-espaces vectoriels et f une application de E dans F . L’applica-
tion f est linéaire si et seulement si, pour tous vecteurs u et v de E et pour
tout scalaire α de K,

f(αu+ v) = αf(u) + f(v).

Démonstration. Soient f une application linéaire de E dans F , u et v deux
vecteurs de E, α un élément de K. En utilisant la propriété (1) puis la
propriété (2) de la linéarité de K, on a

f(αu+ v) = f(αu) + f(v)
= αf(u) + f(v)

Montrons la réciproque. Soit f une application de E dans F telle que,
pour tous vecteurs u et v de E et pour tout scalaire α de K, f(αu + v) =
αf(u) + f(v). En faisant α = 1, on trouve la propriété (1) de la linéarité :
f(u + v) = f(u) + f(v). Cela implique f(0) = 0 (cf. ci-dessus). En faisant
v = 0, on trouve maintenant : f(αu+0) = αf(u)+f(0), soit f(αu) = αf(u),
pour tous α ∈ K et u ∈ E. La propriété (2) de la linéarité est vérifiée. ♦

Remarque 46. Dans la même veine, on montre qu’une application li-
néaire f : E → F transforme une combinaison linéaire de E en une autre
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combinaison linéaire de F : pour tous λ1, . . . , λn ∈ K et u1, . . . , un ∈ E,

f

(
n∑
i=1

λiui

)
=

n∑
i=1

λif(ui).

Beaucoup d’applications naturelles sont linéaires.

Exemple 48. L’application f : R2 → R définie par f(x, y) = x est
linéaire. En effet, si u = (x, y) et u′ = (x′, y′) sont deux éléments de R2 et si
λ est un réel,

f(λu+ u′) = f(λx+ x′, λy + y′)
= λx+ x′

= λf(u) + f(u′).

Exemple 49. Dans l’espace vectoriel E = RR (constitué de toutes les
fonctions de R dans R), on considère le sous-espace D constitué des fonctions
dérivables. L’application d : D → E définie par d(f) = f ′ est linéaire. En
effet, si f et g sont deux fonctions dérivables sur R et α un réel,

d(αf + g) = (αf + g)′ = αf ′ + g′ = αd(f) + d(g).

Exemple 50. Considérons l’application de Mn,p(C) dans Mp,n(C) don-
née par la transposition : T (A) = tA. C’est une application linéaire car pour
tous éléments de Mn,p(C) et tout scalaire α,

t(αA+B) = t(αA) + tB = αtA+ tB.

Exemple 51. Soient E le C-espace vectoriel des suites convergentes et
lim : E → C l’application qui à une suite convergente associe sa limite. lim
est linéaire puisque, si (un), (vn) ∈ E et α ∈ C, lim(αun + vn) = α lim(un) +
lim(vn).

Exemple 52. Soit E le R-espace vectoriel des fonctions continues du

segment [a, b] dans R. L’application I : E → R telle que I(f) =
∫ b
a f est

linéaire puisque, pour tous f, g ∈ E et α ∈ R,
∫ b
a (αf + g) = α

∫ b
a f +

∫ b
a g.

Exemple 53. Toute matrice A ∈ Mn,p(K) définit une application li-
néaire fA : Kp → Kn par simple produit matriciel : pour tout X ∈ Kp =
Mp,1(K), on pose fA(X) = AX. Sa linéarité provient de la distributivité du
produit matriciel : pour tous X,Y ∈ Kp et α ∈ K, A(αX+Y ) = αAX+AY .

Par exemple, à |a matrice A =
(

1 0 0
0 1 1

)
est associée l’application R-

linéaire fA : R3 → R2 telle que

fA(x1, x2, x3) = A

x1
x2
x3

 =
(

x1
x2 + x3

)
= (x1, x2 + x3).

Mais certaines applications simples ne sont pas linéaires !

Exemple 54. Soient E un K-espace-vectoriel et w un vecteur non nul
de E. La translation de vecteur w est l’application τ : E → E définie par
τ(u) = u+ w. Cette application n’est pas linéaire parce que τ(0) = w 6= 0.
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Exemple 55. L’application f : R → R définie par f(x) = x2 n’est pas
linéaire parce que f(1) = 1, f(2) = 4, donc f(2) 6= 2f(1). Cette application
f vérifie en fait pour tous réels λ et x : f(λx) = λ2f(x) – au lieu de λf(x).
Le même problème surgit quand on regarde l’application det : Mn(R)→ R,
pour n ≥ 2 : les propriétés du déterminant donnent det(λA) = λn detA
pour tous A ∈ Mn(R) et λ ∈ R. Ceci montre que le déterminant n’est pas
linéaire en dimension n ≥ 2. Par exemple, det(2In) = 2n 6= 2 = 2 det In.

Énoncé indispensable 10 : endomorphisme

Soit E un espace vectoriel. Une application linéaire de E dans E est
appelée un endomorphisme de E. On notera L(E) = L(E,E).

Exemple 56. Il y a beaucoup d’exemples naturels.
— Une matrice carrée A ∈Mn(K) définit un endomorphisme fA de Kn.
— La transposition définit un endormorphisme de Mn(K).
— La dérivation fournit un endomorphisme de C∞(R,R), mais aussi de

R[X].
— Une rotation du plan centrée en l’origine est un endomorphisme du

plan.

Exemple 57. Soient E un K-espace-vectoriel et λ un élément de K.
L’homothétie de rapport λ est l’application hλ : E → E telle que hλ(u) =
λu pour tout u ∈ E. C’est un endomorphisme (par définition d’un espace
vectoriel !).

Exemple 58. SoitE un K-espace-vectoriel. On suppose que E est somme
directe de deux sous-espaces F et G : E = F⊕G. Tout vecteur u de E s’écrit
de fao̧n unique u = v + w avec v élément de F et w élément de G. L’uni-
cité de la décomposition précédente permet de définir l’application p de E
dans E telle que p(u) = v. L’application p est appelée projection sur F
parallèlement à G. C’est une application linéaire.

En effet, soient deux vecteurs u et u′ de E, et deux scalaires α , β deux
scalaires de K, le vecteur u s’écrit de façon unique u = v+w avec v élément
de F et w élément de G et, par définition de p, p(u) = v. De même, le vecteur
u′ s’écrit de fao̧n unique u′ = v′ +w′ avec v′ élément de F et w′ élément de
G et, par définition de p, p(u′) = v′ .

αu+ βu′ = (αv + βv′) + (αw + βw′).
F est un sous-espace vectoriel de E, il est donc stable par combinaison
linéaire et donc le vecteur αv + βv′ appartient à F . De même le vecteur
αw + βw′ appartient à G et, d’après la définition de p,on a

p(αu+ βu′) = αv + βv′ = αp(u) + βp(u′).
Une projection p vérifie l’égalité p2 = p. En effet, soit p la projection sur

F parallèlement à G, tout vecteur u de E s’écrit de façon unique u = v+w
avec v élément de F et w élément de G. on a alors p(u) = v et p(v) = v car
v = v + 0 avec v élément de F et 0 élément de G. Ainsi

p2(u) = p (p(u)) = p(v) = v = p(u).
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Un exemple de projection a été vu dans le cours sur les transformations
linéaires du plan. Soit (~i,~j) un repère (i.e. une base) de l’espace vectoriel

P des vecteurs du plan. Les droites D(~i) et D(~j) sont deux sous espaces

supplémentaires de P. Et la projection sur D(~i) parallèlement à D(~j) n’est
autre que la projection vue dans le cours sur les transformations linéaires
du plan.

Il est utile de voir que la linéarité se propage bien, par combinaisons
linéaires et par composition.

SoientE et F deux K-espaces vectoriels. Rappelons que l’ensemble FE de
toutes les applications de E dans F est ntaurellement un K-espace vectoriel :

— si f et g sont deux applications de E dans F , on définit f+g : E → F
par (f + g)(u) = f(u) + g(u) pour tout u ∈ E ;

— si f est une application de E dans F et λ un élément de K, on définit
λ · f : E → F par (λ · f)(u) = λf(u) pour tout u ∈ E.

Proposition 33. L(E,F) est un sous-espace vectoriel de FE.

Démonstration. L’application nulle est un élément de L(E,F ). On veut voir
que, pour f, g ∈ L(E,F ) et λ ∈ K, les applications f+g et λ·f sont linéaires.
Soient des vecteurs u et v de E et un scalaire α de K.

(f + g)(αu+ v) = f(αu+ v) + g(αu+ v)
= αf(u) + f(v) + αg(u) + g(v) (linéarité de f et g)
= α (f(u) + g(u)) + (f(v) + g(v))
= α(f + g)(u) + (f + g)(v)

Donc f + g est linéaire.

(λ · f)(αu+ v) = λf(αu+ v)
= λ (αf(u) + f(v)) (linéarité de f )
= αλf(u) + λf(v)
= α(λf)(u) + (λf)(v)

Donc λ · f est linéaire. ♦

Proposition 34. Soient E,F,G trois K-espaces vectoriels, f une ap-
plication linéaire de E dans F et g une application linéaire de F dans G,
alors g ◦ f est une application linéaire de E dans G.

En particulier, la composée de deux endomorphismes de E est un endo-
morphisme de E.

Démonstration. Soient u et v deux vecteurs de E, et α un élément de K.

(g ◦ f)(αu+ v) = g (f(αu+ v))
= g (αf(u) + f(v)) (linéarité de f)
= αg (f(u)) + g (f(v)) (linéarité de g)
= αg ◦ f(u) + g ◦ f(v)

♦
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Énoncé indispensable 11 : isomorphisme

Soient E et F deux K-espace vectoriels. On dit que f : E → F est
un isomorphisme si f est linéaire et bijective.

Proposition 35 (Linéarité de la réciproque d’un isomorphisme). Soient
E et F deux K-espaces vectoriels. Si f : E → F est un isomorphisme, alors
f−1 : F → E est aussi un isomorphisme.

Démonstration. f étant une application bijective de E sur F , f−1 est une
application bijective de F sur E. Il reste donc à prouver que f−1 est bien
linéaire. Soient u′ et v′ deux vecteurs de F et soient α et β deux éléments de
K, on pose f−1(u′) = u et f−1(v′) = v et on a alors f(u) = u′ et f(v) = v′.
Comme f est linéaire, on a

f−1(αu′ + βv′) = f−1 (αf(u) + βf(v)) = f−1 (f(αu+ βv)) = αu+ βv.

Donc f−1(αu′+βv′) = αf−1(u′)+βf−1(v′). Cela prouve que f−1 est linéaire.
♦

Exemple 59. La transposition donne un isomorphisme entre Mn,p(K)
et Mp,n(K), dont la réciproque est aussi donnée par la transposition.

Exemple 60. L’homothétie hλ : E → E est un isomorphisme si λ 6= 0 ;
sa réciproque est alors h1/λ.

Test : base et isomorphisme

Soit E un K-espace vectoriel muni d’une base (e1, . . . , en). Vérifier
que l’application ϕ : Kn → E définie par ϕ(x1, . . . , xn) =

∑n
i=1 xiei est

un isomorphisme.

Quand il existe un isomorphisme f : E → F (ou de F vers E : c’est pareil
d’après la proposition ci-dessus), on dit que E et F sont isomorphes, ou que
E est isomorphe à F . Typiquement, le test dit qu’un K-espace vectoriel
de dimension n est toujours isomorphe à Kn. C’est un peu le slogan de la
théorie de la dimension.

Dans la même veine, si f : E → F est un isomorphisme et si (e1, . . . , en)
est une base de E, (f(e1), . . . , f(en)) est une base de F (cf. TD). En parti-
culier, si un espace vectoriel est isomorphe à un espace de dimension finie n,
il est lui aussi de dimension finie n.

2.2. Applications linéaires et sous espaces vectoriels. Si f : X →
Y est une application quelconque entre des ensembles quelconques et si A
est une partie de X, on définit l’image de A par f comme étant :

f(A) = {y ∈ Y | ∃x ∈ A, f(x) = y} = {f(x) | x ∈ X}.
C’est donc une partie de Y .

Dans la suite, on va se concentrer sur les applications linéaires entre
deux K-espaces vectoriels E et F .
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Proposition 36. Si f : E → F est une application linéaire et si A est
un sous-espace vectoriel de E, alors f(A) est un sous-espace vectoriel de F .

Démonstration. Comme A est un sous-espace vectoriel de E, il contient
l’élément 0E , donc 0F = f(0E) appartient à f(A).

Si y1 et y2 sont des éléments de f(A), il existe des éléments x1 et x2 de
A tels que y1 = f(x1) et y2 = f(x2). Par linéarité de f ,

y1 + αy2 = f(x1) + αf(x2) = f(x1 + αx2).

Or x1 + αx2 est un élément de A, car A est un sous-espace vectoriel de E.
Cela prouve que y1 + αy2 est bien un élément de f(A). ♦

Le cas où A = E est d’usage courant.

Énoncé indispensable 12 : image

Soit f : E → F une application linéaire. L’image de f , notée Im f ,
est l’ensemble des valeurs prises par f : Im f = f(E). C’est un sous-
espace vectoriel de F .

Un autre espace vectoriel naturel est associé à f ∈ L(E,F ), cette fois
un sous-espace de l’espace de départ E.

Énoncé indispensable 13 : noyau

Soit f : E → F une application linéaire. Le noyau de f , noté Ker f ,
est défini par :

Ker f = {x ∈ E | f(x) = 0F }.
C’est un sous-espace vectoriel de E.

Démonstration. Ker f contient 0E puisque f(0E) = 0F par linéarité. Soient
x1 et x2 deux éléments de Ker f et α ∈ K un scalaire. Pour montrer que
x1 + αx2 est un élément de Ker f , on utilise la linéarité de f :

f(x1 + αx2) = f(x1) + αf(x2) = 0F + α0F = 0F .

♦

Bien sûr, par définition, f : E → F est surjective si et seulement si
Im f = F . Il se trouve qu’on peut caractériser l’injectivité d’une applcation
linéaire par la nature de son noyau.

Énoncé indispensable 14 : injectivité et noyau

Une application linéaire f : E → F est injective si et seulement si
Ker f = {0E}.

Démonstration. Supposons f injective et montrons que Ker f = {0E}. La
linéarité de f donne f(0E) = 0F . De plus, si x est un élément de E tel
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que x 6= 0E , l’injectivité de f impose f(x) 6= f(0E), donc f(x) 6= 0F . Donc
Ker f = {x ∈ E | f(x) = 0F } = {0E}.

Supposons maintenant que Ker f = {0E}. Soient x et y deux éléments
de E tels que f(x) = f(y). Comme f est linéaire, on en déduit f(x − y) =
f(x)− f(y) = 0F , c’est à dire x− y est un élément de Ker f = {0E}. Donc
x− y = 0E , soit x = y. Cela montre que f est injective. ♦

Exemple 61. Si f est l’application linéaire de R2 dans R3 définie par
f(x, y) = (x, x,−x), on trouve que l’image et le noyau de f sont des droites :

Im(f) = Vect ((1, 1,−1)) et Ker f = Vect ((0, 1)) .
f n’est donc ni surjective, ni injective.

Exemple 62. Si λ 6= 0, l’homothétie hλ : E → E est un isomorphisme :
Im(hλ) = E et Kerhλ = {0E}. Par ailleurs, une homothétie de rapport
λ = 0 est en fait identiquement nulle : Im h0 = {0E} et Kerh0 = E.

Exemple 63. Soit p : E → E la projection sur F parallèlement à G, où
E = F ⊕G. Tout vecteur u de E s’écrit d’une manière unique u = uF + uG
avec uF élément de F et uG élément de G ; et alors p(u) = uF . Le noyau de
p est l’ensemble des vecteurs u de E tels que uF = 0 : Ker p = G. L’image
de p est l’ensemble des vecteurs uF , quand u décrit E : c’est donc une partie
de F ; et si u est dans F , u = uF = p(u), donc F ⊂ Im p et en fait Im p = F .

2.3. Théorème du rang. Dans ce paragraphe, on étudie les proprié-
tés spécifiques des applications linéaires définies sur un espace vectoriel de
dimension finie. Dans ce cas, il y a un lien entre l’image et le noyau d’une
même application linéaire.

Proposition 37. Soit f : E → F une application linéaire. On suppose
que l’espace vectoriel E est finiment engendré. Alors l’image de f est un
espace vectoriel de dimension finie. Plus précisément, si (e1, . . . , en) est une
base de E, alors (f(e1), . . . , f(en)) est une famille génératrice de Im f .

Démonstration. Il s’agit de démontrer que tout élément de Im f est une
combinaison linéaire des vecteurs f(e1), . . . , f(en).

Si y est un élément de Im f , il existe un élément x de E tel que y = f(x).
Comme (e1, . . . , en) est une base de E, il existe des scalaires x1, . . . , xn ∈ K

tels que x =
n∑
i=1
xiei. En utilisant la linéarité de f , on en déduit f(x) =

n∑
i=1
xif(ei), ce qui achève la démonstration. ♦

Cette proposition montre que l’image de f , dans ce contexte, a une
dimension finie. On lui donne un nom.

Definition 22. Soit f ∈ L(E,F ), avec E finiment engendré. La dimen-
sion de l’espace vectoriel Im f est appelée rang de f : rg(f) = dim Im f .

Remarque 47. La proposition ci-dessus donne une famille génératrice
de Im f de cardinal n = dimE. Or le cardinal d’une famille génératrice est
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toujours minoré par la dimension : rg f ≤ dimE. On peut aussi remarquer
que Im f est un sous-espace vectoriel de F : si F est de dimension finie, on
a aussi rg f ≤ dimF .

A toute application linéaire f : E → F , on peut associer deux espaces
vectoriels naturels : le noyau Ker f et l’image Im f . Quand E est finiment
engendré, les deux sont finiment engendrés : on vient de le voir pour l’image
et le noyau est un sous-espace de l’espace finiment engendré E. On dispose
donc de deux nombres, les dimensions respectives du noyau et de l’image.
Or ces deux nombres sont reliés par une formule !

Énoncé indispensable 15 : théorème du rang

Soit f : E → F une application linéaire. On suppose que l’espace
vectoriel E est finiment engendré. Alors

rg f = dimE − dim Ker f.

Dans la pratique, il suffit donc de déterminer la dimension du noyau ou
celle de l’image d’une application linéaire pour avoir les deux dimensions.

Démonstration. Notons n = dimE. Le noyau de f est un sous espace de E
de dimension p ≤ n. Soit (e1, . . . , ep) une base de Ker f . D’après le théorème
de la base incomplète, il existe n − p vecteurs ep+1, . . . , en de E tels que
(e1, e2, . . . , en) est une base de E. On va montrer que (f(ep+1), . . . , f(en))
est une base de Im f . Ainsi, on aura une base de Im f possédant n − p
éléments, ce qui donne rg f = dim Im f = n− p = dimE − dim Ker f .

Génératrice ? Soit y ∈ Im f . Comme dans la preuve précédente, on trouve
x =

∑n
i=1 xiei tel que y = f(x), de sorte que par linéarité : y =

∑n
i=1 xif(ei).

Par construction, ici, pour i ≤ p, ei est dans le noyau de f donc f(ei) = 0.
Donc en fait y =

∑n
i=p+1 xif(ei). Cela prouve que (f(ep+1), . . . , f(en)) est

une famille génératrice de Im f .
Libre ? Soient λp+1, . . . , λn des scalaires tels que

λp+1f(ep+1) + · · ·+ λnf(en) = 0.
Puisque f est linéaire, cela implique

f (λp+1ep+1 + · · ·+ λnen) = 0,
ce qui signifie que le vecteur λp+1ep+1 + · · ·+ λnen appartient au noyau de
f . Puisque (e1, . . . , ep) est une base de Ker f , il existe donc des scalaires
α1, . . . , αp tels que λp+1ep+1 + · · ·+ λnen = α1e1 + · · ·+ αpep, ou encore

α1e1 + · · ·+ αpep − λp+1ep+1 − · · · − λnen = 0.
Comme (e1, . . . , en) est une base de E, c’est une famille libre. Donc

α1 = · · · = αp = −λp+1 = · · · = −λn = 0.
En particulier, les λi sont nuls et cela assure que (f(ep+1), . . . , f(en)) est
une famille libre. Finalement, c’est une base de Im f . ♦

Un exercice sain consiste à vérifier que les exemples du paragraphe pré-
cédent vérifient bien le théorème du rang.
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Corollaire 6. Soit f : E → F une application linéaire. On suppose
que les espaces vectoriels E et F sont finiment engendrés et de même di-
mension. Alors f est injective si et seulement si elle est surjective, et donc
si et seulement si c’est un isomorphisme.

Autrement dit, dans le cas où les espaces de départ et d’arrivée ont la
même dimension, prouver la bijectivité d’une application linéaire se ramène
à prouver une seule propriété, injectivité ou surjectivité, et pas les deux.
Un résultat de type « existence »(surjectivité) équivaut à un résultat de
type « unicité »(injectivité). Par exemple, ceci s’applique quand f est un
endomorphisme.

Démonstration. Dire que f est injective, c’est dire que Ker f = {0}, i.e.
dim Ker f = 0. D’après le théorème du rang, cela veut dire exactement :
rg f = dimE. Puisqu’on suppose dimE = dimF , cela revient à : dim Im f =
dimF . Mais Im f est un sous-espace de F , donc cette égalité de dimensions
équivaut à l’égalité Im f = F , c’est-à-dire à la surjectvité de f . ♦

2.4. Traduction matricielle de l’action d’une application linéaire.
Soient E et F deux K-espaces vectoriels de dimension finie et ϕ une applica-
tion linéaire de E dans F . Le but de ce paragraphe est de traduire l’égalité
vectorielle y = ϕ(x) par une égalité matricielle.

Comme E est un espace vectoriel de dimension finie, il possède une base
BE = (e1, e2, . . . , ep), où p = dimE. Tout élément x de E admet une écriture
unique sous la forme :

x = x1e1 + · · ·+ xpep.

Les scalaires x1, . . . , xp sont les coordonnées de x dans la base BE . Leur
donnée est équivalente à la donnée de x. On peut donc repérer x par la
matrice colonne de ses coordonnées dans la base BE :

[x]BE =


x1
x2
...
xp

 .

De la même façon, on peut introduire une base BF = (f1, . . . , fn) de F ,
où n = dimF . Et tout élément y de F est repéré par la matrice colonne

[y]BF =


y1
y2
...
yn


contenant les coordonnées de y dans la base BF : y = y1f1 + · · ·+ ynfn.

Si y = ϕ(x), comment calculer les coordonnées de y en fonction de celles
de x ? Il suffit en fait de connâıtre l’action de ϕ sur les éléments de la base
BE (comme on va le voir dans la prochaine proposition). Pour j = 1, . . . , p,
on introduit la notation suivante pour les coordonnées de ϕ(ej) dans la base
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BF :

[ϕ(ej)]BF =


a1j
a2j
...
anj

 .
On obtient donc une matrice A = (aij) ∈ Mn,p(K), dont la j-ième colonne
contient les coordonnées de ϕ(ej) dans la base BF .

Énoncé indispensable 16 : matrice d’une application linéaire

La matrice de ϕ ∈ L(E,F ) dans les bases BE et BF est

[ϕ]BEBF = (aij) ∈Mn,p(K),
où, pour j = 1, . . . , p,

ϕ(ej) =
n∑
i=1

aijfi.

Ici, BE = (e1, . . . , ep) et BF = (f1, . . . , fn). La j-ième colonne de la

matrice [ϕ]BEBF contient les coordonnées de ϕ(ej) dans la base BF .

Remarque 48. Insistons sur le fait que la matrice [ϕ]BEBF comporte n
lignes et p colonnes, où n est la dimension de l’espace d’arrivée F et p est la
dimension de l’espace de départ E.

L’intérêt de cette matrice est qu’elle permet de calculer les coordonnées
de y = ϕ(x) en fonction de celles de x, par un simple produit matriciel.

Énoncé indispensable 17 : traduction matricielle I

Proposition 38. Soit ϕ : E → F une application linéaire de ma-

trice [ϕ]BEBF dans des bases BE de E et BF de F . Pour tout x ∈ E,

[ϕ(x)]BF = [ϕ]BEBF [x]BE .

Si on note A la matrice de ϕ, X celle des coordonnées de x et Y celle
des coordonnées de ϕ(x), la proposition dit que

Y = AX.

Démonstration. Rappelons les notations :BE = (e1, . . . , ep),BF = (f1, . . . , fn),

[ϕ]BEBF = A = (ai,j) et [x]BE = X =

x1
...
xp

. Par définition, x =
p∑
j=1

xjej . Avec

la linéarité de ϕ, on trouve

ϕ(x) = ϕ

 p∑
j=1

xjej

 =
p∑
j=1

xjϕ(ej) =
p∑
j=1

xj

(
n∑
i=1

aijfi

)
.
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En permutant les sommes, on obtient : ϕ(x) =
n∑
i=1

 p∑
j=1

aijxj

 fi. La matrice

colonne Y des coordonnées de ϕ(x) dans la base (f1, f2, . . . , fn) est donc

p∑
j=1

a1jxj

...
p∑
j=1

anjxj


. On reconnâıt le produit matriciel AX. ♦

Attention, la matrice d’une application dépend complètement des bases
choisies, comme on va le voir dans l’exemple suivant.

Exemple 64. Soit ϕ l’application linéaire de R3 dans R2 définie par

ϕ(x1, x2, x3) = (x1 + x2, x1 + x3).
Soient (e1, e2, e3) la base canonique de R3 et (f1, f2) la base canonique de
R2. Déterminons la matrice associée à ϕ dans les bases (e1, e2, e3) et (f1, f2).
On a

ϕ(e1) = ϕ(1, 0, 0) = (1, 1) = f1 + f2 = 1f1 + 1f2.

La première colonne de la matrice [ϕ](e1,e2,e3)
(f1,f2) est donc

(
1
1

)
. De même, on a

ϕ(e2) = (1, 0) = f1 = 1f1 + 0f2.

La deuxième colonne de la matrice [ϕ](e1,e2,e3)
(f1,f2) est donc

(
1
0

)
. Enfin on a

ϕ(e3) = (0, 1) = f2 = 0f1 + 1f2.

La troisième colonne de la matrice [ϕ](e1,e2,e3)
(f1,f2) est donc

(
0
1

)
. Il en résulte

que

[ϕ]BEBF =
(

1 1 0
1 0 1

)
.

Changeons maintenant la base d’arrivée, en permutant ses deux vec-
teurs : la matrice de ϕ dans les bases (e1, e2, e3) et (f2, f1) est

[ϕ](e1,e2,e3)
(f2,f1) =

(
1 0 1
1 1 0

)
.

On va maintenant changer la base de l’espace de départ et conserver
celle de l’espace d’arrivée. Soient les vecteurs ε1 = (1, 1, 0), ε2 = (1, 0, 1) et
ε3 = (0, 1, 1) de R3. On montre facilement que ces vecteurs déterminent une
base de R3. On considère alors les bases (ε1, ε2, ε3) et (f1, f2) de R3 et R2

respectivement. Alors ϕ(ε1) = 2f1 + f2, ϕ(ε2) = f1 + 2f2, ϕ(ε3) = f1 + f2 et
on a

[ϕ](ε1,ε2,ε3)
(f1,f2) =

(
2 1 1
1 2 1

)
.

Exemple 65. Soit A ∈ Mn,p(K). La matrice de l’application linéaire
fA : Kp → Kn dans les bases canoniques de Kp et Kn est A.



102 3. ALGÈBRE LINÉAIRE

Dans le cas où ϕ est un endomorphisme de E, on peut noter que la
matrice de ϕ sera toujours carrée, de taille n = dimE. De plus, il est alors
naturel de choisir une seule base B de E, qui va servir « au départ et à
l’arrivée de ϕ ». On parle alors de la matrice de ϕ dans la base B et on note
parfois [ϕ]B = [ϕ]BB.

Exemple 66. Soit B = (e1, . . . , en) une base de l’espace vectoriel E.
L’application identité idE est un endormophisme de E. Elle vérifie, pour
tout j = 1, . . . , n :

idE(ej) = ej =
n∑
i=1

δijei.

Donc la matrice de l’identité dans toute base B de E est la matrice identité :
[idE ]B = In.

Attention, il arrive parfois qu’on prenne une base différente au départ et
à l’arrivée pour calculer la matrice d’un endomorphisme. Typiquement, la
matrice de l’identité n’est plus la matrice identité dans ce cas.

On a vu qu’on peut faire des combinaisons linéaires d’applications li-
néaires, qu’on peut les composer... Comment ces opérations se traduisent-
elles matriciellement ?

Proposition 39. Soient E et F deux K-espaces vectoriels de dimensions
respectives p = dimE et n = dimF , munis de bases BE et BF . L’application

Θ : L(E,F ) → Mn,p(K)
ϕ 7→ [ϕ]BEBF

est linéaire.

L’application Θ associe à une application linéaire sa matrice dans les
bases choisies. Concrètement, sa linéarité signifie que, pour ϕ,ϕ′ ∈ L(E,F ),
de matrices respectives A et A′ dans les base choisies, et α ∈ K, la matrice
de αϕ+ ϕ′ est αA+A′.

Démonstration. On note encore BE = (e1, . . . , ep) et BF = (f1, . . . , fn). La

matrice [ϕ]BEBF = A = (aij) est définie par :

∀j = 1, . . . , p, ϕ(ej) =
n∑
i=1

aijfi.

Avec la formule analogue pour ϕ′ (de matrice A′), on obtient tout de suite

∀j = 1, . . . , p, (αϕ+ ϕ′)(ej) = αϕ(ej) + ϕ′(ej) =
n∑
i=1

(αaij + a′ij)fi.

Et cela veut dire que [αϕ+ϕ′]BEBF = αA+A′, i.e. Θ(αϕ+ϕ′) = αΘ(ϕ)+Θ(ϕ′).
♦

Cette application Θ est en fait un isomorphisme entre L(E,F ) etMn,p(K).
Pourquoi ? On vient de voir que cette application est linéaire. En outre, on
a vu plus haut la formule

ϕ(x) =
n∑
i=1

 p∑
j=1

aijxj

 fi,
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toujours avec les mêmes notations, notamment Θ(ϕ) = A = (aij). On voit
tout de suite que si Θ(ϕ) = 0, les coefficients aij sont nuls, donc ϕ = 0,
d’où l’injectivité de Θ. Pour voir la surjectivité, on fixe arbitrairement A ∈
Mn,p(K) et on définit l’application ϕ par cette formule. On vérifie alors que
ϕ est linéaire de matrice A.

Insistons. Le caractère bijectif de Θ signifie que, pour toute matrice
A ∈ Mn,p(K), il existe une unique application linéaire ϕ ∈ L(E,F ) dont la
matrice dans les bases BE et BF est A. C’est un moyen de construire des
applications linéaires intéresssantes.

Cet isomorphisme permet aussi de dire des choses sur l’espace vectoriel
L(E,F ) : puisqu’il est isomorphe à Mn,p(K), il est finiment engendré et sa
dimension est np = dimE × dimF .

On va maintenant voir que la composition des applications linéaires se
traduit matriciellement par un simple produit.

Énoncé indispensable 18 : traduction matricielle II

Proposition 40. Soient E, F et G trois K-espaces vectoriels, munis
de bases BE, BF et BG. Pour ϕ ∈ L(E,F ) et ϕ′ ∈ L(F,G), on a :

[ϕ′ ◦ ϕ]BEBG = [ϕ′]BFBG [ϕ]BEBF .

Autrement dit, dans les bases de l’énoncé, la matrice de la composée
de deux applications linéaires est le produit des matrices associées à
chacune d’elle, dans le même ordre : si ϕ est de matrice A et ϕ′ de
matrice A′, ϕ′ ◦ ϕ est de matrice A′A.

Démonstration. Pour tout x ∈ E, on peut utiliser deux fois la proposition
38 pour calculer la matrice colonne des coordonnées de ϕ′(ϕ(x)) en fonction
de X = [x]BE :

[ϕ′(ϕ(x))]BG = A′[ϕ(x)]BF = A′A[x]BE = A′AX.

Mais, si M = [ϕ′ ◦ ϕ]BEBG , la proposition 38 donne aussi

[(ϕ′ ◦ ϕ)(x))]BG = [ϕ′ ◦ ϕ]BEBG [x]BE = MX.

En observant que ces deux choses sont égales, on obtient A′AX = MX,
pour tout X ∈ Kp. Cela implique A′A = M , c’est-à-dire le résultat. ♦

Exemple 67. Vérifions la formule sur un exemple simple. On définit
ϕ ∈ L(R2,R3) et ϕ′ ∈ L(R3,R) par les formules

ϕ(x, y) = (x, x+ y, 7y) et ϕ′(x, y, z) = x.

La composée est un élément de L(R2,R) et elle vérifie alors ϕ′ ◦ϕ(x, y) = x
pour tout (x, y) ∈ R2.

Par ailleurs, dans les bases canoniques de R2, R3 et R, les matrices de ϕ

et ϕ′ sont respectivement

1 0
1 1
0 7

 et
(
1 0 0

)
. La matrice de ϕ′◦ϕ dans les
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bases canoniques de R2 et R est donc le produit
(
1 0 0

)1 0
1 1
0 7

 =
(
1 0

)
.

Et le produit de cette matrice par le vecteur colonne

(
x
y

)
donne (x), ce qui

est cohérent avec le calcul de la composée effectué ci-dessus.

On a vu que la composition des applications linéaires se traduit matriciel-
lement par un produit matriciel. Dans le cas particulier d’un endomorphisme
ϕ, cette proposition ramène donc le calcul des itérés ϕk = ϕ ◦ · · · ◦ ϕ à un
calcul de puissances matricielles, par une récurrence immédiate.

Corollaire 7. Soit ϕ un endomorphisme d’un espace vectoriel E, muni

d’une base B. Pour tout k ∈ N, [ϕk]B = ([ϕ]B)k .

On peut aussi lire la bijectivité d’une application linéaire sur sa matrice.

Corollaire 8. Soient E, F des K-espaces vectoriels de même dimen-
sion, munis de bases BE et BF . Soit ϕ ∈ L(E,F ). L’application ϕ est un

isomorphisme si et seulement si la matrice [ϕ]BEBF est inversible. De plus,
dans ce cas, (

[ϕ]BEBF
)−1

= [ϕ−1]BFBE .

L’hypothèse dimE = dimF n’est pas une restriction : si elle n’est pas
vraie, de toute façon, ϕ ne peut pas être un isomorphisme et sa matrice ne
peut pas être inversible (puisqu’elle n’est pas carrée).

Démonstration. Soit n = dimE = dimF . Supposons d’abord que ϕ est un
isomorphisme, de sorte qu’on dispose de ϕ−1 ∈ L(F,E) telle que

ϕ−1 ◦ ϕ = idE et ϕ ◦ ϕ−1 = idF .

Donc [ϕ−1 ◦ ϕ]BE = [idE ]BE = In et [ϕ ◦ ϕ−1]BF = [idF ]BF = In. Comme la
matrice de la composée est le produit des matrices, on en tire :

[ϕ−1]BFBE [ϕ]BEBF = In et [ϕ]BEBF [ϕ−1]BFBE = In.

Cela prouve que la matrice [ϕ]BEBF est inversible et que son inverse est la

matrice [ϕ−1]BFBE .

Démontrons maintenant la réciproque en supposant que A = [ϕ]BEBF est
inversible. Soit ψ l’application linéaire de F dans E dont la matrice dans les
bases BF et BE est A−1. Alors l’égalité AA−1 = A−1A = In peut s’écrire

[ϕ]BEBF [ψ]BFBE = In et [ψ]BFBE [ϕ]BEBF = In,

ce qui implique

[ψ ◦ ϕ]BE = [idE ]BE et [ϕ ◦ ψ]BF = [idF ]BF
Deux applications linéaires ayant la même matrice dans les mêmes bases
sont égales : ψ ◦ϕ = idE et ϕ ◦ψ = idF . Cela prouve que ϕ est bijective, de
réciproque ψ, de sorte que c’est un isomorphisme. ♦
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2.5. Changement de base. On a vu qu’en dimension finie on peut
ramener les problèmes d’algèbre linéaire à des calculs matriciels, une fois
qu’on a choisi des bases des espaces vectoriels en jeu. Nous allons maintenant
examiner ce qui se passe quand on change de bases.

Soit E un K-espace vectoriel de dimension finie n. On considère deux
bases de E : B = (e1, . . . , en) et B′ = (e′1, . . . , e′n). Tout élément x de E
admet des coordonnées dans chacune de ces bases :

X = [x]B =

x1
...
xn

 et X ′ = [x]B′ =

x
′
1
...
x′n

 .
Le lien entre X et X ′ s’établit à l’aide d’une matrice, dite de passage.

Énoncé indispensable 19 : matrice de passage

La matrice de passage de la base B à la base B′ est la matrice
PBB′ = (pij) ∈Mn(K) dont la j-ième colonne est [e′j ]B, pour 1 ≤ j ≤ n.
Autrement dit :

e′j =
n∑
i=1

pijei.

On peut retenir que PBB′ est la matrice des vecteurs de B′ dans la base
B. Ses colonnes donnent les coordonnées des vecteurs de B′ dans la base
B.

Exemple 68. Soit l’espace vectoriel réel R2. On considère la base cano-
nique B = (e1, e2) et la base B′ = (ε1, ε2) avec ε1 = e1 + e2 et ε2 = e2. La

matrice de passage de la base B à la base B′ est la matrice

(
1 0
1 1

)
dont la

première colonne est donnée par les coordonnées du vecteur ε1 sur la base
(e1, e2) et la deuxième par les coordonnées ε2 de sur la base (e1, e2).

Cette matrice de passage fait la traduction entre les coordonnées obte-
nues dans chacune des deux bases, par un simple produit matriciel.

Énoncé indispensable 20 : changement de base I

Les matrices d’un vecteur x dans deux bases B et B′ sont reliées par
la formule :

[x]B = PBB′ [x]B′ .

Avec les notations introduites ci-dessus, cela signifie X = PBB′X
′ : cette

formule exprime naturellement les « anciennes » coordonnées (dans B) en
fonction des « nouvelles » (dans B′).

Démonstration. Par définition des coordonnées et de PBB′ = (pij),

x =
n∑
j=1

x′je
′
j =

n∑
j=1

x′j

(
n∑
i=1

pijei

)
=

n∑
i=1

 n∑
j=1

pijx
′
j

 ei.
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Cela signifie que la coordonnée xi de x dans la base B = (e1, . . . , en) est
xi =

∑n
j=1 pijx

′
j et prouve que X = PBB′X

′. ♦

Proposition 41. Toute matrice de passage PBB′ est inversible, d’in-
verse PB′B.

Démonstration. Pour x ∈ E, on note encore X = [x]B et X ′ = [x]B′ . On
vient de voir que X = PBB′X

′. En inversant les rôles de B et B′, on obtient
aussi X ′ = PB′BX. On en déduit que X = PBB′PB′BX, pour tout X ∈ Kn.
D’où PBB′PB′B = In et le résultat. ♦

Remarque 49. Soit E un K-espace vectoriel muni d’une base B =
(e1, . . . , en). Toute matrice inversible M = (mij) ∈ GLn(K) définit une nou-
velle base de E. Explicitement, pour j = 1 . . . , n, on pose e′j =

∑n
i=1mijei.

Alors B′ = (e′1, . . . , e′n) est une base de E : sinon, ce serait une famille liée,
ce qui donnerait une solution X non nulle au système MX = 0, contredisant
l’inversibilité de M . On peut aussi le voir en introduisant l’endomorphisme
ϕ de E dont la matrice dans B est M : en fait, B′ = (ϕ(e1), . . . , ϕ(en))
et ϕ est un isomorphisme parce que M inversible ; ainsi, B′ est une base,
comme image d’une base par un isomorphisme. Bien sûr, par construction,
M = PBB′ .

Théorème 12. Soit ϕ une application linéaire entre deux espaces vec-
toriels E et F . Soient BE et B′E deux bases de E, BF et B′F deux bases de
F . On introduit les matrices de passage P = PBEB′E et Q = PBFB′F . Alors :

[ϕ]BEBF = Q[ϕ]B
′
E

B′F
P−1.

Si A est la matrice de ϕ dans les « anciennes »bases (BE et BF ) et A′

la matrice dans les « nouvelles »(avec des primes), la formule est donc

A = QA′P−1.

Démonstration. C’est un jeu de notations avec ce qui précède. Pour x ∈
E, on note toujours X = [x]BE et X ′ = [x]B′E . Alors [ϕ(x)]BF = AX et

[ϕ(x)]BF ′ = A′X ′. La formule de passage entre BF et BF ′ donne donc AX =
QA′X ′. Et la formule de passage entre BE et BE′ donne X = PX ′. On en
tire AX = QA′P−1X, pour tout X, donc A = QA′P−1. ♦

Le cas particulier d’un endomorphisme mérite d’être explicité. Il est très
important, par exemple pour la diagonalisation, qui est le prochain sujet de
ce cours.

Énoncé indispensable 21 : changement de base II

Soient B et B′ deux bases d’un espace vectoriel E. Soit ϕ un endo-
morphisme de E. Alors :

[ϕ]B = PBB′ [ϕ]B′P−1
BB′ .
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On retiendra cette formule sous la forme

A = PA′P−1,

où A est la matrice de ϕ dans B, A′ la matrice de ϕ dans B′ et P est
la matrice de passage de B à B′, c’est-à-dire la matrice des coordonnées
des vecteurs de la base B′ dans la base B.

Remarque 50. La matrice de passage entre deux bases B et B′ de E
peut s’interpréter comme la matrice de idE , avec B′ comme base de départ
et B comme base d’arrivée :

PBB′ = [idE ]B′B
Attention à l’ordre : c’est bien B′ au départ et B à l’arrivée. La preuve est
immédiate : la j-ième colonne de [idE ]B′B est [idE(e′j)]B = [e′j ]B, soit celle de
PBB′ .

Ce point de vue, si on fait bien attention à l’ordre des bases, permet de se
ramener aux propriétés des matrices d’applications linéaires. Par exemple,
la propostion 38 donne, pour tout x ∈ E, PBB′ [x]B′ = [idE ]B′B [x]B′ =
[idE(x)]B = [x]B. Egalement, puisque PBB′ = [idE ]B′B est la matrice d’un iso-

morphisme, c’est une matrice inversible, d’inverse [id−1
E ]BB′ = [idE ]BB′ = PB′B.

Enfin, la formule de changement de bases pour les endomorphismes se voit
en écrivant :

PBB′ [ϕ]B′P−1
BB′ = [idE ]B′B [ϕ]B′ [idE ]BB′ = [idE ◦ϕ ◦ idE ]BB = [ϕ]B.

La formule de changement de base permet de parler du déterminant d’un
endomorphisme. En effet, si A et A′ sont les matrices d’un même endomor-
phisme ϕ dans deux bases différentes, on peut écrire A = PA′P−1 pour une
certaine matrice de passage P . Comme le déterminant d’un produit est le
produit des déterminants, il vient :

det(A) = det(PA′P−1) = det(P ) det(A′) 1
det(P ) = det(A′).

Donc le déterminant ne dépend pas de la base choisie : on peut poser
det(ϕ) = det(A), où A est la matrice de ϕ dans n’importe quelle base.

On peut faire la même construction avec la trace. Rappelons que la trace
TrA d’une matrice carrée A est la somme de ses coefficients diagonaux. En
utilisant la définition du produit matriciel, on vérifie la formule

∀A,B ∈Mn(K), Tr(AB) = Tr(BA).
Ainsi, la trace d’un produit de matrices ne dépend pas de l’ordre dans lequel
on fait le produit.

Si A et A′ sont les matrices d’un même endomorphisme ϕ dans deux
bases différentes, on peut écrire A = PA′P−1 comme ci-dessus et alors

Tr(A) = Tr(PA′P−1) = Tr(A′P−1P ) = Tr(A′).
Donc la trace ne dépend pas de la base choisie : on peut poser Tr(ϕ) = Tr(A),
où A est la matrice de ϕ dans n’importe quelle base.
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3. Diagonalisation

3.1. Motivation.
3.1.1. Motivation pour praticiens. On s’intéresse au problème suivant :

étant donnée la matrice M =
(

1, 9 0, 9
−1, 8 −0, 8

)
, calculer la matrice M100.

L’un des buts de cette sous-section est d’expliquer comment résoudre un
tel problème. Disons d’abord un mot de pourquoi. Il arrive qu’un système
physique dépende d’un nombre fini > 1 de paramètres ; qu’un processus
physique « en temps discret » soit une transformation linéaire de ces para-
mètres. Si nous notons M la matrice de cette transformation et xn le vecteur
des paramètres au temps n, on aura xn+1 = M · xn. La question du devenir
à long terme du système revient à comprendre le comportement de Mn · x0
quand n tend vers l’infini.

L’approche näıve qui consisterait à chercher des relations de récurrence
entre les coefficients des Mn est une re-complication du problème : l’algèbre
linéaire permet précisément de noter les choses matriciellement, avec plus
de clarté et plus d’outils.

Or calculer les puissances d’une matrice diagonale est simple. On veut
donc se ramener au cas diagonal. On pourrait songer à utiliser l’algorithme
du pivot de Gauss, qui permettrait d’écrire M = PD où D est diagonale.
Mais l’écriture Mn = (PD)n ne permet pas d’aller plus loin. En revanche,
si l’on peut écrire M = PDP−1 avec D diagonale, alors :

Mn = (PDP−1)n = PDP−1 · P︸ ︷︷ ︸
In

DP−1 · P︸ ︷︷ ︸
In

D · · ·PDP−1 = PDnP−1.

Cette écriture donne une réponse explicite, puisque Dn se calcule facilement.
Diagonaliser une matrice, c’est se ramener par changement de base à

une matrice diagonale.

3.1.2. Motivation pour théoriciens. Une application linéaire générale est
un objet impossible à se figurer (pour « tracer » un endomorphisme de Kn,
il faudrait disposer de n2 dimensions) et dont la représentation algébrique
sous forme de matrice, certes utile en calcul, est assez opaque.

Mais il y a des applications linéaires plus simples que d’autres. Par
exemple, l’identité. Ou encore une homothétie. Mais c’est bien trop spé-
cifique. On peut aussi imaginer le cas où selon un axe on multiplierait par
un scalaire, et selon un autre axe, par un autre scalaire. En étude le long
des axes, la transformation de l’espace serait grandement simplifiée.

Diagonaliser une application linéaire, c’est trouver une famille généra-
trice de droites le long desquelles elle agit comme une homothétie.

3.2. Eléments propres. On se place dans un K-espace vectoriel E.
Une droite D de E est par définition un sous-espace de dimension 1. Si
x ∈ D n’est pas nul, (x) est une base de D et D = Vect(x).

Definition 23. Une droite D de E est dite propre si elle est stabilisée
par f , c’est-à-dire si : ∀y ∈ D, f(y) ∈ D.

C’est intéressant car alors la restriction f|D est un endomorphisme de la
droite D.



3. DIAGONALISATION 109

Lemme 6. Soient D un espace vectoriel de dimension 1 et g : D → D
une application linéaire. Alors il existe λ ∈ K tel que g = λ idD.

Démonstration. Fixons x0 ∈ D\{0}, de sorte que Vect(x0) = D. Notamment
il existe λ (éventuellement nul) tel que g(x0) = λx0. Nous affirmons que g
est l’homothétie de rapport λ. Soit en effet x ∈ D quelconque. Puisque
Vect(x0) = D, il existe un scalaire µ tel que x = µx0, et l’on trouve :

g(x) = g(µx0) = µg(x0) = µλx0 = λµx0 = λx,

d’où le résultat. ♦

Ce calcul montre d’ailleurs que si un vecteur x0 6= 0 vérifie f(x0) = λx0,
la droite D = Vect(x0) est propre et la restriction f|D est l’homothétie de
rapport λ.

Énoncé indispensable 22 : vecteur propre et valeur propre

Soit f ∈ L(E). Si on a un vecteur x ∈ E non-nul et un scalaire
λ ∈ K tels que f(x) = λx, on dit que λ est une valeur propre de f et
que x est un vecteur propre de f associé à λ.

Une valeur propre est donc un scalaire λ tel qu’il existe une droite D
pour laquelle f|D = λ idD. Et un vecteur propre est donc un vecteur qui
engendre une droite propre. Comme le vecteur 0 n’engendre que {0}, il ne
saurait compter parmi les vecteurs propres.

Definition 24. Si λ est une valeur propre de f , on appelle espace propre
de f associé à λ le sous-espace vectoriel Eλ(f) = Ker(f − λ id).

Ce n’est pas forcément une droite. Ainsi, pour f = id, on a E1(f) = E.
Par construction, Eλ(f) est le plus grand espace sur lequel f se comporte
comme l’homothétie de rapport λ.

Definition 25. On appelle spectre d’un endomorphisme f l’ensemble
de ses valeurs propres. Il est noté Sp(f).

Le spectre admet une caractérisation algébrique remarquable, liée au
polynôme suivant.

Énoncé indispensable 23 : polynôme caractéristique

Soit M = (mi,j) ∈ Mn(K) une matrice carrée. Son polynôme carac-
téristique est par définition 1 :

χM (X) = det(M −XIn) =

∣∣∣∣∣∣∣∣∣
m11 −X m12 . . . m1n
m21 m22 −X . . . m2n

...
. . .

mn1 mnn −X

∣∣∣∣∣∣∣∣∣ .
Soit f un endomorphisme d’un espace vectoriel E, de matrice M

dans une base de E. Son polynôme caractéristique est χf = χM .
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Les propriétés du déterminant font que le polynôme caractéristique est
un polynôme de degré n, s’écrivant

χM (X) = (−1)nXn + (−1)n−1 Tr(M)Xn−1 + · · ·+ det(M).
Cela se voit par exemple par récurrence, en développant le déterminant par
rapport à la première colonne. Le terme constant est bien sûr χM (0) =
det(M).

Pour comprendre, la définition du polynôme caractéristique de l’endo-
morphisme f , il faut se rappeler que le déterminant d’un endomorphisme est
bien défini : c’est le déterminant de la matrice associée dans n’importe quelle
base, le résultat ne dépendant pas de la base choisie (voir la fin du para-
graphe sur les changements de base). En particulier, si M et N représentent
le même endomorphisme f dans deux bases différentes, alors

χM = det(M −XIn) = det(N −XIn) = χN ,

puisque M−XIn et N−XIn représentent le même endomorphisme f−X id.
En fait, χf = det(f −X id). C’est un polynôme de degré n = dim(E).

Énoncé indispensable 24 : racines du polynôme caractéristique

Les valeurs propres de f sont exactement les racines de son polynôme
caractéristique.

Démonstration. Soit M la matrice de f dans une base. Soit λ ∈ K. Alors
λ est valeur propre si et seulement s’il existe x 6= 0 tel que f(x) = λx i.e.
(f − λ id)(x) = 0. Cela signifie que le noyau de f − λ id n’est pas {0}, c’est-
à-dire que l’endomorphisme f − λ id n’est pas injectif. Cela équivaut à dire
que ce n’est pas un isomorphisme, ou encore que sa matrice M − λIn n’est
pas inversible, soit det(M − λ id) = 0 i.e. χf (λ) = 0. ♦

Le degré du polynôme caractéristique étant la dimension, on voit qu’en
dimension n, il y a au plus n valeurs propres.

Le théorème de D’Alembert-Gauss dit que tout polynôme complexe ad-
met une racine complexe : si K = C, le polynôme caractéristique a tou-
jours au moins une racine, donc tout endomorphisme admet une valeur
propre donc une droite propre. Géométriquement, ce n’est pas clair du tout !
D’ailleurs, c’est complètement faux si K = R : une rotation ρ 6= ± id de R2

n’a pas de direction propre (puisque « tout tourne »), donc pas de valeur
propre réelle. On voit ici que la nature algébrique de K joue un rôle crucial.

3.3. Diagonalisabilité.

Énoncé indispensable 25 : endomorphisme diagonalisable

Soit E un espace vectoriel de dimension finie. Un endomorphisme f
de E est diagonalisable s’il existe une base B de E formée de vecteurs
propres.

Cela revient à dire que la matrice de f dans la base B est diagonale.
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Explicitement, si B = (x1, . . . , xn) et si chaque xi est un vecteur propre
associé à la valeur propre λi,

[f ]B =

λ1
. . .

λn

 .
Ainsi, chacune des droites Di = Vect(xi) est propre et E est la somme de
ces n droites, elles engendrent tout l’espace.

La formule de changement de base mène au concept matriciel correspon-
dant.

Énoncé indispensable 26 : matrice diagonalisable

Une matrice M ∈ Mn(K) est diagonalisable s’il existe une matrice
inversible P et une matrice diagonale D telles que M = PDP−1.

Test : diagonalisabilité

Soit f un endomorphisme. Montrer l’équivalence entre :
— f est diagonalisable ;
— il existe une base B telle que [f ]B soit diagonalisable ;
— pour toute base B, [f ]B est diagonalisable.

Lemme 7. Soit f ∈ L(E). Soient x1, . . . , xp des vecteurs propres associés
à des valeurs propres distinctes : pour tout i, f(xi) = λixi, avec λi 6= λj si
i 6= j. Alors (x1, . . . , xp) est une famille libre.

Démonstration. Procédons par récurrence sur p ∈ N∗.
Initialisation. Puisque x1 est un vecteur propre, x1 n’est pas nul, donc

(x1) est libre.

Hérédité. Supposons que (x1, . . . , xp−1) est libre et que
p∑
i=1

αixi = 0 pour

des scalaires α1, . . . , αp ∈ K. En appliquant f , on obtient une autre équation :

0 = f(0) = f

( p∑
i=1

αixi

)
=

p∑
i=1

αif(xi) =
p∑
i=1

λiαixi.

En multipliant l’équation initiale par λp, on trouve aussi 0 =
p∑
i=1

λpαixi. En

soustrayant ces deux équations, on annule le dernier terme et on trouve

0 =
p−1∑
i=1

(λi − λp)αixi.

Puisque la famille (x1, . . . , xp−1) est libre par hypothèse de récurrence, on
en déduit (λi − λp)αi = 0 pour i = 1, . . . , p− 1. Puisque les valeurs propres
sont distinctes, λi−λp 6= 0, donc αi = 0, pour i = 1, . . . , p−1. Et l’équation
initiale donne alors αpxp = 0, donc αp = 0 (xp n’est pas nul : c’est un vecteur
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propre). Cela prouve que (x1, . . . , xp) est une famille libre, et donc le lemme,
par récurrence. ♦

Énoncé indispensable 27 : un critère de diagonalisabilité

Soient E un K-espace vectoriel de dimension n et f un endomor-
phisme de E. Si χf admet n racines distinctes dans K, alors f est dia-
gonalisable.

L’hypothèse sur le polynôme caractéristique consiste à dire qu’il est

« scindé à racines simples » : χf = (−1)n
n∏
i=1

(X − λi), où les λi sont des

éléments distincts de K.

Démonstration. Comme χf possède exactement n racines distinctes, il suit
que f possède exactement n valeurs propres distinctes. En choisissant un
vecteur propre pour chacune d’entre elles, on obtient n vecteurs propres
associés à des valeurs propres distinctes. On trouve ainsi une famille libre
(lemme) donc une base (n = dimE), constituée de vecteurs propres. ♦

Remarques 6.
— Cette condition n’est pas nécessaire : la réciproque est fausse. Par exemple,

l’endomorphisme idCn de Cn est bien sûr diagonalisable et son polynôme
caractéristique est (1−X)n, qui n’a qu’une racine, 1, de multiplicité n.

— Si ce critère ne s’applique pas toujours, il s’applique quand même souvent !
Quand K = C, il n’est jamais loin d’être vérifié : on peut montrer que toute
matrice carrée complexe peut être approchée aussi près qu’on veut par des
matrices vérifiant ce critère, donc diagonalisables.

Résumons-nous, en insistant sur le côté pratique. Une matrice carrée M
est diagonalisable s’il existe un changement de base la rendant diagonale, en
notation :

M = PDP−1.

Comment calculer les termes de cette formule ?

(1) Déterminer les valeurs propres : il s’agit d’écrire le polynôme carac-
téristique et de trouver ses racines.
Remarque : en vérité, c’est beaucoup plus facile à dire qu’à faire.
Trouver les racines d’un polynôme, les exprimer par des opérations
algébriques élémentaires... ça va si la matrice est de taille au plus
4 (depuis la Renaissance italienne, on connâıt même des formules).
Mais, en plus grande dimension, on sait depuis Abel-Ruffini (on sait
même pourquoi depuis Galois) qu’on ne peut pas exprimer les racines
de polynômes arbitraires.
Mais tenons pour connu le spectre.

(2) Déterminer les espaces propres et une base de chacun d’entre eux :
c’est une histoire de systèmes linéaires. Pour λ ∈ Sp(f), il s’agit de
résoudre le système MX = λX d’inconnue X ∈ Kn, par les méthodes
de pivot habituelles, qui en donnent notamment une base.
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(3) Ecrire la formule de changement de base : si l’on a obtenu en tout n
vecteurs-colonnes propres X1, . . . , Xn linéairement indépendants, on
forme la matrice de passage P en les mettant côte-à-côte. La formule
de changement de base donne :

M = P

λ1
. . .

λn

P−1,

où, pour tout j, MXj = λjXj .
Vérifions. En notant Ej le j-ième vecteur-colonne de la base ca-
nonique de Kn, on a Xj = P · Ej par définition de P . Comme
MXj = λjXj, on a : P−1MP · Ej = P−1MXj = P−1λjXj = λjEj,
ce qui signifie que la j-ième colonne de P−1MP est λjEj. Ainsi,
P−1MP est la matrice diagonale écrite ci-dessus et en multipliant
par P à gauche et P−1 à droite, on trouve la formule.

Revenons au problème initial : étant donnée M =
(

1, 9 0, 9
−1, 8 −0, 8

)
, cal-

culer la matrice M100. Ici, le polynôme caractéristique est :

χM = (1, 9−X)(−0, 8−X)− (0, 9 · −1, 8) = X2 − 1, 1X + 0, 1
= (X − 1)(X − 0, 1).

Comme il est scindé à racines simples, la matrice M est diagonalisable, de
valeurs propres 1 et 0, 1. Le calcul des espaces propres associés donne lieu à
des systèmes linéaires sympathiques :

E1(M) = Ker(M − I2) = Ker
(

0, 9 0, 9
−1, 8 −1, 8

)
= Vect

(
1
−1

)
;

E0,1(M) = Ker(M − 0, 1I2) = Ker
(

1, 8 0, 9
−1, 8 −0, 9

)
= Vect

(
1
−2

)
.

Donc si on pose

P =
(

1 1
−1 −2

)
et D =

(
1 0
0 10−1

)
,

on a M = PDP−1, d’où :

M100 = P ·D100 · P−1 =
(

1 1
−1 −2

)
·
(

1 0
0 10−100

)
·
(

2 1
−1 −1

)
=
(

2− 10−100 1− 10−100

−2 + 2 · 10−100 −1 + 2 · 10−100

)
.

3.4. Diagonalisation : raffinement. Le critère de diagonalisabilité
donné plus haut peut être amélioré à peu de frais, à condition d’introduire
la notion suivante.

Definition 26. Soient F1, . . . , Fp des sous-espaces vectoriels d’un même
espace vectoriel E. On dit qu’ils sont en somme directe si pour tous x1 ∈
F1, . . . , xp ∈ Fp, l’équation x1 + · · ·+ xp = 0 implique x1 = · · · = xp = 0.
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Soit F la somme des sous-espaces Fi : F = {x1 + · · ·+ xp | ∀i, xi ∈ Fi}.
C’est le plus petit sous-espace de E contenant l’union des Fi. Quand les
sous-espaces Fi sont en somme directe, on note

F = F1 ⊕ · · · ⊕ Fp =
p⊕
i=1

Fi.

Dans ce cas, tout élément x de F admet une unique écriture sous la forme
x = x1 + · · ·+ xp avec, pour tout i, xi ∈ Fi.

En effet, si on peut aussi écrire x = x′1 + · · · + x′p avec, pour tout i,
x′i ∈ Fi, on trouve en soustrayant :

x1 − x′1︸ ︷︷ ︸
∈F1

+ · · ·+ xp − x′p︸ ︷︷ ︸
∈Fp

= 0

Et la définition d’une somme directe dit que chacun des termes xi − x′i est
nul : pour tout i, x′i = xi.

En dimension finie, la dimension d’une somme directe se calcule facile-
ment en fonction de celle de ses termes :

dim
p⊕
i=1

Fi =
p∑
i=1

dimFi.

En effet, si on munit chaque Fi d’une base Bi, on peut les réunir en une base
B de F . Pourquoi une base ? On voit vite que c’est une famille génératrice
(tout élément de F est une somme d’éléments des Fi et tout élément de
chaque Fi est une combinaison linéaire de vecteurs de Bi). Pour voir qu’elle
est libre, on suppose que 0 est combinaison linéaire des éléments de B, i.e.
une somme de combinaisons linéaires des vecteurs de chaque Bi. Par unicité
de la décomposition en somme de vecteurs des Fi, on obtient pour chaque i
une combinaison linéaire nulle des vecteurs de la base Bi, donc finalement
tous les coefficients sont nuls.

Remarque 51. Attention, pour que F1, . . . Fp soient en somme directe,
il ne suffit pas que l’intersection des Fi soit {0} ! C’est vrai si p = 2, mais
faux si p ≥ 3. Pour s’en convaincre, on peut penser à trois droites distinctes
de R2 (passant par 0, bien sûr). Leur intersection est triviale, mais elles
ne sont pas en somme directe (sinon, leur somme serait un sous-espace de
dimension 3 de R2).

Lemme 8. Les espaces propres d’un endomorphisme sont en somme di-
recte.

Démonstration. Soit f ∈ L(E) un endomorphisme, de valeurs propres λ1,...,
λp. Pour tout i = 1, . . . , p, on se donne xi ∈ Eλi(f), et on suppose que∑p
i=1 xi = 0. Supposons par l’absurde qu’au moins l’un des xi n’est pas nul et

notons xi1 , . . . , xiq tous ceux qui ne sont pas nuls. Ce sont alors des vecteurs
propres associés à des valeurs propres différentes, donc ils forment une famille
libre. Cela contredit le fait qu’ils vérifient l’équation

∑q
k=1 xik = 0. ♦

Proposition 42. Soit f ∈ L(E). f est diagonalisable si et seulement si

E =
⊕

λ∈Sp(f)
Eλ(f).
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Démonstration. Pour le sens direct, on observe que E possède une base
constituée de vecteurs propres de f . Donc tout élément de E est combi-
naisons de vecteurs propres, donc somme d’éléments des espaces propres
Eλ(f).

Pour le sens réciproque, on prend pour chaque λ ∈ Sp(f) une base Bλ
de Eλ(f). Puis on les réunit : cela donne une base de E =

⊕
λ∈Sp(f)

Eλ(f),

constituée de vecteurs propres. ♦

Concentrons-nous sur le cas où K = C. Soient E un C-espace vectoriel de
dimension finie n et f un endomorphisme de E. Le théorème de D’Alembert-
Gauss permet d’écrire

χf = (−1)n
∏

λ∈Sp(f)
(X − λ)mλ .

Le nombre mλ est la multiplicité de la racine λ du polynôme χf .
Quand f est diagonalisable, on peut choisir une base B de vecteurs

propres. En calculant le polynôme caractéristique dans cette base, on voit
que

χf = (−1)n
∏

λ∈Sp(f)
(X − λ)dλ ,

où dλ est la dimension de l’espace propre Eλ(f), i.e. le nombre de vecteurs
propres associés à la valeur propre λ dans la base B. Donc, dans ce cas,
la multiplicité mλ est exactement dλ. La proposition suivante dit que cela
caractérise la diagonalisabilité.

Proposition 43. Soient E un C-espace vectoriel de dimension finie et
f ∈ L(E). f est diagonalisable si et seulement si la dimension dλ de chaque
espace propre est égale à la multiplicité mλ.

Démonstration. Le sens direct est prouvé ci-dessus. Pour le sens réciproque,
on observe que le degré du polynôme χf est n = dimE. Donc n =

∑
λmλ.

Puisque dλ = mλ pour toute valeur propre λ, on en tire n =
∑
λ dλ. Mais

cette somme n’est autre que la dimension de la somme directe F de tous
les espaces propres Eλ(f). Ainsi, F est un sous-espace de E de dimension
n = dimE, donc F = E. Par la proposition précédente, on en déduit que f
est diagonalisable. ♦

Remarque 52. L’inégalité dλ ≤ mλ est toujours vraie. Pour le voir, on
calcule le polynôme caractéristique χf dans une base B obtenue en complé-
tant une base de l’espace propre Eλ(f). Dans une telle base, la matrice de
f est du type

[f ]B =
(
λIdλ M

0 N

)
(c’est une écriture par blocs : M et N sont des (sous-)matrices de taille
convenable). En développant le déterminant définissant χf par rapport à

ses dλ premières colonnes, on obtient χf = (λ−X)dλ · χN , donc mλ ≥ dλ.
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3.5. Diagonalisation simultanée. Dans ce paragraphe, nous nous in-
téressons à la question suivante : étant donnés deux endomorphismes diago-
nalisables f et g, peut-on les diagonaliser simultanément, c’est-à-dire trouver
une base dans laquelle la matrice de f et la matrice de g sont diagonales ?
Il n’y aucune raison pour que ce soit possible et d’ailleurs c’est souvent
faux. Observons que deux matrices diagonales D et D′ commutent toujours :
DD′ = D′D. Donc deux endomorphismes diagonalisables dans une même
base doivent aussi commuter : f ◦ g = g ◦ f . On va voir que cette condition
nécessaire est aussi suffisante. Le premier pas est la remarque suivante.

Lemme 9. Si f et g commutent, alors tout espace propre de f est stabilisé
par g : ∀x ∈ Eλ(f), g(x) ∈ Eλ(f).

Démonstration. Soit x ∈ Eλ(f). Alors :

f(g(x)) = g(f(x)) = g(λx) = λg(x),
donc g(x) ∈ Eλ(f). ♦

Quand un endomorphisme g d’un espace vectoriel E stabilise un sous-
espace F , sa restriction g|F est une application linéaire définie sur F et à
valeurs dans F , précisément parce que F est stabilisé par g. On dit que g
induit un endomorphisme de F , c’est-à-dire un élément gF de L(F ), défini
par gF (x) = g(x) pour tout x ∈ F . On va relier les éléments propres de g à
ceux des endomorphismes qu’il induit.

Lemme 10. Soient E un espace vectoriel et g un endomorphisme de E.
On suppose que E = F ⊕ G pour des sous-espaces F et G stables par g.
Alors pour toute valeur propre λ de g,

Eλ(g) = (Eλ(g) ∩ F ) ⊕ (Eλ(g) ∩G) .
Ainsi, tout vecteur propre de g est somme d’un vecteur propre de gF et d’un
vecteur propre de gG.

Démonstration. Soit x ∈ Eλ(g). Comme E = F⊕G, on peut écrire x = v+w
avec v ∈ F et w ∈ G. Puisque g(x) = λx, on en déduit

g(v)︸︷︷︸
∈F

+ g(w)︸ ︷︷ ︸
∈G

= λv︸︷︷︸
∈F

+ λw︸︷︷︸
∈G

.

Par unicité de la décomposition dans la somme directe F ⊕G, g(v) = λv et
g(w) = λw. Donc v est dans Eλ(g) ∩ F et w dans Eλ(g) ∩ G. Cela prouve
l’inclusion

Eλ(g) ⊂ (Eλ(g) ∩ F ) + (Eλ(g) ∩G) .
L’autre inclusion est claire (chacun des termes est inclus dans Eλ(g)). Et la
somme est directe en raison de l’inclusion

(Eλ(g) ∩ F ) ∩ (Eλ(g) ∩G) ⊂ F ∩G = {0}.
♦

Proposition 44. Soient E un espace vectoriel et g un endomorphisme
diagonalisable de E. On suppose que E = F ⊕ G pour des sous-espaces F
et G stables par g, de sorte que g induit des endomorphismes gF ∈ L(F )
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et gG ∈ L(G). Alors g est diagonalisable si et seulement si gF et gG sont
diagonalisables.

Démonstration. Le sens ⇐ est facile : si gF et gG sont diagonalisables, on
a une base de F constituée de vecteurs propres de gF et une base de G
constituée de vecteurs propres de gG ; en les mettant bout à bout, on obtient
une base de E constituée de vecteurs propres de g, donc g est diagonalisable.

Passons au sens ⇒ : on suppose g diagonalisable. Pour voir que gF est
diagonalisable (le cas de gG est similaire), on va vérifier la décomposition en
somme directe :

F =
⊕

λ∈Sp(g)
(Eλ(g) ∩ F ) .

Sur chaque sous-espace Eλ(g)∩F , g agit comme l’homothétie de rapport λ,
donc, en mettant bout à bout des bases de ces sous-espaces, on obtiendra
une base de vecteurs propres de gF , ce qui démontrera la proposition.

Pour voir que le membre de droite est bien une somme directe, on se
donne des vecteurs xλ ∈ Eλ(g)∩ F tels que

∑
λ xλ = 0. Alors chaque xλ est

dans l’espace propre Eλ(g). Puisque les espaces propres de g sont en somme
directe, tous les xλ sont nuls. Cela prouve que le membre de droite est bien
une somme directe. Chacun de ses termes étant inclus dans F , on voit aussi
qu’il est inclus dans F .

Pour voir l’autre inclusion, on se donne un élément y de F . Puisque g

est diagonalisable, on a la décomposition E =
⊕

λ∈Sp(g)
Eλ(g), donc y =

∑
λ

yλ,

avec yλ ∈ Eλ(g) pour tout λ. Le lemme permet d’écrire, pour chaque λ :
yλ = vλ + wλ, avec vλ ∈ Eλ(g) ∩ F et wλ ∈ Eλ(g) ∩G. Alors :

y −
∑
λ

vλ =
∑
λ

wλ.

Le membre de gauche de cette égalité est dans F et celui de droite dans G.
Comme F ∩G = {0}, on en déduit qu’ils sont nuls, d’où

y =
∑
λ

vλ.

Cela prouve l’inclusion ⊂ et donc finalement l’égalité. ♦

Théorème 13. Soit E un espace vectoriel. Soient f et g deux endo-
morphismes diagonalisables de E tels que f ◦ g = g ◦ f . Alors f et g sont
simultanément diagonalisables : il existe une base dans laquelle la matrice
de f et la matrice de g sont diagonales

Démonstration. Puisque f est diagonalisable, E =
⊕

λ∈Sp(f)
Eλ(f). On va tra-

vailler sur chaque espace propre séparément.
Soient λ une valeur propre de f , F = Eλ(f) et G la somme des autres

espaces propres de f . Alors E = F ⊕ G et, puisque f et g commutent,
F et G sont stabilisés par g (premier lemme). La proposition montre que
l’endomorphisme gF induit par g sur F = Eλ(f) est diagonalisable. On peut
donc trouver une base Bλ de Eλ(f) constituée de vecteurs propres de g.



118 3. ALGÈBRE LINÉAIRE

Ce sont aussi des vecteurs propres de f , puisque f agit par l’homothétie de
rapport λ sur Eλ(f).

En mettant bout à bout les bases Bλ de tous les espaces propres Eλ(f),
on obtient une base de E constituée de vecteurs propres communs de g et
f . ♦

3.6. Et... La diagonalisation n’est pas toujours possible. Par exemple,
les endomorphismes nilpotents n’ont que 0 comme valeur propre. S’ils étaient
diagonalisables, ils ne pourraient donc qu’être nuls : tout endomorphisme
nilpotent non nul n’est pas diagonalisable.

Quand la diagonalisation n’est pas possible, on peut rabattre ses at-
tentes, et au lieu de chercher une matrice diagonale, tenter au moins de
la rendre triangulaire : c’est la théorie de la trigonalisation. Miracle : tout
endomorphisme d’un espace vectoriel complexe de dimension finie est trigo-
nalisable.

On peut même pousser plus loin et tenter, comme les mathématiciens de
la fin du xixe siècle (Jordan, puis Frobenius), une classification systématique
des opérateurs de Cn. A suivre...

Et bonne chance pour les examens !

3.7. Crédits. Ce polycopié a été rédigé par Vincent Minerbe, mise
à jour légère en 2023 par Frédéric Naud. Les premièrs jets du poly de
MA003 ont bénéficié des contributions des collègues Adrien Deloro, Benoit
Sarels, Cyril Demarche, Daniel Pierre-Loti-Viaud, Jean-Pierre Marco, So-
phie Chemla.
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