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Avant propos...

Ce polycopié est destiné aux étudiants de L2 maths à Sorbonne Université.
Sous l’intitulé ”Géométrie” on a regroupé l’étude des espaces Euclidiens et
Hermitiens et leurs isométries, puis un chapitre consacré à l’étude des courbes
planes : courbes paramétrées, implicites et leurs propriétés métriques (cour-
bure, longueur). Il contient ausi une introduction rudimentaire aux surfaces,
en faisant appel au moins de calcul différentiel possible.

Ce polycopié a été rédigé intégralement par un être humain et non pas
par Chat-GPT ou autre Deep-Seek. Il contient donc des typos que vous ne
manquerez pas de signaler à l’auteur pour améliorer le texte. En revanche,
contrairement aux LLM, les preuves de ce poly sont garanties sans halluci-
nations et sont en principe correctes. Certaines preuves faciles sont laissées
en exercice et souvent reprises en TD, mais les plus difficiles sont détaillées
au maximum.

Les prérequis pour ce cours sont l’algèbre linéaire de L1 et l’analyse réelle
de L1. Tout est élémentaire, des compléments sur l’intégration des fonctions
à valeur complexes sont donnés en annexe.
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Chapitre 1

Espaces Euclidiens et Hermitiens

1.1 Produit scalaire, définitions

Dans ce qui suit K désigne un corps qui en pratique sera K = R ou
C. Si z = x + iy ∈ C, avec x,y ∈ R, on note son conjugué par z = x − iy.
Si M = (mij) ∈ Mp,q(K) est une matrice à p lignes et q colonnes, on note
tM sa transposée, qui est une matrice à q lignes et p colonnes définie par
(tM)ij =mji , pour tout 1 ≤ i ≤ q et 1 ≤ j ≤ p.

Soit E un K-espace vectoriel de dimension finie. Le vecteur nul de E sera
noté 0E si il y a une ambiguité.

Définition 1.1.1 Une forme bilinéaire ϕ sur E est une application

ϕ : E ×E→K,

qui vérifie

1. Pour tout u1,u2,v ∈ E, pour tout λ ∈K,

ϕ(u1 +λu2,v) = ϕ(u1,v) +λϕ(u2,v).

2. Pour tout u,v1,v2 ∈ E, pour tout λ ∈K,

ϕ(u,v1 +λv2) = ϕ(u,v1) +λϕ(u,v2).

Définition 1.1.2 Dans le cas où K =C, une forme sesquilinéaire ϕ sur E est
une application

ϕ : E ×E→K,

qui vérifie
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1. (linéarité à gauche) Pour tout u1,u2,v ∈ E, pour tout λ ∈K,

ϕ(u1 +λu2,v) = ϕ(u1,v) +λϕ(u2,v).

2. (semi-linéarité à droite) Pour tout u,v1,v2 ∈ E, pour tout λ ∈K,

ϕ(u,v1 +λv2) = ϕ(u,v1) +λϕ(u,v2).

Remarque. La bilinéarité (ou la sesquilinéarité) entraine automatiquement
que ϕ(0E ,x) = 0 pour tout x ∈ E. En effet, ϕ(0E ,x) = ϕ(0E+0E ,x) = ϕ(0E ,x)+
ϕ(0E ,x) et donc en simplifiant ϕ(0E ,x) = 0. Même chose pour ϕ(x,0E).

Définition 1.1.3 1. Si ϕ est une forme bilinéaire et si on a pour tout x,y ∈
E, ϕ(x,y) = ϕ(y,x), on dit que ϕ est symétrique.

2. Si ϕ est une forme sesquilinéaire et si on a pour tout x,y ∈ E, ϕ(x,y) =
ϕ(y,x), on dit que ϕ est hermitienne symétrique.

Exemples.

1. Si E =Rn, et si x = (x1, . . . ,xn), y = (y1, . . . , yn), alors ϕ(x,y) =
∑n
i=1xiyi

est bien une forme bilinéaire symétrique.

2. Si E =Cn, et si x = (x1, . . . ,xn), y = (y1, . . . , yn), alors ϕ(x,y) =
∑n
i=1xiyi

définit une forme hermitienne symétrique.

3. Si S = (Sij)1≤i,j≤n ∈Mn(R) est une matrice réelle de taille n×n qui est
symétrique i.e. Sij = Sji pour tout i, j, alors pour

X =


x1
x2
...
xn

 , Y =


y1
y2
...
yn

 ,
ϕ(X,Y ) = tXSY ,

définit une forme bilinéaire symétrique sur Rn.

4. Si E = Rn[X] est le R-espace vectoriel des polynômes réels de degré
inférieur où égal à n, la formule

ϕ(P ,Q) :=
∫ +1

−1
P (t)Q(t)dt

définit une forme bilinéaire symétrique sur E.

5



5. Si E = Tn, le C-espace des polynômes trigonométriques P sur R de la
forme

P (t) =
+n∑
k=−n

ake
ikt,

où les coefficients ak ∈C. Alors

ϕ(P ,Q) :=
1
2π

∫ 2π

0
P (t)Q(t)dt

est une forme sesquilinéaire sur Tn.

Définition 1.1.4 Si ϕ est une forme bilinéaire (si K = R) ou sesquilinéaire
(si K = C) on dit que ϕ est positive ssi pour tout x ∈ E, ϕ(x,x) ∈ R+ et
définie ssi pour tout x ∈ E,

ϕ(x,x) = 0⇒ x = 0.

Remarque. Si ϕ est une forme sesquilinéaire hermitienne symétrique, alors

pour tout x ∈ E, ϕ(x,x) = ϕ(x,x), donc ϕ(x,x) ∈R.

Définition 1.1.5 Soit E un K-espace vectoriel de dimension finie. E est ap-
pelé espace Euclidien (resp. Hermitien) s’il est muni d’une forme bilinéaire
symétrique définie positive (resp. sesquilinéaire symétrique définie positive).
Une telle forme est appelée produit scalaire.

Exemples : les exemples 1), 2), 4) et 5) ci-dessus sont des produits scalaires.

Proposition 1.1.6 (Inégalité de Cauchy-Schwarz). Soit (E,ϕ) un espace Eu-
clidien ou Hermitien. On a pour tout x,y ∈ E,

|ϕ(x,y)| ≤
√
ϕ(x,x)

√
ϕ(y,y),

avec égalité ssi x,y sont colinéaires.

Preuve. On commence par traiter le cas réel ou K =R. Se fixant x,y ∈ E, On
étudie la fonction

λ 7→ f (λ) := ϕ(x+λy,x+λy).

Par bilinéarité et symétrie de ϕ, on a donc

f (λ) = ϕ(x,x) + 2λϕ(x,y) +λ2ϕ(y,y).
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Comme ϕ est positive, on a donc f (λ) ≥ 0 pour tout λ ∈R, ainsi le discrimi-
nant de cette fonction polynomiale de degré au plus 2 doit être négatif. Ceci
donne 4(ϕ(x,y))2 − 4ϕ(y,y)ϕ(x,x) ≤ 0, ce qui entraine

(ϕ(x,y))2 ≤ ϕ(y,y)ϕ(x,x),

puis en prenant la racine carrée

|ϕ(x,y)| ≤
√
ϕ(x,x)

√
ϕ(y,y).

Si il y a égalité, c’est que le discriminant est nul et que f (λ0) = 0 pour un
certain λ0 ∈R. Comme ϕ est définie, ceci entraine x+λ0y = 0, (x,y) est bien
liée.

Cas complexe K =C. On s’inspire des mêmes idées. On pose pour λ ∈R,

f (λ) := ϕ(x+λy,x+λy).

Quitte à multiplier x par eiθ avec θ ∈R bien choisi, on peut supposer ϕ(x,y) ∈
R. On a alors, comme dans le cas réel,

f (λ) = ϕ(x,x) + 2λϕ(x,y) +λ2ϕ(y,y),

et on suit exactement le même raisonnement. □

Proposition 1.1.7 Soit (E,ϕ) un espace Euclidien ou Hermitien. On pose
pour tout x ∈ E,

∥x∥ :=
√
ϕ(x,x).

Alors ∥.∥ est une norme sur E, i.e. elle vérifie :

1. Pour tout x ∈ E, ∥x∥ = 0⇒ x = 0.
2. Pour tout (x,λ) ∈ E ×K, ∥λx∥ = |λ|∥x∥.
3. Pour tout x,y ∈ E, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Preuve. Les points 1) et 2) sont évidents. Prouvons 3) dans le cas complexe.
Le cas réel étant analogue. Par bilinéarité et symétrie, on a

∥x+ y∥2 = ∥x∥2 +2Re(ϕ(x,y)) + ∥y∥2.

Mais par Cauchy-Schwarz on a aussi

|Re(ϕ(x,y))| ≤ |ϕ(x,y)| ≤ ∥x∥∥y∥.

Ainsi on a
∥x+ y∥2 ≤ ∥x∥2 +2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2,

la preuve est finie. □
Lorsque deux vecteurs x,y vérifient ϕ(x,y) = 0, on dit qu’ils sont ortho-

gonaux. On a l’importante remarque suivante.
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Proposition 1.1.8 (Thm de Pythagore) Si v1, . . . , vn ∈ E sont deux à deux
orthogonaux, alors ∥∥∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥∥∥
2

=
n∑
i=1

∥vi∥2.

Preuve. On écrit par bilinéarité∥∥∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥∥∥
2

= ϕ

∑
i

vi ,
∑
j

vj

 = n∑
i=1

n∑
j=1

ϕ(vi ,vj),

comme pour i , j on a ϕ(vj ,vj) = 0, la somme double ci-dessus se réduit à∥∥∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥∥∥
2

=
n∑
i=1

ϕ(vi ,vi) =
n∑
i=1

∥vi∥2,

la preuve est finie. □

La norme ∥ . ∥ associée à un produit scalaire est appelée norme euclidienne
(ou hermitienne). La connaissance de la norme détermine complêtement le
produit scalaire. En effet on a les identités suivantes (dites de polarisation).

Proposition 1.1.9 (Formules de polarisation)
— (Cas euclidien) On a pour tout x,y ∈ E,

ϕ(x,y) =
1
2
(∥x+ y∥2 − ∥x∥2 − ∥y∥2).

— (Cas hermitien) On a pour tout x,y ∈ E,

ϕ(x,y) =
1
2
(∥x+ y∥2 − ∥x∥2 − ∥y∥2 + i(∥x+ iy∥2 − ∥x∥2 − ∥y∥2)).

La preuve (facile) est laissée en exercice. Les normes euclidiennes vérifient
aussi d’autres identités remarquables dont l’identité du parallélogramme :
pour tout x,y ∈ E, on a

∥x+ y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2).

On peut montrer (voir TD) que cette identité caractérise les normes eucli-
diennes.
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1.2 Bases orthonormées et algorithme de Gram-

Schmidt

Définition 1.2.1 Soit (E,ϕ) un espace Euclidien ou Hermitien. Une base (e1, . . . , en)
de E est dite orthonormée ssi on a les propriétés suivantes.

1. (Normalisation) Pour tout i = 1, . . . ,n on a ∥ei∥ = 1.
2. (Orthogonalité) Pour tout i , j ∈ {1, . . . ,n}, on a ϕ(ei , ej) = 0.

Remarque. Une famille orthogonale de vecteurs est automatiquement libre
(à vérifier en exercice).
Exemples. Dans Rn, muni du produit scalaire

⟨x,y⟩ :=
n∑
i=1

xiyi ,

la base canonique e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0),..., en = (0, . . . ,0,1) est
une base orthonormée (le vérifier).
Dans l’espace des polynômes trigonométriques Tn, la famille

{t 7→ eikt : −n ≤ k ≤ n}

est orthonormée (exercice). On en déduit donc par Pythagore que si

P (t) =
∑
k

ake
ikt,

on a

∥P ∥2 = 1
2π

∫ 2π

0
|P (t)|2dt =

∑
k

|ak |2,

c’est l’identité de Parseval.

L’interêt des bases orthonormées est de ramener tout les calculs de norme
et de produit scalaire à des calculs simples sur les coordonnées.

Proposition 1.2.2 Soit (E,ϕ) un espace Euclidien ou Hermitien muni d’une
base (e1, . . . , en) orthonormée. Alors on a les faits suivants.

1. Pour tout x,y ∈ E tels que x =
∑
i xiei et y =

∑
i yiei, on a (cas réel)

ϕ(x,y) =
n∑
i=1

xiyi ,

ou dans le cas complexe,

ϕ(x,y) =
n∑
i=1

xiyi .
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2. Pour tout x =
∑
i xiei, on a

∥x∥2 =
n∑
i=1

|xi |2.

3. Pour tout x ∈ E, on a

x =
n∑
i=1

ϕ(x,ei)ei .

Preuve. Exercice. □

Que se passe-t-il dans une base non-orthogonale ? On peut toujours donner
une expression pour calculer le produit scalaire via la matrice de Gram.

Proposition 1.2.3 Soit (E,ϕ) un espace Euclidien ou Hermitien muni d’une
base (e1, . . . , en), pas forcément orthonormée. Considérons la matrice G définie
par

G :=


ϕ(e1, e1) . . . ϕ(e1, en)

...
. . .

...
ϕ(en, e1) . . . ϕ(en, en)

 .
Alors pour tout x,y ∈ E, avec x =

∑
i xiei et y =

∑
j yjej , on a (dans le cas

euclidien)

ϕ(x,y) = (x1 . . .xn)G


y1
...
yn

 ,
et dans le cas hermitien

ϕ(x,y) = (x1 . . .xn)G


y1
...
yn

 .
Preuve. Cas euclidien. On écrit simplement par bilinéarité :

ϕ(x,y) = ϕ(
∑
i

xiei ,
∑
j

yjej) =
∑
i

∑
j

xiyjϕ(ei , ej),

et on reconnait bien le produit matriciel

ϕ(x,y) = (x1 . . .xn)G


y1
...
yn

 .
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Le cas hermitien est pareil (avec des conjugués). □

On remarque au passage qu’une base est orthonormée ssi la matrice de
Gram est l’identité. On sait que tout espace vectoriel E de dimension finie
admet une base. Si E est de plus doté d’une structure euclidienne ou hermi-
tienne, il n’est pas évident qu’il possède une base orthonormée. On va décrire
ci-dessous un algorithme, dit de Gram-Schmidt, qui permet, partant d’une
base quelconque, de fabriquer une base orthonormée.

Soit donc (v1, . . . , vn) une base de E, on va construire par récurrence une
base orthonormée (e1, . . . , ek) de E telle que pour tout k = 1, . . . ,n

Vect(e1, . . . , ek) = Vect(v1, . . . , vk).

— Etape k = 1. Il n’y a presque rien à faire, on pose e1 = v1
∥v1∥

de telle

sorte que ∥e1∥ = 1.
— Etape k = 2. Posons e′2 = v2 −ϕ(v2, e1)e1. On a bien e′2 ∈ Vect(v1,v2)

et ϕ(e′2, e1) = 0. Il reste à normaliser en posant e2 =
e′2
∥e′2∥

.

— Supposons avoir construit e1, . . . , ek othonormée de telle sorte que

Vect(e1, . . . , ek) = Vect(v1, . . . , vk).

On pose alors

e′k+1 = vk+1 −
k∑
j=1

ϕ(vk+1, ej)ej .

Il est clair que e′k+1 ∈ Vect(v1, . . . , vk+1) et on vérifie sans peine que

ϕ(e′k+1,u) = 0

pour tout u ∈ Vect(e1, . . . , ek). On termine en posant ek+1 =
e′k+1
∥e′k+1∥

.

— On poursuit ce procédé jusqu’à k = n.

Corollaire 1.2.4 Tout espace euclidien ou hermitien possède une base ortho-
normée.

Illustrons la méthode de Gram-Schmidt sur un exemple concret. On considère
ici E =R3, muni du produit scalaire standard

⟨x,y⟩ =
3∑
i=1

xiyi .
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Considérons la famille v1 = (1,0,0), v2 = (1,1,0) et v3 = (1,1,1). On laisse
le soin au lecteur de justifier qu’il s’agit bien d’une famille libre et donc
d’une base de R3. On a ∥v1∥ = 1, donc on pose e1 = 1. On calcule ensuite
e′2 = v2 − ⟨v2, e1⟩e1 = (1,1,0) − (1,0,0) = (0,1,0). Comme on a ∥e′2∥ = 1, on
a e2 = (0,1,0). Enfin, on calcule e′3 = v3 − ⟨v3, e1⟩e1 − ⟨v3, e2⟩e2 = (1,1,1) −
(1,0,0)− (0,1,0) = (0,0,1). Finalement on a obtenu

e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1),

c’est la base canonique de R3 !

1.3 Distance et projection orthogonale

Définition 1.3.1 Soit (E,ϕ) un espace euclidien ou hermitien. Soit A ⊂ E une
partie de E. On appelle orthogonal de A, noté A⊥, la partie définie par

A⊥ := {x ∈ E : ∀a ∈ A, ϕ(x,a) = 0}.

A⊥ est automatiquement un sous-espace vectoriel de E (exercice).

Proposition 1.3.2 Soit (E,ϕ) un espace euclidien ou hermitien, et soit F un
sous-espace vectoriel de E 1. On a toujours

E = F ⊕F⊥.

De plus, il existe un unique endomorphisme PF : E → F tel que PF ◦ PF = PF
avec IM(PF) = F et Ker(PF) = F⊥. On l’appelle projection orthogonale sur F.
Elle est donnée par l’expression suivante, valable pour tout base orthonormée
(e1, . . . , ep) de F,

PF(x) :=
p∑
i=1

ϕ(x,ei)ei .

Preuve. Si x ∈ F ∩F⊥, il vient ϕ(x,x) = 0, et comme ϕ est définie, on a donc
x = 0. Ainsi F ∩ F⊥ = {0}. On considère (e1, . . . , ep) une base orthonormée de

F., et on pose pour tout x ∈ E, PF(x) :=
∑p
i=1ϕ(x,ei)ei . Clairement PF(x) ∈ F.

On observe de plus que x − PF(x) ∈ F⊥. En effet, on a pour tout y ∈ F,

ϕ(x − PF(x), y) = ϕ(x,y)−ϕ(PF(x), y) = ϕ(x,y)−
p∑
i=1

ϕ(x,ei)ϕ(ei , y).

1. On exclut les cas pathologiques F = {0} et F = E.
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De plus on a (dans le cas hermitien)
p∑
i=1

ϕ(x,ei)ϕ(ei , y) = ϕ

x,∑
i

ϕ(ei , y)ei

 = ϕ
x,∑

i

ϕ(y,ei)ei


= ϕ(x,y),

ainsi ϕ(x − PF(x), y) = 0. L’écriture x = PF(x) + x − PF(x) montre donc que
F + F⊥ = E, et le premier point est prouvé. On vérifie sans peine que x 7→
PF(x) est une application linéaire telle que PF ◦ PF = PF . On observe que
x ∈ Ker(PF) ssi pour tout i = 1, . . . ,p, on a ϕ(x,ei) = 0, ce qui équivaut à avoir
ϕ(x,y) = 0 pour tout y ∈ F (car (e1, . . . , ep) est une base de F). On a donc
bien Ker(PF) = F⊥. Comme IM(PF) ⊂ F, et que dim(F) + dim(F⊥) = dim(E),
le théorème du rang appliqué à PF montre que dim(IM(PF)) = dim(F) et donc
IM(PF) = F. Il reste a voir que PF est unique. Observons d’abord que si z ∈ F,
on a z = PF(x) pour un certain x ∈ E, et donc PF(z) = PF ◦ PF(x) = PF(x) = z.
Soit maintenant x ∈ E. Comme E = F ⊕ F⊥, on a une décomposition unique
x = xF + xF⊥ , et ainsi

PF(x) = PF(xF) + PF(xF⊥) = PF(xF) = xF .

L’application PF est donc unique. □

Théorème 1.3.3 Soit (E,ϕ) un espace euclidien ou hermitien, et soit F un
sous-espace vectoriel de E. Se fixant x ∈ E, on a

d(x,F) := inf
y∈F
∥x − y∥ = ∥x − PF(x)∥,

et cet inf est atteint uniquement en y = PF(x). Autrement dit, le projeté or-
thogonal de x sur F minimise la distance de x au sous-espace F.

Preuve. Il est clair que puisque PF(x) ∈ F.
inf
y∈F
∥x − y∥ ≤ ∥x − PF(x)∥.

Soit y ∈ F, on écrit

∥x − y∥2 = ∥x − PF(x) + PF(x)− y∥2.
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Projection orthogonale sur F

En observant que PF(x)− y ∈ F et sachant que x − PF(x) ∈ F⊥, on a donc par
Pythagore (voir figure ci-dessus)

∥x − y∥2 = ∥x − PF(x)∥2 + ∥PF(x)− y∥2 ≥ ∥x − PF(x)|2,

et donc en passant à l’inf on a

inf
y∈F
∥x − y∥ ≥ ∥x − PF(x)∥,

d’où l’égalité. On remarque de plus que si y ∈ F est tel que ∥x−y∥ = ∥x−PF(x)∥,
alors Pythagore montre que PF(x) = y. □.

Exemple. On se place dans E =R3 muni du produit scalaire usuel noté ⟨., .⟩,
et on considère

F = {(x,y,z) ∈R3 : x+ y + z = 0}.

L’ensemble F est un sous-espace vectoriel et on va calculer la distance d((1,2,1),F).
On observe d’abord que (x,y,z) ∈ F ssi (x,y,z) = (−y − z,y,z) = y(−1,1,0) +
z(−1,0,1). Ainsi F = Vect{(−1,1,0), (−1,0,1)} et v1 = (−1,1,0), v2 = (−1,0,1)
constitue une base de F. Pour calculer la projection orthogonale PF , il faut
orthonormaliser cette base. On a ∥v1∥ =

√
2 donc on pose e1 = 1√

2
(−1,1,0).

On calcule ensuite

e′2 = v2 − ⟨v2, e1⟩e1 = (−1,0,1)− 1
2
(−1,1,0) = (−1/2,−1/2,1).

On a donc e2 =
e′2
∥e′2∥

=
√

2
3(−1/2,−1/2,1). On calcule donc maintenant

PF(x,y,z) = ⟨(x,y,z), e1⟩e1 + ⟨(x,y,z), e2⟩e2

=
1
2
(y − x)(−1,1,0) + 2

3
(z − x/2− y/2)(−1/2,−1/2,1).

Ainsi PF((1,2,1)) = (−1/3,2/3,−1/3), et

d((1,2,1),F) = ∥(1,2,1)− PF((1,2,1))∥ = ∥(4/3,4/3,4/3)∥ = 4

√
3
3
.
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1.4 Endomorphismes et adjoints

Pour tout endomorphisme T d’un espace euclidien ou hermitien, on va
définir l’adjoint T ∗ via le produit scalaire.

Proposition 1.4.1 Soit (E,ϕ) un espace euclidien ou hermitien. Soit f : E→
E une application linéaire. Il existe une unique application linéaire f ∗ : E→ E
telle que pour tout x,y ∈ E,

ϕ(f (x), y) = ϕ(x,f ∗(y)).

Preuve. Unicité. Si on a pour tout x,y ∈ E,

ϕ(x,f1(y)) = ϕ(f (x), y) = ϕ(x,f2(y)),

on a donc pour tout x,y ∈ E,

ϕ(x,f1(y)− f2(y)) = 0,

et en posant x = f1(y)−f2(y) et en utilisant que ϕ est définie on a f1(y) = f2(y)
pour tout y ∈ E. Existence. On traite le cas hermitien, le cas euclidien est
analogue, mais sans conjugués. On considère (e1, e2, . . . , en) une base ortho-
normée de (E,ϕ). On définit alors l’endomorphisme f ∗ en posant pour tout
j = 1, . . . ,n,

f ∗(ej) :=
n∑
i=1

ϕ(f (ei), ej)ei .

Avec cette définition, on a donc pour tout i, j,

ϕ(ei , f
∗(ej)) = ϕ(f (ei), ej).

On vérifie alors que si x =
∑
i xiei , y =

∑
j yjei , on a

ϕ(f (x), y) =
∑
i,j

xiyjϕ(f (ei), ej) =
∑
i,j

xiyjϕ(ei , f
∗(ej)),

et par sesquilinéarité et linéarité de f ∗, on tombe sur

ϕ(f (x), y) = ϕ(x,f ∗(y)).

La preuve est finie. □

Proposition 1.4.2 Soit (E,ϕ) un espace Euclidien ou Hermitien. Soit f un
endomorphisme et B une base orthonormée de E. Alors on a l’identité ma-
tricielle :

MatB (f ∗) =
t
MatB (f ) (cas Hermitien),

MatB (f ∗) = tMatB (f ) (cas Euclidien).
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Preuve. C’est fait dans le calcul précédent : dans toute base orthonormée
(e1, e2, . . . , en), on a

ϕ(f ∗(ej), ei) = ϕ(f (ei), ej),

d’où l’identité matricielle. □
Terminons cette section par une identité bien utile.

Proposition 1.4.3 Soit (E,ϕ) un espace euclidien ou hermitien. Soit f : E→
E un endomorphisme. On a alors

Ker(f ) = IM(f ∗)⊥.

Preuve. On a x ∈ IM(f ∗)⊥ ssi pour tout y ∈ E, ϕ(x,f ∗(y)) = 0. Mais on a donc
pour tout y ∈ E,

ϕ(x,f ∗(y)) = ϕ(f (x), y) = 0.

Ceci équivaut donc à f (x) = 0, car ϕ est définie, et donc x ∈ IM(f ∗)⊥ ssi
x ∈ Ker(f ). □

Remarque. Comme (F⊥)⊥ = F, en remplacant f par f ∗, on a aussi

IM(f ) = Ker(f ∗)⊥.

Terminologie. Si f est un endomorphisme tel que f = f ∗, il est dit auto-
adjoint. Si f est un isomorphisme et que f −1 = f ∗, on dit qu’il est unitaire. Si
on a f ◦ f ∗ = f ∗ ◦ f , on dit qu’il est normal. Toute application linéaire auto-
adjointe ou unitaire est normale, mais il existe bien sur des endomorphismes
normaux qui ne sont ni autoadjoint, ni unitaires, par exemple si U est unitaire
et si P ∈ C[X] est un polynôme, P (U ) est normal mais en général pas unitaire
ni auto-adjoint.

1.5 Le théorème de représentation de Riesz

Si E est un K-espace vectoriel, on appelle dual de E, noté E∗, le K-espace
vectoriel des applications linéaires de E→K (les formes linéaires).

Proposition 1.5.1 Si E est de dimension finie, alors on a dim(E) = dim(E∗).

Preuve. Soit (e1, . . . , en) une base de E. Pour tout i = 1, . . . ,n, on note e∗i la
forme linéaire définie sans équivoque par

e∗i

∑
j

xjej

 := xi .
16



On va montrer que (e∗1, . . . , e
∗
n) est une base de E∗. C’est une famille libre. En

effet si λ1, . . . ,λn ∈K sont tels que∑
i

λie
∗
i = 0,

alors pour tout x ∈ E, on a ∑
i

λie
∗
i (x) = 0,

en particulier pour tout j = 1, . . . ,n, on a∑
i

λie
∗
i (ej) = 0 = λj ,

ainsi λ1 = . . . = λn = 0. C’est une famille génératrice. Soit ℓ ∈ E∗, on écrit
pour tout x ∈ E,

ℓ(x) = ℓ(
∑
i

xiei) =
∑
i

xiℓ(ei) =
∑
i

e∗i (x)ℓ(ei),

ainsi on a ℓ =
∑
i ℓ(ei)e

∗
i et la preuve est finie. □

Théorème 1.5.2 (Riesz) On suppose ici que (E,ϕ) est euclidien ou hermitien,
donc de dimension finie. Pour tout ℓ ∈ E∗, il existe un unique vecteur y ∈ E
tel que pour tout x ∈ E on a

ℓ(x) = ϕ(x,y).

Preuve. On se limite pour simplifier au cas K = R. L’idée est la même dans
le cas de C mais il faut faire attention à la semi-linéarité. On considère
l’application Φ : E→ E∗, donnée pour tout y ∈ E par

Φ(y)(x) = ϕ(x,y).

Cette application Φ est bien définie car x 7→ ϕ(x,y) est bien une forme li-
néaire. Elle est de plus linéaire car par bilinéarité de ϕ, on a bien

Φ(y +λz)(x) = ϕ(x,y +λz) = ϕ(x,y) +λϕ(x,z) = Φ(y)(x) +λΦ(z)(x).

Calculons le noyau de Φ. Si Φ(y) = 0, cela veut dire que pour tout x ∈ E,
ϕ(x,y) = 0, mais comme ϕ est définie, on a y = 0. Ainsi Φ est injective.
Comme dim(E) = dim(E∗), le théorème du rang montre que Φ est surjective.
□
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Un exemple. On considére E =Rn[X], muni du produit scalaire

⟨P ,Q⟩ =
n∑
i=0

aibi ,

où P (X) =
∑
i aiX

i et Q(X) =
∑
i biX

i . L’application P 7→
∫ 1
0
P (t)dt est une

forme linéaire. Le théorème de Riesz nous dit qu’il existe un unique polynôme
Q0 =

∑
i biX

i tel que pout tout P =
∑
i aiX

i ∈Rn[X], on a∫ 1

0
P (t)dt = ⟨P ,Q0⟩ =

∑
i

aibi .

En effet on a ∫ 1

0
P (t)dt =

∑
i

ai

∫ 1

0
tidt =

∑
i

ai
i +1

= ⟨P ,Q0⟩,

avec Q0(X) =
∑
i

1
i+1X

i .

Le théorème de Riesz, et son extension en dimension infinie dans les es-
paces de Hilbert, est un outil très puissant en algèbre et en Analyse, voir
cours de L3 et M1. Comme son nom l’indique, il permet de representer toute
forme linéaire via le produit scalaire.
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Chapitre 2

Groupes d’isométries

2.1 Isométries

Définition 2.1.1 Soit (E,ϕ) un espace euclidien ou hermitien. Une applica-
tion linéaire f : E → E est appelée isométrie ssi on a pour tout x ∈ E,
∥f (x)∥ = ∥x∥, où ∥ . ∥ est la norme euclidienne (ou hermitienne) associée
au produit scalaire ϕ.

Dans le cas euclidien, on parle de transformation orthogonale, dans le cas
hermitien, on parle de transformation unitaire.

Proposition 2.1.2 Soit (E,ϕ) un espace euclidien ou hermitien et f un en-
domorphisme. On a alors les faits équivalents suivants.

1. Pour tout x ∈ E, ∥f (x)∥ = ∥x∥.
2. Pour tout x,y ∈ E, on a ϕ(f (x), f (y)) = ϕ(x,y).
3. L’application f est un isomorphisme et f −1 = f ∗.

Preuve. On fait une preuve circulaire. On commence par 1)⇒ 2). C’est une
conséquence immédiate des formules de polarisation, voir Proposition 1.1.9.
Prouvons 2)⇒ 3). Puisque pour tout x ∈ E, ∥f (x)∥ = ∥x∥, si x ∈ Ker(f ) alors
∥f (x)∥ = ∥x∥ = 0 et donc x = 0. Ainsi Ker(f ) = {0}, f est injective. Par le
théorème du rang, f est donc surjective : c’est bien un isomorphisme, dont
l’application réciproque f −1 est automatiquement linéaire. Par définition de
l’adjoint, on a pour tout x,y ∈ E,

ϕ(f (x), f (y)) = ϕ(x,f ∗ ◦ f (y)) = ϕ(x,y),

ainsi f ∗ ◦ f = Id, et par unicité de l’inverse f −1 = f ∗. Prouvons pour finir
3)⇒ 1). Pour tout x ∈ E, écrivons

∥f (x)∥2 = ϕ(f (x), f (x)) = ϕ(x,f ∗ ◦ f (x)),
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(par définition de l’adjoint) et comme f ∗ = f −1, on tombe sur

∥f (x)∥2 = ϕ(x,x) = ∥x∥2,

et la preuve est bouclée. □

L’ensemble des isométries (notéU (E)) d’un espace Euclidien ou Hermitien
est naturellement muni d’une structure de groupe pour la loi ◦ de composition
des applications linéaires. Plus précisément on a les fait suivants.

— L’élément neutre de U (E) pour la composition ◦ est l’application iden-
tité Id.

— Tout f ∈ U (E) admet un inverse à gauche et à droite f −1 = f ∗ pour
la composition ◦.

— La loi ◦ est associative.
En général, ce groupe n’est pas commutatif !

Proposition 2.1.3 Soit (E,ϕ) un espace euclidien ou hermitien et f un en-
domorphisme de E. Alors f est une isométrie ssi l’image par f d’une base
orthonormée est orthonormée.

Preuve. On a vu précédemment que f est une isométrie ssi pour tout x,y ∈
E, ϕ(f (x), f (y)) = ϕ(x,y). Ainsi si (e1, . . . , en) est une base orthonormée de
E, (f (e1), . . . , f (en)) est sans difficulté une famille orthonormée, donc auto-
matiquement libre, et donc une base car elle a le bon cardinal. Récipro-
quement, supposons qu’il existe une base orthonormée (e1, . . . , en) telle que
(f (e1, . . . , f (en)) soit une base orthonormée, alors on a pour tout x =

∑n
i=1xie1,

par linéarité de f ,

∥f (x)∥2 =

∥∥∥∥∥∥∥
n∑
i=1

xif (ei)

∥∥∥∥∥∥∥
2

,

on applique alors Pythagore (deux fois) qui nous donne

∥f (x)∥2 =

∥∥∥∥∥∥∥
n∑
i=1

xif (ei)

∥∥∥∥∥∥∥
2

=
n∑
i=1

|xi |2 = ∥x∥2,

et la preuve est finie. □

Que dire de la matrice d’une isométrie dans une base orthonormée ? Soit
donc f une isométrie et B = (e1, . . . , en) une base orthonormée de E. Posons

M =MatB (f ).
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Comme f ∗ = f −1, on a donc M−1 = tM, dans le cas réel, et M−1 =
t
M (cas

complexe). Si tM =M−1, on a

det(M)det(tM) = det(M.M−1) = det(In) = 1,

mais comme det(tM) = det(M), il vient det(M)2 = 1 d’où det(M) = ±1. Par
le même raisonnement, dans le cas complexe on a aussi |det(M)| = 1. Ces
propriétés conduisent naturellement au paragraphe suivant.

2.2 Groupes unitaires et orthogonaux

Définition 2.2.1 On a les définition suivantes.
— On note On(R) = {M ∈Mn(R) : M tM = In}, c’est le groupe orthogo-

nal.
— On note Un(C) = {M ∈Mn(C) : M

t
M = In}, c’est le groupe unitaire.

— On note SOn(R) = {M ∈On(R) : det(M) = 1}, c’est le groupe spécial
orthogonal.

— On note SUn(C) = {M ∈Un(C) : det(M) = 1}, c’est le groupe spécial
unitaire.

Remarques. On vérifie sans peine que si M tM = In, alors M est forcément
inversible car det(M) = ±1 et M−1 = tM. Ainsi la matrice de toute isométrie
d’un espace euclidien de dimension n est orthogonale. De même la matrice
de toute isométrie d’un espace hermitien de dimension n est unitaire. Les
ensembles On(R), SOn(R), Un(C et SUn(C) sont des groupes pour la multi-
plication matricielle. Réciproquement, toute matrice orthogonale (resp. uni-
taire) peut être vue comme la matrice d’une isométrie de Rn muni du produit
scalaire canonique (resp. Cn muni du produit scalare hermitien canonique).

Si on munit Rn de son produit scalaire canonique, une matrice est or-
thogonale ssi les colonnes forment une base orthonormée par la Proposition
2.1.3. Par exemple les matrices (θ ∈R),

R(θ) :=
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,

sont dans SO2(R). Ce sont les matrices de rotations d’angle θ dans le plan
R

2.

Il grand temps d’aborder la notion délicate des angles.
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2.3 Angles et orientation

Dans cette section, (E,ϕ) est un espace euclidien (donc K =R). On a vu
par Cauchy-Schwarz que si x,y ∈ E, avec x,y , 0, alors

ϕ(x,y)
∥x∥∥y∥

∈ [−1,1].

Définition 2.3.1 (Angle non-orienté de deux vecteurs) Si x,y , 0, l’angle
non-orienté des deux vecteurs x,y est l’unique θ ∈ [0,π] tel que

ϕ(x,y) = ∥x∥∥y∥cos(θ).

Autrement dit on a

θ(x,y) = arccos
(
ϕ(x,y)
∥x∥∥y∥

)
,

avec θ = 0 ou π ssi x,y sont colinéaires. On peut remarquer qu’avec cette
définition on a θ(x,y) = θ(y,x), l’angle est dit non-orienté.

Définition 2.3.2 Deux bases B ,B ′ d’un R-espace vectoriel sont dites de
même orientation ssi det(PB ,B ′ ) > 0, où PB ,B ′ est la matrice de passage
de la base B à B ′.

L’espace euclidien Rn muni de sa base canonique est muni d’une notion
d’orientation naturelle : une famille libre de n vecteurs v1, . . . , vn sera dite
directe (ou positivement orientée) si le déterminant de ces n vecteurs dans la
base canonique est > 0, ce qui revient à dire que si B est la base canonique
et B ′ = (v1, . . . , vn), ces deux bases ont même orientation. On voit alors que
SOn(R) est le groupe des isométries de Rn qui preservent l’orientation.
En dimension 2, si on se donne un vecteur non nul e ∈R2, il existe un unique
vecteur e∧ de même norme tel que (e,e∧) soit une base othogonale directe.
En effet, si e = (x,y) avec x2 + y2 , 0, comme e⊥ est une droite on doit avoir

e∧ = λ(−y,x),

avec λ = ±1 car on veut ∥e∧∥2 = x2 + y2. La condition det(e,e∧) > 0 force
λ = 1. Ainsi

e∧ = (−y,x).

On appellera dans la suite e∧ le vecteur directement orthogonal à e.

La notion d’angle orienté de deux vecteurs n’a de sens qu’en dimension
n = 2.
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Définition 2.3.3 Soit (E,ϕ) un espace euclidien orienté de dimension 2. Soient
x,y ∈ E avec x,y , 0. L’angle orienté θ̂(x,y) est l’unique θ ∈ R/2πZ tel que
l’on a

ϕ(x,y) = ∥x∥∥y∥cos(θ̂),
et

det(x,y) = ∥x∥∥y∥sin(θ̂).
Ici det(x,y) est calculé dans une base orthonormée orientée. L’angle θ̂(x,y)
est défini modulo 2π.

On peut vérifier que maintenant,

θ̂(x,y) = −θ̂(y,x) [2π].

Cette définition nécessite une explication. Soit B une base orthonormée di-
recte de E et posons B ′ = (x,y). Alors un calcul montre que

B :=
(
ϕ(x,x) ϕ(x,y)
ϕ(y,x) ϕ(y,y)

)
= tPB ,B ′PB ,B ′ .

On a donc
det(B) = det(PB ,B ′ )

2 = ∥x∥2∥y∥2 −ϕ(x,y)2,
ce qui nous donne (

det(x,y)
∥x∥∥y∥

)2
+
(
ϕ(x,y)
∥x∥∥y∥

)2
= 1.

On sait que si a,b ∈ R sont tels que a2 + b2 = 1 alors il existe une unique θ
modulo 2π tel que a = cos(θ) et b = sin(θ).

On retiendra que det(x,y) est l’aire (algébrique) du parallélogramme
donné par x,y et que

Aire(x,y) = ∥x∥∥y∥sin(θ̂).

On a par ailleurs obtenu par ce calcul une autre preuve de Cauchy-Schwarz.
En effet,

0 ≤ det(PB ,B ′ )
2 = ∥x∥2∥y∥2 −ϕ(x,y)2

ainsi
|ϕ(x,y)| ≤ ∥x∥2∥y∥2,

avec egalité ssi det(PB ,B ′ ) = 0, i.e. (x,y) est liée.

Que se passe-t-il dans R3 ? Même si on a choisi une orientation de R3,
un plan vectoriel V dans R3 n’hérite pas canoniquement d’une orientation
naturelle. ll faut se donner un vecteur unitaire e3 normal à V . Une base (e1, e2)
de V sera dite orientée positivement ssi la base (e1, e2, e3) est positivement
orientée.
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2.4 Etude de O2(R) et O3(R) : les isométries du

plan et de l’espace

On va commencer par le théorème suivant qui classifie complètement les
éléments de O2(R).

Théorème 2.4.1 Soit M ∈ O2(R), vu comme isométrie de R2. On a les pos-
sibilités suivantes.

1. Soit det(M) = −1 et il existe une base orthonormée directe de R2 dans
laquelle la matrice de M devient

S =
(
1 0
0 −1

)
,

i.e. M =USU−1, où U ∈ SO2(R).
2. Soit det(M) = 1 et il existe θ ∈R tel que

M =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

Preuve. On commence par supposer que det(M) = 1. Ecrivons

M =
(
a b
c d

)
.

Comme les colonnes de M sont orthogonales, on a ab + cd = 0 et donc les
vecteurs (a,−c) et (b,d) sont liés. Mais comme 1 = b2 + d2, (b,d) , (0,0) et
donc il existe λ ∈R tel que (a,−c) = λ(d,b). On a aussi det(M) = ad − bc = 1
donc λ(d2 + b2) = λ = 1. Ainsi on a obtenu a = d et c = −b avec a2 + b2 = 1.
Il existe donc θ ∈ R tel que cos(θ) = a et sin(θ) = b, et donc le point 2) est
prouvé. Supposons que det(M) = −1, et écrivons de nouveau

M =
(
a b
c d

)
.

Pour les mêmes raisons que précédement, on a (a,−c) = λ(d,b) et ad−bc = −1.
Ceci entraine que λ = −1 et donc on a

M =
(
a c
c −a

)
,

avec a2 + c2 = 1. Remarquons que si a = 1 alors c = 0 et donc

M =
(
1 0
0 −1

)
,
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et il n’y a plus rien à prouver. Supposons donc a , 1, alors le vecteur colonne

X =
(

c
1−a
1

)
,

vérifie MX = X. Le vecteur directement normal (de même norme) est

X∧ =
(
−1
c

1−a

)
,

et un calcul direct montre que MX∧ = −X∧. En posant e1 =
X
∥X∥ et e2 =

X∧

∥X∧∥ ,

on obtient bien une base orthonormée (directe) telle que la matrice de M
dans la base (e1, e2) est exactement(

1 0
0 −1

)
,

le théorème est prouvé. □

On voit donc que les isométries d’un espace euclidien de dimension 2
sont de deux types : une réflexion orthogonale, c’est le cas 1) où l’orientation
est renversée, ou une rotation, c’est le cas 2). En particulier les éléments

de SO2(R) sont donc tous des rotations. Dans ce cas, si X =
(
x
y

)
avec

x2 + y2 = 1, on a

⟨MX,X⟩ = cos(θ) et det(X,MX) = sin(θ),

donc l’angle orienté θ̂(X,MX) est exactement θ modulo 2π. Notons que −I2
préserve l’orientation et correspond à une rotation d’angle orienté +π.

SO2(R) est un groupe commutatif : on peut vérifier que posant

R(θ) :=
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,

on a pour tout θ1,θ2 ∈R, R(θ1)R(θ2) = R(θ2)R(θ1) = R(θ1+θ2), voir exercice
en TD.

Abordons le cas de la dimension 3. On a le théorème suivant.

Théorème 2.4.2 Soit M ∈ O3(R), vu comme isométrie de R3. On a les pos-
sibilités suivantes.
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1. Soit det(M) = −1 et il existe une base orthonormée directe de R3 dans
laquelle la matrice de M devient de la forme (θ ∈R)

S =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 −1

 .
2. Soit det(M) = 1 et il existe une base orthonormée directe de R3 et
θ ∈R tel que M se transforme sous la forme

R =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .
Preuve. Considérons le polynôme caractéristique χM(λ) = det(M−λI3). C’est
un polynôme de degré 3, donc par le théorème des valeurs intermédiaires, il
admet un zero réel noté λ0 ∈ R. On rappelle, voir cours de L1, qu’il existe
donc un vecteur propre X0 ∈ R3, non nul, tel que MX0 = λ0X0. On peut
bien sur supposer que ∥X0∥ = 1. Comme M est une isométrie, on a ∥MX0∥ =
∥X0∥ = |λ0|∥X0∥, et ainsi λ0 = ±1. Considérons maintenant l’orthogonal de
X0, c’est à dire

X⊥0 = {Y ∈R3 : ⟨Y ,X0⟩ = 0}.
Pour tout Y ∈ X⊥0 , on a

⟨MY ,X0⟩ = ⟨Y ,M∗X0⟩ = ⟨Y ,M−1X0⟩ = ±⟨Y ,X0⟩ = 0.

Ainsi F = X⊥0 est stable par M. C’est un espace euclidien de dimension 2,
on est ramené au cas précédent. On voit ainsi que si det(M) = 1, soit λ0 = 1
et alors det(M |F) = 1 et on est donc dans le cas 2) : on choisit une base
orthonormée (e1, e2) de F tell que (e1, e2,X0) soit directe, et la matrice de M
dans cette base est de la forme 2). Si λ0 = −1, on doit avoir det(M |F) = −1,
et en choisissant une base orthonormée (positivement orientée par X0) de F
la matrice de M devient  −1 0 0

0 1 0
0 0 −1

 ,
ce qui après une permutation circulaire des vecteurs de la base donne en fait
le cas 2) avec θ = π. Le cas où det(M) = −1 est analogue. □

Dans le cas 2), M est appelée rotation d’angle orienté θ et d’axe dirigé
par X0. Notons que l’orientation du plan X⊥0 découle du choix de X0. Comme
SO3(R) est un groupe, la composée de deux rotations est toujours une rota-
tion. Il est en revanche non-commutatif (le vérifier en exercice).
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Rotation d’angle θ, d’axe ê = Vect(X0).

Le Théorème 2.4.2 est une version moderne d’un théorème d’Euler (1776)
que l’on cite ici en latin.

Theorema : Quomodocunque sphaera circa centrum suum conuertatur,
semper assignari potest diameter, cuius directio in situ translato conueniat

cum situ initiali.

La traduction francaise approximative serait : si on fait tourner une sphère
autour de son centre, on peut toujours trouver un diamètre qui reste invariant
lors de cette transformation. C’est la droite engendrée par le vecteur X0 de
la preuve précédente...

Un exemple de matrice de rotation. Calculer la matrice (dans la base cano-
nique) de la rotation R d’angle +π4 et d’axe ê = Vect((1,1,1)). Remarquons
que

ê⊥ = {(x,y,z) ∈R3 : x+ y + z = 0}.

Une base évidente de ê⊥ est v1 = (1,−1,0, v2 = (1,0,−1). En appliquant
le procédé d’orthonormalisation de Schmidt à (v1,v2) on trouve une base

orthonormée donnée par e1 = 1√
2
(1,−1,0) et e2 =

√
2
3(1/2,1/2,−1), que l’on

complète par e3 = 1√
3
(1,1,1). On vérifie que det(e1, e2, e3) > 0 et donc la

matrice de R dans cette base est (avec θ = π/4),

M =


√
2
2 −

√
2
2 0√

2
2

√
2
2 0

0 0 1

 .
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Il reste maintenant à calculer la matrice de R dans la base canonique : la
matrice de passage P de la base canonique à B = (e1, e2, e3) est

P =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3

1√
3

 .
Comme P est orthogonale, on a P −1 = tP , et il ne reste plus qu’à calculer

Matb.c.(R ) = PM tP =


1+
√
2

3
1−
√
2−
√
6

6
1−
√
2+
√
6

6
1−
√
2+
√
6

6
1+
√
2

3
1−
√
2−
√
6

6
1−
√
2−
√
6

6
1−
√
2+
√
6

6
1+
√
2

3

 .
2.5 Le produit vectoriel dans R3

On se place ici dans l’espace euclidien R3 muni du produit scalaire cano-
nique noté ⟨ . , . ⟩.

Théorème 2.5.1 1. Pour tout vecteurs U,V ,W ∈R3, la quantité det(U,V ,W )
est invariante par changement de base orthonormée directe.

2. Pour tout vecteurs U,V ∈R3, il existe un unique vecteur dans R3, noté
U ∧V , tel que pour tout W ∈R3 on a

det(U,V ,W ) = ⟨U ∧V ,W ⟩.

Preuve. 1) SiU est le vecteur colonne des coordonnées dans la base canonique,
alors dans toute autre base orthonormée directe on a U = PU ′ où P ∈ SO3(R)
est la matrice de passage à la nouvelle base et U ′ les coordonnées de U dans
cette nouvelle base. Mais donc comme le déterminant d’un produit matriciel
est le produit des déterminants, on a la formule

det(U,V ,W ) = det(PU ′, P V ′, PW ′) = det(P )det(U ′,V ′,W ′) = det(U ′,V ′,W ′),

car det(P ) = 1.
2) Se donnant U,V ∈R3, l’application

W 7→ det(U,V ,W )

est une forme linéaire sur R3, donc par le théorème de Riesz, il existe un
unique vecteur U ∧V tel que pour tout W ,

det(U,V ,W ) = ⟨U ∧V ,W ⟩.
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La preuve est finie. □

Le vecteur U ∧V est appelé produit vectoriel des vecteurs U,V . L’opé-
ration ”produit vectoriel” vérifie les propriétés suivantes.

Proposition 2.5.2 — Pour tout U,V ∈R3, on a V ∧U = −U ∧V .
— Pour tout U,V ,Z ∈R3 et λ ∈R, on a

(U +λV )∧Z =U ∧Z +λ(V ∧Z).

— Pour tout U,V ∈R3, on a U ∧V = 0 ssi U,V sont colinéaires.
— Pour tout U,V ∈R3, avec U,V linéairement indépendants, on a

(U ∧V )⊥ = Vect(U,V ).

Preuve. C’est un exercice facile basé sur l’unicité de U ∧V et les propriétés
du déterminant. □

Proposition 2.5.3 Pour tout U,V ∈R3, on a

∥U ∧V ∥ = ∥U∥.∥V ∥.|sin(θ̂(U,V ))|,

où θ̂(U,V ) est l’angle (orienté) des vecteurs U,V dans le plan F = Vect(U,V ),
l’orientation de F étant donnée par le vecteur normal U ∧V .

Preuve. On peut bien sur supposer que U,V sont non colinéaires. On a par
définition

∥U ∧V ∥2 = det(U,V ,U ∧V ).

On calcule alors ce déterminant dans une base orthonormée directe (e1, e2, e3)
où (e1, e2) est une base orthonormée de F et e3 est colinéaire à U ∧V . Dans
cette base on a U = x1e1 + x2e2, V = y1e1 + y2e2 et U ∧V = ±∥U ∧V ∥e3 de
sorte que

det(U,V ,U ∧V ) =

∣∣∣∣∣∣∣∣
x1 y1 0
x2 y2 0
0 0 ±∥U ∧V ∥

∣∣∣∣∣∣∣∣ = ±det(U,V )∥U ∧V ∥.

En simplifiant par ∥U ∧V ∥ et en prenant la valeur absolue on a bien

∥U ∧V ∥ = |det(U,V )| = ∥U∥.∥V ∥.|sin(θ̂(U,V ))|.

La preuve est finie. □
En pratique, on peut calculer le produit vectoriel en coordonnées par la

recette suivante.
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Proposition 2.5.4 Soit (e1, e2, e3) une base orthonormée directe de R3. Alors
si U =

∑3
i=1uiei et V =

∑3
i=1 viei, on a

U ∧V = (u2v3 −u3v2)e1 + (u3v1 −u1v3)e2 + (u1v2 −u2v1)e3.

Preuve. On commence par remarquer par les propositions précédentes que
e1 ∧ e2 = e3, e2 ∧ e3 = e1 et e3 ∧ e1 = e2. En utilisant l’antisymétrie et la
bilinéarité du produit vectoriel, on a

U ∧V =

∑
i

uiei

∧
∑
j

vjej

 =∑
i<j

(uivj −ujvi)ei ∧ ej ,

et on obtient la formule en calculant composante par composante. □
Attention, le produit vectoriel n’est pas associatif, mais il existe une for-

mule dite du double produit vectoriel que l’on cite ici.

Proposition 2.5.5 Soit U,V ,W ∈R3, on les identités suivantes.
— (Double Produit Vectoriel) U ∧ (V ∧W ) = ⟨U,W ⟩V − ⟨U,V ⟩W .
— (Jacobi) U ∧ (V ∧W ) +W ∧ (U ∧V ) +V ∧ (W ∧U ) = 0

Preuve. Voir exercice en TD.

Il n’est pas possible de définir un produit vectoriel en dimension quel-
conque en conservant ces propriétés remarquables. On peut en revanche, en
dimension n, définir le produit x1 ∧ . . .∧ xn−1 par un déterminant analogue.
La bonne généralisation de l’opération ∧ est celle du produit exterieur, voir
cours de M1.

2.6 Produit vectoriel et rotations

On a vu précédement que si U,V sont des vecteurs non-colinéaires, alors

det(U,V ,U ∧V ) = ∥U ∧V ∥2 > 0,

donc (U,V ,U ∧ V ) est une base orientée positivement, avec (U ∧ V )⊥ =
Vect(U,V ). On va utiliser ces propriétés pour établir une formule intrinsèque
exprimant l’action d’une rotation sur un vecteur quelconque de R3.

Proposition 2.6.1 (Formule de Rodrigues) Soit N un vecteur unitaire de R3

et θ ∈R. Notons R ∈ SO3(R) la rotation d’axe N et d’angle égal à θ modulo
2π. Pour tout U ∈R3, on a

R(U ) = cos(θ)U + (1− cos(θ))⟨U,N ⟩N + sin(θ)N ∧U.
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Preuve. Posons V =U − ⟨U,N ⟩N . On a

R(U ) =R(⟨U,N ⟩N +V ) = ⟨U,N ⟩N +R(V ).

Comme V ∈ N⊥, l’action de R sur V est celle d’une rotation de SO2(R)
d’angle θ. On remarque de plus que N ∧V est un vecteur de N⊥ directement
orthogonal à V (pour l’orientation de N⊥ induite par N ). Comme N est
unitaire et que N et V sont orthogonaux, on a de plus

∥N ∧V ∥ = ∥V ∥.

Dans la base orthonormée B = (e1, e2) avec e1 = V
∥V ∥ , e2 = N∧V

∥V ∥ , la matrice

de R est donc

MatB (R ) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,

et ainsi
R(V ) = cos(θ)V + sin(θ)N ∧V ,

ce qui donne finalement

R(U ) = ⟨U,N ⟩N + cos(θ)V + sin(θ)N ∧V

= cos(θ)U + (1− cos(θ))⟨U,N ⟩N + sin(θ)N ∧U.

La preuve est complète. □

La formule de Rodrigues présente plusieurs intérêts : elle est intrinsèque,
peut se composer...Elle donne une formule générale pour la matrice d’une
rotation (exprimée dans la base canonique) d’angle θ et d’axe N = (a,b,c)
avec a2 + b2 + c2 = 1.

Matb.c.(R ) =
cos(θ) + (1− cos(θ))a2 ab(1− cos(θ))− c sin(θ) ac(1− cos(θ)) + b sin(θ)

ab(1− cos(θ)) + c sin(θ) cos(θ) + (1− cos(θ))b2 bc(1− cos(θ))− asin(θ)

ac(1− cos(θ))− b sin(θ) bc(1− cos(θ)) + asin(θ) cos(θ) + (1− cos(θ))c2

 .

D’un point de vue numérique, le calcul des produits de matrices de ro-
tation est couteux, on lui préfère pour les applications (animation, images
générées par ordinateur) l’utilisation des quaternions dont on ne parlera pas
trop ici, faute de temps...
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2.7 Compléments : le groupe SU2(C)

Le groupe SU2(C) est le groupe des matrices unitaires de déterminant 1
en dimension 2. On rappelle que C2 est muni du produit scalaire hermitien

⟨Z,W ⟩ = z1w1 + z2w2,

avec Z = (z1, z2) et W = (w1,w2). Comme l’image de la base canonique par
U ∈ SU2(C) est une base orthonormée de C2, les colonnes de U doivent être
orthogonales et de norme 1. On voit donc que toute matrice U ∈ SU2(C) est
de la forme

U =
(
α β
−β α

)
,

avec α,β ∈ C tels que |α|2 + |β|2 = 1. En écrivant α = x1 + iy1 et β = x2 + iy2
avec x1,x2, y1, y2 ∈R, on voit que

|α|2 + |β|2 = 1⇔ x21 + x
2
2 + y

2
1 + y

2
2 = 1,

ce qui montre que SU2(C) est en bijection avec la sphère unité S3 de R4

(pour la norme euclidienne standard). En particulier la sphère S3 peut être
munie d’une structure de groupe (celle se SU2(C)). Il n’est pas difficile de
montrer, en calculant le polynôme caractéristique, que toute matrice U ∈
SU2(C) est diagonalisable, avec des valeurs propres conjuguées de module
1. La diagonalisation peut se faire en outre en base othonormée (voir le
chapitre suivant sur les endomorphismes normaux). En résumé, toute matrice
U ∈ SU2(C) peut s’écrire sous la forme

U = VDθV
∗,

où V ∈ SU2(C) et

Dθ =
(
eiθ 0
0 e−iθ

)
,

avec θ ∈R.

On va voir que malgré les apparences, SU2(C) est en fait très voisin de
SO3(R). Considérons l’ensemble V suivant.

V = {M ∈M2(C) : Tr(M) = 0 et M∗ =M}.

Ici Tr(M) désigne la trace d’une matrice, c’est à dire la somme de ses élé-
ments diagonaux. On va voir facilement que V est un R-espace vectoriel de
dimension 3. En effet, si M1,M2 ∈ V et λ ∈R, alors il est clair que

Tr(M1 +λM2) = Tr(M1) +λTr(M2) = 0,
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ainsi que
(M1 +λM2)

∗ =M∗1 +λM
∗
2 =M1 +λM2.

Par définition de V , on voit que M ∈ V ssi il existe a,x,y ∈R tel que

M =
(

a x+ iy
x − iy a

)
.

Donc on a
M = yT1 + xT2 + aT3,

où T1,T2,T3 est une base de V donnée par

T1 =
(
0 −i
i 0

)
, T2 =

(
0 1
1 0

)
, T3 =

(
1 0
0 −1

)
.

On va définir un produit scalaire sur V qui en fait un espace euclidien de
dimension 3. Posons pour tout A,B ∈ V ,

ϕ(A,B) :=
1
2
Tr(AB).

Il s’agit bien d’une forme bilinéaire symétrique, car la trace est linéaire et on
a toujours Tr(AB) = Tr(BA). Pour voir qu’elle est définie on utilise le fait que

si M =
(
a b
c d

)
∈ V alors

2ϕ(M,M) = Tr(MM∗) = |a|2 + |b|2 + |c|2 + |d|2.

On laisse le lecteur vérifier que (T1,T2,T3) est en fait une base orthonormée
de V pour le produit scalaire ϕ. On va construire une application

Ad : SU2(C)→GL(V )

en se basant sur l’espace (V ,ϕ). Posons pour tout U ∈ SU2(C), pour tout
M ∈ V ,

AdU (M) :=UMU ∗.

Cette application est bien définie : si M ∈ V , on a

Tr(UMU ∗) = Tr(U ∗UM) = Tr(M) = 0,

ainsi que
(UMU ∗)∗ =UM∗U ∗ =UMU ∗.
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De plus, pour U ∈ SU2(C) fixée, l’application M 7→ AdU (M) est linéaire, et
préserve le produit scalaire car

ϕ(AdU (M),AdU (M)) =
1
2
Tr(UMU ∗UMU ∗) =

1
2
Tr(M2) = ϕ(M,M).

Ainsi la matrice de AdU dans la base (T1,T2,T3) est dans O3(R). Examinons
l’action de AdU sur cette base dans le cas simple où U =Dθ. Un calcul direct
montre que

AdU (T3) = T3, AdU (T1) =
(

0 −ie2iθ
ie−2iθ 0

)
= cos(2θ)T1 + sin(2θ)T2,

AdU (T2) =
(

0 e2iθ

e−2iθ 0

)
= cos(2θ)T2 − sin(2θ)T1.

Ainsi la matrice de AdDθ dans la base B = (T1,T2,T3) est

MatB (AdDθ ) =

 cos(2θ) −sin(2θ) 0
sin(2θ) cos(2θ) 0

0 0 1

 .
Donc AdU est une rotation d’angle 2θ, une isométrie directe (pour l’orien-
tation donnée par B ) ! Le cas général où U = VDθV ∗ n’est pas plus dur : il
suffit de remplacer la base B par la base conjuguée par V . En résumé, on a
construit une application

J :
{
SU2(C)→ SO3(R)
U 7→MatB (AdU )

.

Avec un peu plus de travail, on peut montrer que J est surjective. C’est de
plus un morphisme de groupes (le vérifier). Elle n’est pas injective, mais son
noyau est Ker(J) = {±I2}. En effet, si AdU = Id, c’est que θ = 0 modulo π, et
donc U = ±I2.

En termes savants (voir M1), on dira que SU2(C) est un revêtement
double de SO3(R)...L’application Ad ne sort pas du chapeau. C’est la re-
présentation adjointe de SU2(C), et V n’est autre que l’algèbre de Lie réelle
de SU2(C), voir cours de M1 sur les groupes et algèbres de Lie.
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Chapitre 3

Réduction des endomorphismes
auto-adjoints

3.1 Sur les déterminants

On rappelle dans cette section les propriétés de bases sur les déterminants
(qu’on a déjà librement utilisés dans le chapitre précédent). L’ensemble des
bijections σ : {1, . . . ,n} → {1, . . . ,n} forme un groupe pour la composition ◦
appelé groupe symétrique d’ordre n, et noté Sn. Le cardinal de Sn est donc
|Sn| = n! Une transposition τ = (i j) ∈ Sn est une bijection qui échange deux
éléments de Sn et laisse les autres invariants : τ(i) = j, τ(j) = i et pour tout
k , i, j, τ(k) = k.

Théorème 3.1.1 Toute permutation σ ∈ Sn différente de l’identité peut s’écrire
comme un produit de au plus n − 1 transpositions : les transpositions en-
gendrent Sn.

Preuve. Par récurrence sur n. Si n = 2, on a S2 = {Id, (1 2)}, le théorème
est bien vrai. Supposons avoir démontré le résultat au rang n. Considérons
σ ∈ Sn+1, différente de l’identité. Il existe donc i0 ∈ {1, . . . ,n+1} tel que σ (i0) =
j0 , i0. Soit τ = (i0 j0 la transposition qui échange i0 et j0 et considérons
σ ′ = τ◦σ . On a σ ′(i0) = i0, donc σ ′ induit une bijection σ ′ : {1, . . . ,n+1}\i0→
{1, . . . ,n+ 1} \ i0, on peut donc appliquer l’hypothèse de récurrence à σ ′ qui
dit que σ ′ = τ1 ◦ . . . τk, où τ1, . . . , τk sont des transpositions et k ≤ n−1. Ainsi
on a

σ = τ ◦ σ ′ = τ ◦ τ1 ◦ . . . τk ,
est le théorème est prouvé par récurrence. □

Attention, cette décomposition n’est pas unique, par exemple dans S3,
la permutation circulaire σ définie par σ (1) = 2, σ (2) = 3, σ (3) = 1 s’écrit
σ = (1 2)(2 3) mais aussi σ = (3 2)(1 3).
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Théorème 3.1.2 Il existe un unique morphisme de groupes ε : Sn→ {−1,+1}
tel que ε(τ) = −1 pour toute transposition τ. On l’appelle signature.

Preuve. Unicité. Si σ ∈ SN , alors par le théorème précédent, il existe une
décomposition de σ en produit de transpositions σ = τ1 ◦ . . .◦ τk et comme ε
est un morphisme, on a

ε(σ ) = ε(τ1) . . . ε(τk) = (−1)k ,

donc ε(σ ) est complètement déterminée par k.
Existence. Posons pour tout σ ∈ Sn,

ε(σ ) :=
∏

1≤i<j≤n

(
σ (j)− σ (i)
j − i

)
.

Si on note P l’ensemble des parties {i, j} à deux éléments de {1, . . . ,n}, l’ap-
plication Tσ ({i, j} = {σ (i),σ (j)} est une bijection de P→ P. Ceci montre par
changement d’indice que

|ε(σ )| =
∏
{i,j}∈P

|σ (j)− σ (i)|
|j − i|

=

∏
{i,j}∈P |σ (j)− σ (i)|∏
{i,j}∈P |j − i|

= 1,

donc ε(σ ) ∈ {−1,1}. Il faut ensuite vérifier que c’est un morphisme, ce qui
découle d’un changement d’indice analogue. On montre ensuite en distinguant
les cas que si σ est une transposition alors ε(σ ) = −1. □

Définition 3.1.3 Soit E un K-espace vectoriel. Une application ψ : Ep → K
est dite p-linéaire alternée ssi elle est linéaire par rapport à chaque variable
et si ψ est nulle sur toute p-famille de vecteurs dont au moins deux sont
égaux.

Théorème 3.1.4 Soit E un K-espace vectoriel et ψ : Ep → K une forme p-
linéaire alternée. Alors pour tout σ ∈ Sp, pour tout x1, . . . ,xp ∈ E, on a

ψ(xσ (1), . . . ,xσ (p)) = ε(σ )ψ(x1, . . . ,xp).

Preuve. On commence par faire l’observation suivante. Si i, j ∈ {1, . . . ,p} sont
deux indices distincts, on a par multilinéarité

ψ(. . . ,xi + xj , . . . ,xi + xj , . . .) = 0 = ψ(. . . ,xi , . . . ,xj , . . .) +ψ(. . . ,xj , . . . ,xi , . . .)

+ψ(. . . ,xi , . . . ,xi , . . .)︸                ︷︷                ︸
=0

+ψ(. . . ,xj , . . . ,xj , . . .)︸                ︷︷                ︸
=0

,
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ce qui montre que ψ(. . . ,xi , . . . ,xj , . . .) = −ψ(. . . ,xj , . . . ,xi , . . .). En d’autres termes,
si τ est une transposition,

ψ(xτ(1), . . . ,xτ(p)) = −ψ(x1, . . . ,xp).

Le cas général s’obtient en décomposant σ en produit de transpositions. □

Théorème 3.1.5 On suppose ici E =Kn. L’espace des formes n-linéaires al-
ternée f : En → n est de dimension 1. Si on impose f (e1, . . . , en) = 1 où
(e1, . . . , en) est la base canonique de E =Kn, on appelle f (x1, . . . ,xn) le déter-
minant des n-vecteurs x1, . . . ,xn que l’on notera det(x1, . . . ,xn).

Preuve. On écrit pour chaque vecteur xj , xj =
∑n
i=1xijei . On a donc

f (x1, . . . ,xn) =
∑

(i1,...,in)∈{1,...,n}n
xi11 . . .xinnf (ei1 , . . . , ein).

Comme la forme f est alternée, tout les termes qui ne correspondent pas à
une indexation bijective k 7→ ik s’annulent. On peut donc réecrire

f (x1, . . . ,xn) =
∑
σ∈Sn

xσ (1)1 . . .xσ (n)nf (eσ (1), . . . , eσ (n))

=
∑
σ∈Sn

ε(σ )xσ (1)1 . . .xσ (n)nf (e1, . . . , en) = f (e1, . . . , en)
∑
σ∈Sn

ε(σ )xσ (1)1 . . .xσ (n)n.

On voit donc que cet espace est de dimension 1 et cette n-forme f est unique
si on impose f (e1, . . . , en) = 1. Réciproquement, on vérifie (exercice) que si on
pose

f (x1, . . . ,xn) =
∑
σ∈Sn

ε(σ )xσ (1)1 . . .xσ (n)n,

elle a bien les propriétés demandées. □

Si M = (mij) ∈Mn(K), on définit son déterminant par

det(M) = det(M1, . . . ,Mn) =
∑
σ∈Sn

ε(σ )mσ (1)1 . . .mσ (n)n,

où M1, . . . ,Mn sont les n colonnes de la matrice M, vus comme vecteurs de
K
n. On le note aussi matriciellement

det(M) =

∣∣∣∣∣∣∣∣∣
m11 . . . m1n
...

...
mn1 . . . mnn

∣∣∣∣∣∣∣∣∣ .
37



Proposition 3.1.6 On a les propriétés suivantes.

1. On a det(In) = 1.

2. Pour tout A ∈Mn(K), λ ∈K, on a det(λA) = λndet(A).

3. Pour tout A,B ∈Mn(K), on a det(AB) = det(A)det(B).

4. Pour tout A ∈Mn(K), on a det(tA) = det(A).

5. Une matrice A est inversible ssi det(A) , 0. Dans ce cas on a det(A−1) =
(det(A))−1.

Preuve. Les points 1) et 2) sont faciles. Pour le point 3) on observe que
l’application

(X1, . . . ,Xn) 7→ det(AX1, . . . ,AXn)

est n-linéaire alternée. Comme c’est un espace de dimension 1, il existe λ(A) ∈
K tel que pour tout (X1, . . . ,Xn) ∈Kn, on a

det(AX1, . . . ,AXn) = λ(A)det(X1, . . . ,Xn).

En prenant X1 = e1,...,Xn = en on voit que λ(A) = det(A). Le résultat s’obtient
alors en particularisant avec X1 = B1,...,Xn = Bn où B1, . . . ,Bn sont les vecteurs
colonnes de B. Le point 4) est plus technique et se montre à partir de la
définition en faisant le bon changement d’indice dans la somme portant sur
toutes les permutations. Pour le point 5), si A n’est pas inversible alors son
rang est < n, donc ses colonnes sont liées. Un des vecteurs colonnes s’exprime
donc comme combinaison linéaire des autres ce qui par le fait que det est
multilinéaire alternée entraine que det(A) = 0. Par la contraposée, det(A) , 0
implique donc que A est inversible. Clairement si A est inversible, AA−1 = In
et donc par 3) on a det(A)det(A−1) = det(In) = 1. □

Exemples. En dimension n = 2, on a directement par la définition∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad − bc.
En dimension n = 3, on a plus péniblement en listant les 6 permutations de
S3 ∣∣∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣∣∣ = aei + dhc+ gbf − (gec+ dbi + ahf ),
ce qu’on peut retenir par le moyen mnémotechnique des diagonales montantes
et des diagonales descendantes (règle de Sarrus).
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En dimension quelconque, il existe une technique de développement par rap-
port à une ligne ou une colonne qu’on va expliquer ici. Un peu de terminologie
s’impose. Si M = (mij) est une matrice carrée d’ordre n, on appelle cofacteur
d’indice i, j, noté ∆ij , le déterminant de la matrice extraite de M en rayant
la colonne d’indice j et la ligne d’indice i.

Proposition 3.1.7 Pour tout j = 1, . . . ,n, on a

det(M) =
n∑
i=1

(−1)i+j∆ij .

Comme det(tM) = det(M), on a aussi pour tout i = 1, . . . ,n,

det(M) =
n∑
j=1

(−1)i+j∆ij .

Preuve. On commence par examiner le cas où M est de la forme :

M =


m11 m12 . . . m1n
0 m22 . . . m2n
...

...
...

0 mn2 . . . mnn

 .
Par définition on a

det(M) =
∑
σ∈Sn

ε(σ )mσ (1)1 . . .mσ (n)n,

mais mσ (1)1 = 0 pour toute permutation σ telle que σ (1) , 1. La somme se
réecrit donc

det(M) =m11

∑
σ∈Sn : σ (1)=1

mσ (2)2 . . .mσ (n)n

=m11det(M̃),

où on a posé

M̃ =


m22 . . . m2n
...

...
mn2 . . . mnn

 .
Fixons maintenant j ∈ {1, . . . ,n}. En écrivant la colonne Mj de M sous la
forme Mj =

∑n
i=1mijei , on a par linéarité par rapport à la j-eme colonne,

det(M) = det(M1, . . . ,Mj , . . . ,Mn) =
n∑
i=1

mij det(M1, . . . , ei , . . . ,Mn).
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En permutant i fois les lignes et j fois les colonnes de [M1, . . . , ei , . . . ,Mn] on
se ramène au cas précédent et on a

det(M1, . . . , ei , . . . ,Mn) = (−1)i+j∆ij .

La preuve est finie. □

Corollaire 3.1.8 Si une matrice est triangulaire supérieure ou inférieure, son
déterminant est le produit des coefficients diagonaux.

La preuve est immédiate par récurrence en développant par rapport à la
première colonne (cas triangulaire supérieure), ou la première ligne (cas tri-
angulaire inférieure).

Définition 3.1.9 Soit f un endomorphisme d’un K-espace vectoriel de di-
mension finie. Soit B une base de E. Le déterminant de f , noté det(f ), est
par définition

det(f ) := det(MatB (f )).

Cette définition ne dépend pas du choix de la base B . En effet, si B ′ est
une autre base, on a par changement de base

MatB ′ (f ) = P
−1
B ,B ′MatB (f )PB ,B ′ ,

où PB ,B ′ est la matrice de passage de B à B ′. Ainsi on a

det(MatB ′ (f )) = det(P −1B ,B ′MatB (f )PB ,B ′ )

= det(PB ,B ′ )
−1det(MatB (f ))det(PB ,B ′ ) = det(MatB (f )).

De même que pour les matrices, un endomorphisme f est un isomorphisme
ssi det(f ) , 0.

3.2 Rappels sur la diagonalisation des endomor-

phismes

Définition 3.2.1 Soit E unK-espace vectoriel de dimension finie. Soient F1, . . . ,Fk ⊂
E des sous-espaces vectoriels de E. On dit que la somme F1+. . .+Fk est directe,
et on la note F1 ⊕ . . .⊕Fk, ssi pour tout vecteurs (x1, . . . ,xk) ∈ F1 × . . .×Fk,

x1 + x2 + . . .+ xk = 0⇒ x1 = x2 = . . . = xk = 0.
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Proposition 3.2.2 La somme F1+ . . .+Fk est directe ssi pour tout x ∈ F1+ . . .+
Fk, il existe un unique k-uplet (x1, . . . ,xk) ∈ F1× . . .×Fk tel que x = x1+ . . .+xk.
De plus, on a

dim(F1 ⊕ . . .⊕Fk) = dim(F1) + . . .+dim(Fk).

Preuve. Si la somme est directe, supposons que l’on ait deux telles décompo-
sitions

x = x1 + . . .+ xk = x
′
1 + . . .+ x

′
k ,

on a donc
x1 − x′1 + . . .+ xk − x

′
k = 0,

avec pour tout i = 1, . . . , k, xi −x′i ∈ Fi . Par définition de la somme directe on
a donc xi = x′i pour tout i. Réciproquement si x1 + . . . + xk = 0 avec xi ∈ Fi
pour tout i, par unicité de l’écriture on doit avoir xi = 0 pour tout i.

Pour chaque sous espace Fi , avec dim(Fi) =mi , considéronsBi = (ei1, . . . , e
i
mi )

une base de Fi . On va montrer que

B = (e11, . . . , e
1
m1
, e21, . . . , e

2
m2
, . . . , ek1, . . . , e

k
mk )

est une base de F1 ⊕ . . .⊕ Fk. C’est une famille libre car si on a des scalaires
λij ∈K tels que

k∑
i=1

mi∑
j=1

λije
i
j = 0,

alors par définition d’une somme directe on a pour tout i

mi∑
j=1

λije
i
j = 0

et ainsi λij = 0 pour tout i, j car les vecteurs eij sont libres. C’est évidemment

une famille génératrice car tout élément x ∈ F1⊕ . . .⊕Fk s’écrit sous la forme
x = x1+. . .+xk avec xi ∈ Fi . CommeBi est une base de Fi , chacun des xi s’écrit
comme combinaison linéaire des vecteurs eij et c’est fini. On peut conclure, la

dimension de F1 ⊕ . . .⊕Fk est donc m1 + . . .+mk = dim(F1) + . . .+dim(Fk). □

Définition 3.2.3 Soit f un endomorphisme d’un K-espace vectoriel E. On dit
que λ ∈K est une valeur propre de f s’il existe un vecteur non nul x ∈ E tel
que f (x) = λx. Un tel vecteur x est appelé vecteur propre associé à λ. Le
sous-espace vectoriel

Eλ(f ) := Ker(f −λId),
est appelé sous-espace propre de f associé à λ.
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Remarques. Eλ(f ) est un sous-espace vectoriel puisque c’est un noyau d’ap-
plication linéaire. Si λ est une valeur propre de f , alors par définition,
Eλ(f ) , {0}. Encore par définition, le sous-espace Eλ(f ) est stable par f et
la restriction de f à ce sous-espace est égale à λId. L’existence d’une valeur
propre pour un endomorphisme donné n’est pas une question évidente et dé-
pend beaucoup du corps de base K. L’outil pour calculer les valeurs propres
est le polynôme caractéristique.

Proposition 3.2.4 Soit f un endomorphisme d’un K-espace vectoriel E de
dimension finie n. La fonction de λ définie par

χf (λ) := det(f −λId),

est un polynôme de degré n en λ. De plus λ0 ∈K est une valeur propre de f
ssi on a χf (λ0) = 0. Le polynôme χf (λ) est appelé polynôme caractéristique
de f . Ses zéros dans K sont exactement les valeurs propres de f .

Preuve. La définition du déterminant, qui n’utilise que des sommes et des
produits, montre facilement que χf (λ) est un polynôme. Le terme de plus
haut degré provient de σ = Id et vaut (−1)nλn. Par définition, on a λ valeur
propre de f ⇔ Ker(f −λId) , {0} ⇔ f −λId non inversible⇔ det(f −λId) =
χf (λ) = 0. C’est fini. □

Définition 3.2.5 Un endomorphisme f est dit diagonalisable ssi il existe une
base B de E constituée de vecteurs propres. Dans cette base B , on a alors

MatB (f ) =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,
où λ1, . . . ,λn sont les valeurs propres (pas forcément distinctes).

Remarque importante. Il existe des endomorphismes non diagonalisables, et
ceci même en dimension 2. Considérons l’endomorphisme f : C2→ C2 dont
la matrice dans la base canonique est

M =
(
0 1
0 0

)
.

Alors χf (λ) = λ2, donc la seule valeur propre est 0. Si f était diagonalisable,

sa matrice serait donc nulle dans une base de C2, ce qui entrainerait que f
est nulle, absurde.

On a le fait suivant qui est l’observation la plus importante de la théorie.
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Théorème 3.2.6 Notons SP(f ) ⊂K, l’ensemble des valeurs propres distinctes
de f , appelé ”spectre” de f . Si cet ensemble est non vide, alors la somme⊕

λ∈Sp(f )
Eλ(f )

est toujours directe.

Preuve. Notons λ1, . . . ,λk les valeurs propres distinctes de f . On va montrer
par récurrence sur k que si x1, . . . ,xk avec xj ∈ Eλj (f ) sont tels que x1+. . .+xk =
0 alors x1 = . . . = xk = 0. Si k = 1, il n’y a rien à faire. Supposons avoir montré
cette propriété au rang k, et écrivons

x1 + . . .+ xk + xk+1 = 0, (3.1)

avec pour tout j = 1, . . . , k +1, xj ∈ Eλj (f ). En appliquant f , on a aussi

λ1x1 + . . .+λkxk +λk+1xk+1 = f (x1 + . . .+ xk + xk+1) = f (0) = 0.

En multipliant (3.1) par λk+1 et en la soustrayant à la formule ci-dessus, on
obtient

(λ1 −λk+1)x1 + . . .+ (λk −λk+1)xk = 0.

Par hypothèse de récurrence on a donc pour tout j = 1, . . . , k, (λj−λk+1)xj = 0,
mais comme λj − λk+1 , 0 (les valeurs propres sont distinctes), on obtient
donc que que pour tout j = 1, . . . , k, xj = 0. En revenant à (3.1), on déduit
que xk+1 = 0 et la preuve est finie. □

Un corollaire facile est le suivant.

Théorème 3.2.7 Soit f un endomorphisme d’un K-espace vectoriel E, de
dimension n, admettant n valeurs propres distinctes dans K, alors f est
diagonalisable.

Preuve. Si f admet n valeurs propres distinctes, comme les sous-espaces sont
en somme directe, on a

n ≥ dim

 ⊕
λ∈Sp(f )

Eλ(f )

 = ∑
λ∈Sp(f )

dim(Eλ(f )) ≥ n,

donc ⊕
λ∈Sp(f )

Eλ(f ) = E.
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En prenant un vecteur propre xλ (non nul) dans chaque espace Eλ(f ), on
obtient donc une base {xλ : λ ∈ Sp(f )} de E, et c’est fini. □

Exemples. On considère l’endomorphisme f :R2→R2 dont la matrice dans
la base canonique est

A =
(
1 1
1 0

)
.

On a χf (λ) = λ2 − λ − 1, les valeurs propres sont λ = 1±
√
5

2 , elles sont dis-
tinctes, donc f est diagonalisable. Considèrons maintenant l’endomorphisme
g :R2→R2 dont la matrice dans la base canonique est

B =
(
0 −1
1 0

)
.

On constate alors que χg(λ) = λ2 + 1, qui n’a pas de racine sur R, donc g
n’est pas diagonalisable sur R. En revanche, si on considère g comme agissant
sur C2, alors les valeurs propres sont i et −i, qui sont distinctes, et g est
diagonalisable sur C.

Le cas complexe. Dans le cas oùK =C, on sait (par le théorème fondamental
de l’algèbre) que tout polynôme non nul se décompose comme produit de
facteurs irréductibles i.e. pour tout P ∈ C[X] de degré n, on peut écrire

P (z) = an
k∏
j=1

(z − zk)mj ,

où an , 0 est le coefficient dominant, m1 + . . . +mk = n et z1, . . . , zk sont les
racines distinctes. Si f est un endomorphisme d’un C-espace vectoriel de
dimension finie n, on écrira donc

χf (z) = (−1)n
∏

λ∈Sp(f )
(z −λ)mλ .

L’entiermλ est appelémultiplicité algébrique de λ. On posera dλ = dim(Eλ(f )),
on l’appelle multiplicité géométrique de λ.

Théorème 3.2.8 Soit E un K-espace vectoriel et f un endomorphisme de E.
Il est diagonalisable ssi on a pour tout λ ∈ Sp(f ), dλ =mλ.
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Preuve. Si f est diagonalisable, alors dans une baseB bien choisie sa matrice
est

MatB (f ) =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,
où les λ = λi ∈ Sp(f ) sont répetés dλ fois. On calcule alors χf (z) dans cette
base et on trouve

χf (z) = (−1)n
∏

λ∈Sp(f )
(z −λ)dλ ,

donc par unicité de cette écriture irréductible, dλ =mλ pour tout λ ∈ Sp(f ).
Réciproquement, si on a pour tout λ ∈ Sp(f ), dλ =mλ, alors comme∑

λ∈Sp(f )
dλ =

∑
λ∈Sp(f )

mλ = n,

on a

dim

 ⊕
λ∈Sp(f )

Eλ(f )

 = ∑
λ∈Sp(f )

dλ = n,

et donc on obtient ⊕
λ∈Sp(f )

Eλ(f ) = E,

f est donc diagonalisable. □

Exemple. On considère l’endomorpshime f : R3→ R3 dont la matrice dans
la base canonique est

A =

 1 4 −2
0 6 −3
−1 4 0

 .
En observant que la somme des coefficients sur chaque ligne fait 3, on peut
calculer le polynôme caractéristique sous forme factorisée et on trouve

χf (λ) = −(λ− 3)(λ− 2)2.

Les valeurs propres sont donc 3, valeur propre simple, et 2, de multipli-
cité algébrique 2. L’endomorphisme f est donc diagonalisable (sur C) ssi
dim(E2(f )) = 2. En résolvant le système linéaire associé à E2(f ), on trouve
que

E2(f ) = Vect{(4,3,4)},
et donc d2 = 1 ,m2 = 2, f n’est pas diagonalisable sur C.
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3.3 Diagonalisation des endomorphismes auto-adjoints

Dans un espace euclidien ou hermitien (E,ϕ), la structure additionnelle
donnée par le produit scalaire permet d’en dire plus sur les questions de
diagonalisation. On rappelle qu’un endomorphisme f est auto-adjoint ssi f =
f ∗, en d’autres termes ssi on a pour tout x,y ∈ E,

ϕ(f (x), y) = ϕ(x,f (y)).

On a déjà rencontré des applications auto-adjointes concrètes : si F est
un sous-espace vectoriel de E, alors la projection orthogonale PF est auto-
adjointe. En effet, si (e1, . . . , ep) est une base orthonormée de F, on a pour
tout x ∈ E,

PF(x) =
p∑
i=1

ϕ(x,ei)ei ,

et donc pour tout x,y ∈ E,

ϕ(PF(x), y)) =
∑
i

ϕ(x,ei)ϕ(ei , y) = ϕ

x,∑
i

ϕ(y,ei)ei

 = ϕ(x,PF(y)).
On va vu de plus que

E = IM(PF)⊕Ker(PF),
comme PF restreint à IM(PF) est l’identité, en fait Ker(PF −I) = IM(PF). Ainsi
PF est diagonalisable, et ses valeurs propres sont 1 et 0. La somme directe
ci-dessus étant orthogonale, PF est donc diagonalisable en base orthonormée.
On va voir qu’en fait ce phénomène est général.

Proposition 3.3.1 Soit (E,ϕ) un espace hermitien ou euclidien et f : E→ E
une application linéaire auto-adjointe.

1. Les valeurs propres sur C de f sont toutes réelles.

2. Les sous espaces-propres associés à des valeurs propres distinctes sont
orthogonaux.

Preuve. 1). On fait d’abord la preuve dans le cas hermitien, qui est le plus
facile. Soit λ ∈ C une valeur propre de f et v , 0 un vecteur propre associé.
On a donc f (v) = λv et on peut écrire

ϕ(f (v),v) = λϕ(v,v),

mais comme f est auto-adjoint, on a aussi

ϕ(v,f (v)) = λϕ(v,v).
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Comme ϕ est semi-linéaire à droite, on a donc

λϕ(v,v) = λϕ(v,v),

et comme ϕ(v,v) = ∥v∥2 , 0, on obtient λ = λ donc λ ∈ R. Dans le cas où
(E,ϕ) est euclidien, on se ramène au cas précédent en complexifiant. On se
donne une base orthonormée (e1, . . . , en) de E et on considére A la matrice de
f dans cette base. On la fait agir sur Cn muni du produit scalaire hermitien
canonique, A est autoadjointe et son spectre sur C coincide avec celui de f ,
il est donc réel.

2). Soient λ , µ ∈ Sp(f ) (forcément réelles) et u ∈ Ker(f − λId), v ∈
Ker(f −µId) des vecteurs propres. On a

λϕ(u,v) = ϕ(f (u), v) = ϕ(u,f (v)) = µϕ(u,v),

d’où (λ−µ)ϕ(u,v) = 0, et comme µ , λ on a donc ϕ(u,v) = 0. □

Théorème 3.3.2 Soit (E,ϕ) un espace hermitien ou euclidien et f : E → E
une application linéaire auto-adjointe, alors il existe une base orthonormée
de E dans laquelle la matrice de f est diagonale, à coefficient réels.

Preuve. On fait la preuve par récurrence sur la dimension de l’espace, notée
n. On va avoir besoin du lemme suivant.

Lemme 3.3.3 Soit f : E→ E une application linéaire auto-adjointe et F ⊂ E
un sous-espace vectoriel stable par f i.e. f (F) ⊂ F. Alors F⊥ est aussi stable
par f .

Preuve du lemme. On se fixe y ∈ F⊥, c’est à dire que pour tout x ∈ F, ϕ(x,y) =
0. Comme f (F) ⊂ F et utilisant le fait que f = f ∗, on a donc pour tout x ∈ F,

ϕ(f (x), y) = 0 = ϕ(x,f (y)),

donc f (y) ∈ F⊥. □

Retour à la preuve du théorème. Si n=1, il n’y a rien à faire, toute
application linéaire est diagonale. Supposons avoir démontré le thm pour
dim(E) ≤ n, et placons nous dans le cas dim(E) = n + 1. Par le thm fonda-
mental de l’algèbre, χf (λ) a au moins une racine complexe λ0, qui est donc
réelle par la Proposition 3.3.1. Le sous espace propre Eλ0(f ) = Ker(f −λ0Id)
est stable par f , de dimension ≥ 1, et donc (Eλ0(f ))

⊥ est de dimension ≤ n,
stable par f . On applique alors l’hypothèse de récurrence à la restriction de f
à (Eλ0(f ))

⊥ pour trouver une base orthonorméeB de (Eλ0(f ))
⊥ qui diagona-

lise f . On choisit ensuite une base orthonormée de Eλ0(f ) que l’on concatène
à B pour obtenir cqfd. □
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Corollaire 3.3.4 Soit S ∈Mn(R) une matrice symétrique réelle, alors il existe
une matrice diagonale à coefficients réels D et P ∈On(R) tel que

S = PD tP .

Preuve. On considère Rn muni du produit scalaire standard. On considère
l’application f : Rn → Rn dont la matrice dans la base canonique est S,
comme f est auto-adjointe, le théorème précédent s’applique et nous fournit
l’existence d’une base orthonormée qui diagonalise f . La matrice de passage
P de la base canonique à cette nouvelle base est orthogonale. □

Suivant le même principe, on a aussi le fait suivant dans le cas hermitien.

Corollaire 3.3.5 Soit S ∈Mn(C) une matrice hermitienne i.e.
t
S = S, alors

il existe une matrice diagonale à coefficients réels D et P ∈Un(C) tel que

S = PD tP .

Preuve. Même chose dans le cas hermitien. □

Un exemple. Soit S la matrice symétrique donnée par

S =

 1 2 0
2 3 2
0 2 1

 .
On calcule son polynôme caractéristique χS(λ) qui est

χS(λ) =

∣∣∣∣∣∣∣∣
1−λ 2 0
2 3−λ 2
0 2 1−λ

∣∣∣∣∣∣∣∣ ,
et en développant par rapport à la première colonne on a

χS(λ) = −(λ− 1)(λ− 5)(λ+1).

Les valeurs propres sont donc 1,5,−1 et on sait que S est diagonalisable.
En calculant les sous espaces propres associés, dont on sait qu’ils sont or-
thogonaux, on trouve une base orthonormée de R3 constituée de vecteurs
propres :

X1 =


1√
2
0
− 1√

2

 , X5 =


1√
6
2√
6
1√
6

 , X−1 =


1√
3
− 1√

3
1√
3

 .
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Ainsi S = PD tP avec

P =


1√
2

1√
6

1√
3

0 2√
6
− 1√

3
− 1√

2
1√
6

1√
3

 , D =

 1 0 0
0 5 0
0 0 −1

 .
La réduction des matrices symétriques réelles a de nombreuses applica-

tions géométriques et analytiques : redressement des coniques et quadriques,
calculs de courbures, calcul de directions de rotations propres en mécanique
du solide...

3.4 Une application : la décomposition polaire dans

GLn(R)

On va utiliser la théorie précédente pour démontrer un célèbre résultat,
appelé décomposition polaire. On va parler au préalable d’endomorphismes
auto-adjoint positifs et défini positifs.

Définition 3.4.1 Soit (E,ϕ) un espace euclidien ou hermitien. Un endomor-
phisme auto-adjoint f : E→ E est dit :

— Positif ssi pour tout x ∈ E, ϕ(f (x),x) ≥ 0.
— Défini positif ssi pour tout x ∈ E, x , 0⇒ ϕ(f (x),x) > 0.

Remarque. Il revient au même de dire que f est défini positif ou que la forme
bilinéaire (x,y) 7→ ϕ(f (x), y) est un produit scalaire. Une matrice symétrique
réelle est dite positive (resp. définie positive) ssi l’application linéaire associée
agissant sur Rn munit du produit scalaire standard est positive (resp. définie
positive).

Proposition 3.4.2 Soit (E,ϕ) un espace euclidien ou hermitien. Un endomor-
phisme auto-adjoint f : E→ E est positif ssi toutes ses valeurs propres sont
positives. Il est défini positif ssi toutes ses valeurs propres sont strictement
positives.

Preuve. Supposons f positif. Soit λ ∈ Sp(f ) une valeur propre et v un vecteur
propre associé (non nul). On a donc

0 ≤ ϕ(f (v), v) = λ∥v∥2,

ainsi λ ≥ 0. On voit facilement de plus que si f est défini positif, alors
ϕ(f (v),v) > 0 et donc λ > 0. Réciproquement, on prend (e1, . . . , en) une base
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orthonormée de E qui diagonalise f . Dans cette base, on a pour tout x ∈ E,
avec x =

∑
i xiei ,

ϕ(f (x),x) =
∑
i

∑
j

λixixjϕ(ei , ej) =
n∑
i=1

λi |xi |2,

où λ1, . . . ,λn sont les valeurs propres de f . Il est maintenant clair que si λi ≥ 0
pour tout i, alors ϕ(f (x),x) ≥ 0, et que si λi > 0 pour tout i, alors si x , 0,
ϕ(f (x),x) > 0. □

Théorème 3.4.3 Soit M ∈ Mn(R), supposée inversible. Alors il existe une
unique matrice symétrique définie positive S et une matrice orthogonale O
tel que

M = SO.

Preuve. On va faire agir les matrices sur Rn, équipé du produit scalaire usuel
noté ⟨. , . ⟩. On commence par montrer l’unicité si existence. Si M = SO avec
S symétrique et O orthogonale, alors on a

MM∗ = SOO∗S∗ = S2.

On va voir que si on impose à S d’être définie positive, il n’y a qu’un seul
choix possible pour résoudre S2 =MM∗. Par suite, O = S−1M et donc O est
aussi unique. Existence. Considérons la matrice R =MM∗. C’est une matrice
symétrique définie positive : en effet, pour tout x ∈Rn, on a

⟨MM∗x,x⟩ = ⟨M∗x,M∗x⟩ = ∥M∗x∥2 ≥ 0,

et de plus
⟨MM∗x,x⟩ = 0⇒M∗x = 0,

mais on a vu que Ker(M∗) = IM(M)⊥ = {0}, car M étant inversible son image
est Rn (théorème du rang). Ainsi x = 0. D’après la Proposition 3.4.2, les
valeurs propres deMM∗ sont donc strictement positives. On sait queMM∗ est
diagonalisable en base orthonormée, donc il existe P une matrice orthogonale
telle que

MM∗ = PDP ∗,

avec D diagonale à coefficients strictement positifs, notée

D =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 .
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Posons donc
S = P

√
DP ∗,

avec

√
D :=


√
λ1 0 . . . 0

0
√
λ2

. . .
...

...
. . . . . . 0

0 . . . 0
√
λn

 .
On a bien sur S2 = PDP ∗ =MM∗. On observe au passage que les solutions
de T 2 =MM∗ sont toutes du type

T = P


±
√
λ1 0 . . . 0

0 ±
√
λ2

. . .
...

...
. . . . . . 0

0 . . . 0 ±
√
λn

P
∗,

et que la seule solution définie positive est S. Calculons maintenant pour tout
x ∈Rn,

∥S−1Mx∥2 = ⟨S−1Mx,S−1Mx⟩ = ⟨Mx,S−2Mx⟩,

mais S−2 = (MM∗)−1 = (M∗)−1M−1, donc

∥S−1Mx∥2 = ⟨Mx, (M∗)−1x⟩ = ∥x∥2.

Ainsi S−1M conserve la norme euclidienne, et c’est donc une matrice ortho-
gonale O, donc M = SO. □

On peut remarquer en plus que det(O) = det(S−1)det(M) et comme on a

det(S−1) > 0,

il vient queO ∈ SOn(R) ssi det(M) > 0. Le théorème de décomposition polaire
généralise l’écriture polaire des nombres complexes. En effet, notons

E = Vect
R
{I2, J} ⊂M2(R),

où

J =
(
0 −1
1 0

)
, J2 = −I2.

Les éléments de E sont les matrices de la forme

M = a+ bJ =
(
a −b
b a

)
,
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qui sont donc inversibles quand det(M) = a2+b2 , 0. Il est facile de voir que
E est une algèbre commutative, de dimension 2 sur R, isomorphe à C. Un
calcul direct montre queMM∗ = (a2+b2)I2 donc la décomposition polaire dit
que

M =
√
a2 + b2R(θ),

où bien sur

R(θ) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
= cos(θ)I2 + sin(θ)J =

∞∑
k=0

(θJ)k

k!
= exp(θJ) .

est la matrice de rotation d’angle θ. On a bien retrouvé la décomposition
usuelle z = |z|eiθ dans C.
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Chapitre 4

Courbes planes

4.1 Courbes paramétrées, généralités

Dans ce chapitre, Rn est équipé du produit scalaire euclidien usuel. La
norme associée est notée ∥ . ∥. Dans tout ce qui suit I désigne un intervalle
de R. Une application γ : I → Rn est dite de classe Ck ssi on a pour tout
t ∈ I , γ(t) = (γ1(t), . . . ,γn(t)) où pour tout i = 1, . . . ,n, γi : I → R est une
fonction de classe Ck sur I . On rappelle qu’une fonction f de classe Ck sur
un intervalle de R est une fonction k fois dérivable dont la dérivée k-ème f (k)

est continue sur I .

Définition 4.1.1 On appelle courbe paramétrée (ou arc paramétré) Ck dans
R
n un couple (I,γ) où I est un intervalle de R et γ : I → Rn est une appli-

cation de classe Ck. La courbe est dite régulière ssi pour tout t ∈ I, γ ′(t) , 0.
Un point t0 ∈ I tel que γ ′(t0) = 0 est dit singulier.

Remarques. L’application γ n’est pas forcément injective : l’image γ(I) peut
présenter des points de croisement (appelés points multiples). Si k = 0 i.e.
l’application γ est juste supposée continue, l’image γ(I) peut être très com-
pliquée : il existe des courbes C0 définies sur I = [0,1] dont l’image est le
carré [0,1] × [0,1], appelées courbes de Peano. Dans ce cours on supposera
toujours que k ≥ 1, voire k ≥ 2.

Deux courbes (I, f et (J,g) peuvent avoir même image si on passe de
l’une à l’autre par un ”changement de paramétrisation”. C’est ce qui motive
la définition suivante.

Définition 4.1.2 Deux courbes Ck, (I, f et (J,g) sont dites Ck-équivalentes
ssi il existe un Ck-difféomorphisme θ : I → J tel que f = g ◦θ.

Un Ck-difféomorphisme est une bijection θ : I → J dont l’application réci-
proque θ−1 : J→ I est aussi Ck. Donnons un exemple simple dans le plan. Soit
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f (t) = (cos(2t),sin(2t)) avec I = [0,π] et g(t) = (cos(t),sin(t)) avec J = [0,2π].
Alors les courbes (I, f ) et (J,g) sont C∞-équivalentes avec θ(x) = 2x. Les
images f (I) et g(J) sont les mêmes : c’est le cercle unité. On a simplement
changé le paramétrage. Si θ est croissant, on dit que (I, f ) et (J,g) ont la
même orientation.

Si un arc est C1, on peut définir la droite tangente en un point régulier
de la courbe.

Définition 4.1.3 Soit (I, f ) un arc C1 et p = f (t0) un point régulier de la
courbe image. La droite tangente en p à (I, f ) est par définition la droite
affine Tp := p+Rf ′(t0). Elle est indépendante du paramétrage.

Si (I, f ) et (J,g) sont C1-équivalents avec f = g ◦ θ, posant r0 = θ(t0), on a
par dérivation des fonctions composées f ′(t0) = g ′(θ(t0))θ′(t0) = g ′(r0)θ′(t0).
Comme θ est un C1-difféo, on doit avoir θ′(t0) , 0 et donc

Rf ′(t0) =Rg
′(r0)θ

′(t0) =Rg
′(r0),

les droites sont les mêmes.

Droite tangente Tp.

Définition 4.1.4 Soit I = [a,b] et (I, f ) un arc C1. L’abcisse curviligne, ou la
longueur d’arc s(t) est définie pour tout t ∈ I par

s(t) =
∫ t

a
∥f ′(x)∥dx.

C’est la longueur de la courbe paramétrée sur l’intervalle [a, t]. Une courbe
est dite paramétrée par la longueur d’arc ssi pour tout x ∈ I, on a ∥f ′(x)∥ = 1.

Exemple. Soit I = [0,+∞[ et f (t) = (e−t cos(t), e−t sin(t)). L’arc (I, f ) est
appelé spirale logarithmique. Pour tout t ≥ 0 on a

f ′(t) = e−t(−sin(t)− cos(t),cos(t)− sin(t)),
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ainsi

∥f ′(t)∥ = e−t
√
(sin(t) + cos(t))2 + (cos(t)− sin(t))2 =

√
2e−t.

On a donc

s(t) =
√
2
∫ t

0
e−xdx =

√
2
∫ t

0
e−xdx =

√
2(1− e−t).

Spirale Logarithmique.

Proposition 4.1.5 Tout arc (I, f ) de classe C1 régulier est C1-équivalent à
un arc paramétré par sa longueur d’arc. De plus si deux arcs paramétrés
par la longueur d’arc sont équivalents, les paramétrages sont les mêmes à
translation et changement d’orientation près.

Preuve. Soit a ∈ I et posons pour tout t ∈ I ,

s(t) :=
∫ t

a
∥f ′(x)∥dx.

Alors s : I →R est une fonction de classe C1, croissante, et comme (I, f ) est
régulier, on a

s′(t) = ∥f ′(t)∥ > 0.

Donc s : I → s(I) est un C1-difféomorphisme et notons θ := s−1 : J = s(I)→ I
son application réciproque. Posons g = f ◦ θ, définit sur J . L’arc (J,g) est
C1-équivalent à (I, f ) et on a de plus pour tout x ∈ J ,

∥g ′(x)∥ = ∥f ′(θ(x))∥.|θ′(x)| =
∥f ′(θ(x))∥
|s′(θ(x))|

= 1.
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Supposons maintenant que (J,g) et (U,h) soient deux arcs C1-équivalents tous
deux paramétrés par la longueur d’arc, par exemple g = h◦θ avec θ : J→U
un C1-difféo. On a alors pour tout x ∈ J ,

∥g ′(x)∥ = 1 = ∥h′(θ(x))∥.|θ′(x)| = |θ′(x)|,

donc θ′(x) = ±1, pour tout x ∈ J . Comme θ est continu, le théorème des va-
leurs intermédiaires implique que θ′ est constante sur J . Ainsi par intégration
on a pour tout x ∈ J , θ(x) = x+ c ou θ(x) = −x+ c, où c est une constante. □

Pour comprendre l’aspect local des courbes paramétrées, l’outil essentiel est
la formule de Taylor-Young vectorielle, que l’on rappelle ici. On rappelle que
si f : I → Rn et g : I → R sont deux fonctions, on dit que au voisinage d’un
point t0 ∈ I on a

f (t) = o(g(t)),

ssi pour tout ϵ > 0, il existe η > 0 tel que pour tout t ∈ [t0 − η, t0 + η],

∥f (t)∥ ≤ ϵ|g(t)|.

On dira aussi qu’au voisinage de t0 ∈ I on a

f (t) =O(g(t)),

ssi il existe M > 0 et η > 0 tel que pour tout t ∈ [t0 − η, t0 + η],

∥f (t)∥ ≤M |g(t)|.

Proposition 4.1.6 (Taylor-Young) Soit f : I →Rn une fonction de classe Ck.
Soit t0 ∈ I, on a alors pour tout h suffisamment petit,

f (t0 + h) = f (t0) + hf
′(t0) +

h2

2
f ′′(t0) + . . .+

hk

k!
f (k)(t0) + o(h

k).

Preuve. C’est simplement la formule de Taylor-Young scalaire appliquée co-
ordonnées par coordonnées, voir cours de L1. □

4.2 Etude locale dans le plan

Dans la suite de ce chapitre, on supposera que l’on est dans R2.

Définition 4.2.1 Soit (I, f ) un arc C2 dans le plan. Un point t0 est dit biré-
gulier ssi f ′(t0) et f ′′(t0) forment une base de R2.
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Définition 4.2.2 Soit (I, f ) un arc C2 dans le plan. Soit t0 ∈ I un point bi-
régulier. Le demi-plan de concavité fermé C+

p en p = f (t0) ∈ f (I) est par
définition

C+
p := p+Rf ′(t0) +R

+f ′′(t0).

Le demi-plan de concavité ouvert est définit par

C+,0
p := p+Rf ′(t0) +R

+
∗ f
′′(t0).

Il n’est pas difficile de voir que le demi-plan de concavité ne dépend pas du
choix du paramétrage (exercice). L’intérêt de cette définition réside dans le
résultat suivant.

Théorème 4.2.3 Soit (I, f ) un arc C2 dans le plan. Soit t0 ∈ I un point birégu-
lier, et posons p = f (t0). Alors il existe η > 0 tel que pour tout t ∈ [t0−η, t0+η]
f (t) ∈ C+

p . De plus, si t ∈ [t0 − η, t0 + η] \ {t0}, alors f (t) ∈ C
+,0
p .

Preuve. On applique la formule de Taylor-Young à l’ordre 2 en t0. On a pour
tout h voisin de 0,

f (t0 + h)− f (t0) = hf ′(t0) +
h2

2
f ′′(t0) + o(h

2).

En décomposant le reste o(h2) dans la base (f ′(t0), f ′′(t0)), on a alors

f (t0 + h)− f (t0) = h(1 + o(h))f ′(t0) +
h2

2
(1+ o(1))f ′′(t0),

et il est alors clair que pour h suffisamment petit, la composante de f ′′(t0)
est positive, i.e. f (t0 +h) ∈ C+

p . Si de plus h , 0, pour tout h assez petit on a

f (t0 + h) ∈ C
+,0
p . □

Demi-plan de concavité C+
p et position locale de la courbe.
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Courbes polaires. Un arc paramétré (I, f ) est dit polaire ssi il est de la forme

f (t) = (ρ(t)cos(t),ρ(t)sin(t)),

pour tout t ∈ I . Alternativement, on peut aussi utiliser les nombres complexes
et écrire

f (t) = ρ(t)eit.

On peut observer que pour les courbes polaires, un point est singulier ssi
ρ(t) = 0 et ρ′(t) = 0. En particulier il ne peut y avoir de point singulier qu’à
l’origine. On peut appliquer le théorème précédent aux courbes polaires pour
obtenir le critère de concavité suivant.

Proposition 4.2.4 Soit une courbe polaire (I,ρ(t)eit), de classe C2. Un point
où ρ(t0) , 0 est birégulier ssi ρ2+2ρ′2−ρρ′′ , 0. La courbe tourne sa concavité
vers l’origine ssi

ρ2 +2ρ′2 − ρρ′′ > 0.

Preuve. On cherche à déterminer λ1,λ2 ∈R tels que

0 = f (t0) +λ1f
′(t0) +λ2f

′′(t0).

En dérivant deux fois on a

f ′(t) = ρ′(t)eit + iρ(t)eit, f ′′(t) = ρ′′(t)eit +2ρ′(t)ieit − ρ(t)eit.

Dire que t0 est birégulier c’est dire que det(f ′(t0), f ′′(t0)) , 0, ce qui dans la
base eit0 , ieit0 s’écrit ∣∣∣∣∣ ρ′ ρ′′ − ρ

ρ ρ′

∣∣∣∣∣ = 2ρ′2 + ρ2 − ρρ′′ , 0.

En résolvant le système par substitution, on trouve dans le cas birégulier

λ2 =
ρ2

2ρ′2 + ρ2 − ρρ′′
,

et donc 0 ∈ C+,0
p ssi λ2 > 0 i.e. 2ρ′2 + ρ2 − ρρ′′ > 0. Cqfd. □

Un premier exemple d’étude : le limaçon de Pascal. On se propose d’étudier
la courbe polaire

f (t) = ρ(t)eit = (1+2cos(t))eit,

avec I = [0,2π]. On observe d’abord que f (2π − t) = f (t), donc la courbe
est symétrique par rapport à l’axe des abcisses et on a f (0) = f (2π) = 3,
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f (2π/3) = f (4π/3) = 0, f (π) = 1. La courbe passe par l’origine uniquement
pour t = 2π/3,4π/3, et en ces points ρ′ , 0. Donc tout point de cette courbe
est régulier. Pour tout t , 2π/3,4π/3, on a par calcul direct que

2ρ′2 + ρ2 − ρρ′ = 9+6cos(t) > 0,

donc tout point est birégulier et la concavité de la courbe est toujours tournée
vers l’origine. Comme ρ′(t) = −2sin(t), ρ décroit sur [0,π] et croit sur [π,2π].
Attention, le changement de signe de ρ en t = 2π/3 induit un déphasage
de +π pour l’argument de f (t) sur l’intervalle [2π/3,4π/3]. On peut donc
esquisser un tracé de la courbe, qui est dessinée ci-dessous.

Le limaçon de Pascal.

Que se passe t-il en présence de point non-birégulier, voire non-régulier ? En
l’absence d’hypothèses supplémentaires, même dans le cas C∞, tout peut
arriver. Donnons un exemple. Considérons la fonction ϕ :R→R définie par

ϕ(x) =

e−
1

1−x2 si |x| < 1
0 sinon.

Cette fonction est positive, strictement positive sur ]−1,1[. On peut montrer,
par récurrence, que ϕ est C∞ sur R. On définit alors la fonction F0 :R→R
par

F0(x) =

∫ x
−∞ϕ(t)dt∫ 1
−1ϕ(t)dt

.
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La fonction F0 est aussi C∞, croissante, vaut F0(x) = 0 pour x ≤ −1 et vaut
F0(x) = 1 pour x ≥ 1. A partir de F0, on construit alors l’arc paramétré (I, f )
suivant. On pose I = [0,4] et

f (t) = (F0(t − 1),F0(t − 3)).

On observe que pour tout t ∈ [0,2], f (t) = (F0(t−1),0) avec t 7→ F0(t−1) qui
croit de 0 à 1. Puis pour tout t ∈ [2,4], f (t) = (1,F0(t−3)) avec t 7→ F0(t−3)
qui croit de 0 à 1. La courbe décrite fait un angle droit !

L’angle droit C∞.

On peut observer qu’en t = 2, on a un point singulier et f (k)(2) = 0 pour tout
k ≥ 1. Pour exclure ce type de pathologies, on va définir une notion de point
singulier non-dégénéré.

Définition 4.2.5 Soit (I, f ) un arc paramétré de classe Cn, avec n ≥ 3. Soit
t0 ∈ I un point singulier. On dit qu’il est non dégénéré s’il existe 2 ≤ k,ℓ ≤ n
tels que (f (k)(t0), f (ℓ)(t0) soit libre.

Théorème 4.2.6 Soit (I, f ) un arc paramétré de classe Cn, avec n ≥ 3, et soit
t0 ∈ I un point singulier non dégénéré. Posons alors

p =min{2 ≤ k ≤ n : f (k)(t0) , 0}, q =min{p ≤ ℓ ≤ n : (f (p)(t0), f
(ℓ)(t0)) libre}.

On a alors 4 cas possibles, en fonction des parités de p et q.

Parité de p Parité de q Type de singularité
Pair Pair Rebroussement de deuxième espèce
Pair Impair Rebroussement de première espèce
Impair Pair Point de concavité ordinaire
Impair Impair Point d’inflexion

Chaque type de singularité est décrite dans les dessins suivants.
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Rebroussement de 2-ème espèce.

Rebroussement de 1-ère espèce.

Concavité ordinaire.
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Point d’inflexion.

Preuve. On applique la formule de Taylor-Young. On a pour tout h voisin de
0,

f (t0 + h)− f (t0) =
hp

p!
f (p)(t0) +

hq

q!
f (q)(t0) + o(h

q),

Comme les deux vecteurs f (p)(t0), f (q)(t0) forment une base, on peut décom-
poser le reste o(hq) dans cette base pour écrire

f (t0 + h)− f (t0) =
hp(1 + o(hq−p))

p!
f (p)(t0) +

hq(1 + o(1))
q!

f (q)(t0),

et les parités de p et q déterminent le signe des coordonnées de f (t0+h)−f (t0)
exprimé dans la base (f (p)(t0), f (q)(t0)) pour h voisin de 0. Il y a donc 4 cas
possibles qui sont résumés dans les dessins ci-dessus. Dans chaque cas, la
direction de la tangente à la courbe est f (p)(t0). □

Un exemple : l’aströıde. En pratique, pour déterminer la nature d’un point
singulier, on utilise des développements limités, plus facile à manipuler que
la formule directe de Taylor-Young. Regardons l’exemple de (I, f ) avec I =
[0,2π] et

f (t) = (cos3(t),sin3(t)).

On observe qu’en t = 0, f ′(t) = 0, on a donc un point singulier. En faisant
un développement limité en t = 0 de cos3(t) et sin3(t) on trouve

cos3(t) = 1− 3
2
t2 +O(t4), sin3(t) = t3 − t

6

2
+O(t7),

ce qui, mis sous forme vectorielle, donne

f (t) = (1,0) + t2
(−3
2
,0

)
+ t3(0,1) + o(t3).

On donc p = 2 et q = 3 et il s’agit d’un point de rebroussement de première
espèce.
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L’aströıde.

4.3 Exemples de courbes implicites, coniques

Définition 4.3.1 Soit F :R2→R une fonction de deux variables. On dit que
F définit une courbe implicite C comme l’ensemble des solutions dans R2 de
F(x,y) = 0. En d’autres termes,

CF = {(x,y) ∈R2 : F(x,y) = 0}.

On peut avoir CF = ∅, par exemple si F(x,y) = x2 + y2 + 1. L’ensemble CF
peut être bien différent d’une courbe : par exemple si

F(x,y) = F0(x+ y)− 1,

où F0 est la fonction C∞ ”step” définie précedemment, alors on a

CF = {(x,y) ∈R2 : x+ y ≥ 1},

c’est un demi-plan ! On va donc se restreindre à une classe raisonnable de
fonction F, dites polynomiales et les courbes associées CF sont dites algé-
briques. On dit que F est un polynôme réel à deux variables ssi

F(x,y) =
N∑
i=0

N∑
j=0

ai,jx
iyj ,
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avec N ∈N et ai,j ∈R. Le degré de F est par définition

deg(F) = max{i + j : ai,j , 0}.

Par exemple
F(x,y) = x3 + y3 − 3xy

est de degré 3 et la courbe CF associée est appelé ”folium de Descartes”.

Le folium de Descartes.

Il n’existe pas en général de méthode pour déterminer un paramétrage global
ou une résolution des courbes implicites, même dans le cas algébrique. On va
étudier quelques cas simples où il est possible de les paramétrer.

4.3.1 Cas où on peut isoler une variable.

C’est la situation où on peut exprimer y en fonction de x, on se ramène
à l’étude d’une fonction d’une variable. Par exemple si

F(x,y) = y2 − x3 +2x − 1,

alors F(x,y) = 0 ssi y = ±
√
x3 − 2x+1. On observe que

f (x) = x3 − 2x+1 = (x − 1)(x2 + x − 1),

et les racines de l’équation du second degré x2 + x − 1 = 0 sont −1±
√
5

2 . On a
donc

x3 − 2x+1 ≥ 0⇔ x ∈
[
−1−

√
5

2
,
−1+

√
5

2

]
∪ [1,+∞[.
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L’étude de la dérivée montre que f est croissante sur
[
−1−
√
5

2 ,−
√

2
3

]
, décrois-

sante sur
[
−
√

2
3 ,
−1+
√
5

2

]
, puis croissante sur [1,+∞[. En calculant quelques

points on peut alors tracer la courbe, connue sous le nom de courbe ellip-
tique.

Une courbe elliptique.

4.3.2 Exemples de courbes unicursales.

Les courbes unicursales sont des courbes algébriques qui admettent une
paramétrisation rationnelle. On verra que les courbes de degré ≤ 2 sont tou-
jours unicursales. Les courbes de degré 3 qui possèdent un point double sont
aussi unicursales. Revenons sur l’exemple du folium de Descartes. Si on in-
tersecte la courbe avec une droite passant par l’origine d’équation y = tx,
où t ∈ R est la pente de la courbe, on voit que sauf pour certaines valeurs
particulières de t, il n’y a qu’un seul point d’intersection. En remplaçant y
par tx dans x3 + y3 − 3xy = 0, et en excluant le cas x = 0, on obtient

x(t) =
3t

1+ t3
, y(t) =

3t2

1+ t3
.

La valeur t = −1 correspond à l’asymptote oblique y = −x. Voir TD pour
l’étude paramétrique.

Dans la cas des courbes de degré 4, la situation se complique, mais il existe
des cas où des stratégies similaires d’abaissement du degré fonctionnent. On
va examiner le cas de la Lemniscate de Bernoulli, de degré 4, dont l’équation
est donnée par

P (x,y) = (x2 + y2)2 − x2 + y2.
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Cette équation possède beaucoup de symétries car P (±x,±y) = P (x,y), en
particulier la courbe CP est invariante par réflexions par rapport aux axes
de coordonnées usuelles et aussi par rotation d’angle π. Les points (0,0) et
(1,0) sont dans CP . Intersectons donc cette courbe par une famille de cercles
passant par ces deux points, donnés par l’équation x2 + y2 = x+ ty, où t ∈R
est le paramètre. On résoud donc par substitution le système{

(x2 + y2)2 − x2 + y2 = 0
x2 + y2 = x+ ty

ce qui en excluant le cas x = 0 et x = 1 donne

x(t) =
1− t4

t4 +6t2 +1
, y(t) =

2t(t2 − 1)
t4 +6t2 +1

.

Lemniscate intersectée avec une famille de cercles passant par (0,0) et (1,0). Le
troisième point d’intersection a des coordonnées rationnelles en t.

4.3.3 Cas quadratique : les coniques.

Une conique est une courbe algébrique du type

ax2 + by2 +2cxy + dx+ ey + f = 0,

où a,b,c,d,e, f ∈R sont des coefficients.

Théorème 4.3.2 Pour toute conique définie comme ci-dessus, il existe un
changement de variable affine-orthogonal{

X = a11x+ a12y + b1
Y = a21x+ a22y + b2

,
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avec A = (aij) ∈O2(R) une matrice orthogonale, tel que l’on se ramène à l’un
des 4 cas suivants.

Type Equation réduite
Une conique dégénérée ∅, un point ou une réunion de droites

Une ellipse X2

α2 +
Y 2

β2
= 1

Une hyperbole X2

α2 − Y
2

β2
= 1

Une parabole Y 2 = 2pX

Preuve. On commence par examiner la forme quadratique

Q(x,y) = ax2 + by2 +2cxy = (x y)
(
a c
c b

)(
x
y

)
.

Comme la matrice deQ, notéeM, est symétrique réelle, elle est diagonalisable
en base orthonormée. Il existe donc une matrice orthogonale P telle que
M = tPDP où

D =
(
λ1 0
0 λ2

)
.

En notant (
x′

y′

)
= P

(
x
y

)
,

on a
Q(x,y) = λ1(x

′)2 +λ2(y
′)2.

Dans le nouveau système de coordonnées x′, y′, on doit donc trouver les so-
lutions de

λ1(x
′)2 +λ2(y

′)2 + d′x′ + e′y′ + f = 0,

où d′, e′ s’expriment en fonction de d,e via les coefficients de la matrice tP .
Il faut alors discuter en fonction des valeurs propres λ1,λ2.

Cas où λ1λ2 = 0. Quitte à permuter les coordonnées, on peut supposer
que λ1 = 0. Si λ2 est nul, on est dans un cas dégénéré (droite ou ensemble
vide). Sinon, on a en divisant par λ2 et appliquant l’identité remarquable(

y′ +
e′

2λ2

)2
− e′2

4λ22
+
f

λ2
+
d′

λ2
x′ =

(
y′ +

e′

2λ2

)2
+αx′ + β = 0.

Si α = 0, on est encore dans un cas dégénéré, sinon on pose Y = y′ + e′
2λ2

,

X = x′ + β/α. On est alors dans le cas

Y 2 +αX = 0,
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c’est une parabole.
Cas où λ1λ2 , 0. On écrit dans ce cas

λ1

(
x′ +

d′

2λ1

)2
− d

′2

4λ1
+λ2

(
y′ +

e′

2λ2

)2
− e′2

4λ2
+ f = 0

En posant X = x′ + d′
2λ1

, Y = y′ + e′
2λ2

, on tombe sur une équation du type

λ1X
2 +λ2Y

2 +γ = 0.

Si λ1,λ2 sont de même signe, c’est une ellipse ou un cas dégénéré. Sinon,
c’est une hyperbole (ou un cas dégénéré). □

Ellipse.

Hyperbole.
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Parabole.

Remarques. Le produit des valeurs propres λ1λ2 est égal au déterminant de
M soit ab− c2. On peut donc voir que si ab− c2 = 0, on est dans le cas d’une
parabole (ou un cas dégénéré). Si ab − c2 > 0, c’est une ellipse (ou un cas
dégénéré), et si ab − c2 < 0, c’est une hyperbole (ou un cas dégénéré).

L’excentricité E d’une conique est définie (pour ab − c2 , 0) par

E =

√
1− λ1

λ2
,

où on a supposé λ1 ≤ λ2 et λ2 ≥ 0. Ainsi dans le cas d’une ellipse, 0 ≤ E < 1,
et dans le cas d’une hyperbole on a E > 1.

Paramétrages des coniques. L’ellipse sous sa forme réduite se paramétrise
par

γ(θ) = (acos(θ), b sin(θ)) θ ∈ [−π,+π].

En posant t = tan(θ/2), où θ ∈]−π,+π[, comme on a

cos(θ) =
1− t2

1+ t2
sin(θ) =

2t
1+ t2

,

on obtient un paramétrage rationnel de l’ellipse (moins un point) par

γ(t) =
(
a
1− t2

1+ t2
,b

2t
1+ t2

)
, t ∈]−∞,+∞[.

La branche positive de l’hyperbole se paramétrise par

γ(r) = (acosh(r),b sinh(r)), r ∈]−∞,+∞[.
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Comme on a cosh(r) = er+e−r
2 , sinh(r) = er−e−r

2 , en posant t = er , on obtient un
paramétrage rationnel

γ(t) =
1
2

(
at +

a

t
,bt − b

t

)
, t ∈]0,+∞[.

En coordonnées polaires, on peut montrer (voir TD), que les coniques non
dégénérées s’écrivent sous la forme

γ(t) =
p

1+Ecos(t)
eit,

où p > 0 et E est l’excentricité de la conique.

4.4 Courbure dans le plan

Considérons un arc C2, régulier, noté (I, f ). On posera pour tout t ∈ I ,

τ(t) =
f ′(t)
∥f ′(t)∥

,

qui est le vecteur unitaire tangent à l’arc en f (t). On pose aussi N (t) = τ(t)∧,
le vecteur directement orthogonal à τ(t).

Définition 4.4.1 Soit (I, f ) un arc régulier de classe C2, paramétré par sa
longueur d’arc. Pour tout t ∈ I, il existe un unique scalaire κ(t) tel que

f ′′(t) = κ(t)N (t),

c’est la courbure algébrique de l’arc au point f (t), qui est une fonction conti-
nue de t ∈ I.

Cette définition demande quelques commentaires. Comme on a pour tout
t ∈ I , ∥f ′(t)∥2 = 1, on obtient en dérivant,

d

dt

(
∥f ′(t)∥2

)
= 2⟨f ′′(t), f ′(t)⟩ = 0,

ainsi f ′′(t) ∈ τ(t)⊥, i.e. f ′′(t),N (t) sont colinéaires. Il existe donc bien un
scalaire κ(t) tel que f ′′(t) = κ(t)N (t). La continuité découle du fait que κ(t) =
⟨f ′′(t),N (t)⟩ qui est bien continue car f est C2.

Cette définition ne dépend pas du choix du paramétrage par longueur
d’arc : par la proposition 4.1.5, si on a deux paramétrages (I, f ) et (J,g) par
l.a. C2-équivalents, on a

f (t) = g(±t + c),
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et donc
f ′′(t) = g ′′(±t + c).

En général, il est difficile de calculer la longueur des arcs et d’expliciter un
paramétrage par l.a. On peut néanmoins quand même calculer la courbure
de la façon suivante. Supposons que (I, f ) soit un arc paramétré par l.a. et
(J,g) un arc C2-équivalent tel que g = f ◦θ. On a pour tout t ∈ I ,

g ′′(t) = (f ′′ ◦θ(t))(θ′(t))2 + (f ′ ◦θ(t))θ′′(t)

= (θ′(t))2κ(θ(t))N (θ(t)) +θ′′(t)τ(θ(t)).

En posant θ′ = v, cette formule (dite de Frenet) s’écrit donc

g ′′ = v2κN + v′τ.

Repère mobile de Frenet et courbure.

Ainsi on a
⟨g ′′(t),N (θ(t))⟩ = (θ′(t))2κ(θ(t)),

et comme ∥g ′(t)∥ = |θ′(t)|, on déduit l’identité

κ(θ(t)) =
⟨g ′′(t),N (θ(t))⟩
∥g ′t)∥2

.

De ce calcul on déduit directement les formules suivantes.

Proposition 4.4.2 Soit γ(t) = (x(t), y(t)), définit sur I, un arc régulier de
classe C2. Alors la courbure algébrique est donnée par

κ(t) =
det(γ ′(t),γ ′′(t))
∥γ ′(t)∥3

=
y′′(t)x′(t)− x′′(t)y′(t)
((x′(t))2 + (y′(t))2)3/2

.

Si on a γ(t) = ρ(t)eit, alors la courbure s’exprime en polaire par

κ(t) =
ρ2(t) + 2(ρ′(t))2 − ρ(t)ρ′′(t)

(ρ2(t) + (ρ′(t))2)3/2
.
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On observe donc que la courbure est non nulle ssi γ(t) est birégulier. Le
signe de la courbure est donné par l’orientation de la base (γ ′(t),γ ′′(t)). En
particulier, si on renverse l’orientation, la courbure algébrique est changée en
son opposée. Dans le cas du cercle où ρ(t) = R est constante, on a donc

κ(t) =
1
R
.

Dans le cas d’une ellipse, que l’on paramètre par

γ(t) = (acos(t),b sin(t)), t ∈ [0,2π],

avec 0 < b < a, on trouve

κ(t) =
ab

(a2 sin2(t) + b2 cos2(t))3/2
,

et donc
b

a2
≤ κ(t) ≤ a

b2
.

Définition 4.4.3 (Cercle osculateur). Soit (I, f ) un arc régulier de classe C2.
Soit t ∈ I tel que κ(t) , 0. Le centre de courbure est le point C(t) = f (t) +
R(t)N (t), où R(t) = (κ(t))−1 est appelé rayon de courbure algébrique. Le cercle
de centre C(t) et de rayon |R(t)| est appelé cercle osculateur. Le lieu des
centres de courbure s’appelle la développée.

Par exemple, au point (a,0) de l’ellipse, le rayon de courbure est b2
a et le

centre de courbure est en (a
2−b2
a ,0).

Cercle osculateur de l’ellipse au point (a,0).
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Calculons maintenant la développée de l’ellipse. On a par calcul direct

N (t) =
(−bcos(t),−asin(t))√
a2 sin2(t) + b2 cos2(t)

,

et C(t) = γ(t) +R(t)N (t), avec

R(t) =
(a2 sin2(t) + b2 cos2(t))3/2

ab
.

On obtient après calculs

C(t) =
(
a2 − b2

a
cos3(t),−a

2 − b2

b
sin3(t)

)
,

on reconnait les équations paramétriques d’une aströıde.

Developpée de l’ellipse avec a = 2, b = 1.

4.5 La formule de Gauss-Bonnet en dimension 1

Dans ce paragraphe, on va voir le lien entre courbure et variation de
l’angle fait par la tangente avec un vecteur fixé. On va avoir besoin du fait
fondamental suivant, appelé ”théorème du relèvement”. Dans ce qui suit S1

désigne le cercle unité du plan complexe C, ou de R2.

S1 := {z ∈ C : |z| = 1}.

Théorème 4.5.1 (Relèvement C1). Soit I un intervalle de R et γ : I → S1

une application C1. Alors il existe ϕ : I → R, de classe C1 tel que pour tout
t ∈ I,

γ(t) = eiϕ(t).
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On dit que ϕ est une relevée de γ. Si de plus ϕ̃ a les mêmes propriétés, alors
il existe une constante α ∈ 2πZ tel que pour tout t ∈ I, ϕ(t) = ϕ̃(t) +α.

Preuve. Voir dans l’annexe pour les détails, c’est essentiellement de l’intégra-
tion de fonctions à valeurs complexes bien choisies. □

Proposition 4.5.2 Soit (I, f ) un arc régulier de classe C2, à valeurs dans C. Il

existe ϕ : I →R, de classe C1 tel que pour tout t ∈ I, on a τ(t) = f ′(t)
|f ′(t)| = e

iϕ(t).

De plus pour tout t ∈ I, on a

κ(t)|f ′(t)| =
dϕ

dt
(t).

Preuve. Comme on a |τ(t)| = 1 pour tout t ∈ I . Comme f est C2, f ′ est C1

et on peut lui appliquer le théorème du relèvement ci-dessus. Il existe donc
ϕ : I →R, de classe C1 tel que τ(t) = eiϕ(t). Par ailleurs, on a la formule

κ(t) =
det(f ′(t), f ′′(t))
|f ′(t)|3

,

et on a f ′(t) = |f ′(t)|eiϕ(t), donc en dérivant on trouve

f ′′(t) = ϕ′(t)ieiϕ(t)|f ′(t)|+
⟨f ′(t), f ′′(t)⟩
|f ′(t)|

eiϕ(t).

Ainsi on a

det(f ′(t), f ′′(t)) = |f ′(t)|2ϕ′(t)det(eiϕ(t), ieiϕ(t))︸              ︷︷              ︸
=1

+⟨f ′(t), f ′′(t)⟩det(eiϕ(t), eiϕ(t))︸             ︷︷             ︸
=0

,

donc κ(t) = ϕ′(t)
|f ′(t)| , le calcul est terminé. □

De ce lien entre courbure et variation d’angle, on peut tirer la première
application suivante.

Théorème 4.5.3 Soit I un intervalle de R et c : I →R une fonction continue.
On se donne t0 ∈ I et a,b ∈ C. Alors il existe un unique arc C2, noté (I, f ),
paramétré par la longueur d’arc, tel que f (t0) = a, f ′(t0) = b et pour tout t ∈ I,
κ(t) = c(t). Autrement dit, la courbure algébrique détermine complètement
l’arc à une isométrie affine près.
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Preuve. Posons pour tout t ∈ I ,

ϕ(t) := α +
∫ t

t0

c(t)dt,

avec b = eiα. C’est une fonction de classe C1 puisque c est continue, et ϕ′(t) =
c(t). On pose ensuite

f (t) = a+
∫ t

t0

eiϕ(s)ds,

f est bien C2 et f ′(t) = τ(t) = eiϕ(t), f ′′(t) = c(t)iτ(t) = c(t)N (t), donc κ(t) =
c(t). L’unicité se voit en faisant le raisonnement inverse : si un tel arc existe,
on relève τ(t) = eiϕ(t) et on doit avoir ϕ′(t) = c(t) et donc f doit vérifier la
formule ci-dessus. □

Le nombre d’enroulement d’un lacet. Soit (I, f ) un arc régulier C2. Si I =
[a,b], on dit que (I, f ) est un lacet ssi on a

f (a) = f (b) et f ′(a) = f ′(b).

Définition 4.5.4 (Enroulement d’un lacet). Soit (I, f ) un lacet comme ci-
dessus, et ϕ : I →R une relevée de τ : I → S1. Alors la quantité

Enroul(I, f ) :=
ϕ(b)−ϕ(a)

2π
∈Z

ne dépend pas du choix du relèvement.

En effet, comme f ′(a) = f ′(b), on a τ(a) = τ(b) et ei(ϕ(b)−ϕ(a)) = 1 donc

ϕ(b)−ϕ(a) ∈ 2πZ.

Si ϕ̃ est une autre relevée de τ, alors ϕ̃ = ϕ +α et ainsi

ϕ̃(b)− ϕ̃(a) = ϕ(b)−ϕ(a).

L’enroulement d’un lacet compte le nombre de tours (avec orientation)
que fait la tangente à la courbe quand on parcourt tout le lacet.
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Nombre d’enroulement d’un lacet.

Théorème 4.5.5 (Gauss-Bonnet pour les courbes) Soit (I, f ) un lacet C2, avec
I = [α,β]. Alors on a l’identité∫ β

α
κ(t)|f ′(t)|dt = 2πEnroul(I, f ).

Preuve. On a tout simplement∫ β

α
κ(t)|f ′(t)|dt =

∫ β

α
ϕ′(t)dt = ϕ(β)−ϕ(α) = 2πEnroul(I, f ).

et c’est fini. □

Cette formule remarquable montre que pour les lacets, l’intégrale de la
courbure donne 2π fois le nombre d’enroulement. Ce qui est non-trivial,
c’est que le résultat ne dépend au final que du nombre d’enroulement et
pas des propriétés métriques de la courbe (longueur et courbure). Quand on
l’applique par exemple à l’ellipse, on obtient∫ 2π

0

ab

a2 sin2(t) + b2 cos2(t)
dt = 2π,

et ceci quel que soit a,b > 0. Exercice : montrer cette identité directement.
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Chapitre 5

Courbes et surfaces dans R3

5.1 Courbes gauches

Dans ce paragraphe, on va étendre l’étude métrique des arcs paramétrés
au cas de la dimension 3. Les arcs paramétrés en dimension 3 sont appelés
historiquement des ”courbes gauches”. On suppose dans tout ce qui suit que
(I, f ) est un arc paramétré C3, avec f : I →R3, birégulier i.e. pour tout t ∈ I ,
(f ′(t), f ′′(t)) sont linéairement indépendants.

Si m = f (t), le plan Om := f (t) +Rf ′(t) +Rf ′′(t) ne dépend pas du pa-
ramétrage (le vérifier en exercice) et est appelé plan osculateur à la courbe
(I, f ) au point m.

On rappelle que l’on a posé τ(t) = f ′(t)
∥f ′(t)∥ , qui est le vecteur tangent unitaire

à la courbe.

5.1.1 Courbure dans R3

Définition 5.1.1 Soit (I, f ) un arc paramétré comme ci dessus. On suppose
qu’il est paramétré par sa longueur d’arc. Alors pour tout t ∈ I, f ′′(t) et f ′(t)
sont orthogonaux et on pose

K(t) = ∥f ′′(t)∥, ν(t) =
f ′′(t)
∥f ′′(t)∥

,

de sorte que f ′′(t) = K(t)ν(t). Le scalaire K(t) > 0 est appelé courbure au
point f (t).

Comme on a pour tout t ∈ I , ∥f ′(t)∥2 = 1 (c’est l’hypothèse de paramétrisa-
tion l.a.), en dérivant on a directement

d

dt

(
∥f ′(t)∥2

)
= 0 = 2⟨f ′′(t), f ′(t)⟩,
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et donc τ(t),ν(t) sont orthogonaux. Attention, contrairement au cas des
courbes planes, le plan osculateur Om n’admet pas d’orientation canonique,
c’est pour quoi on ne peut définir une notion de courbure algébrique (la
notion de vecteur directement orthogonal n’a pas de sens en dimension 3).

La définition de courbure ne dépend pas du choix de la l.a. paramétrisa-
tion, comme pour les courbes planes. Comment calcule t-on la courbure sans
expliciter de l.a. paramétrisation ? C’est le même calcul qu’en dimension 2.

Si g = f ◦θ avec (I, f ) une l.a. paramétrisation et θ : J→ I un difféomor-
phisme (au moins C2), on a alors en dérivant deux fois :

g ′′(t) = (θ′(t))2K(θ(t))ν(θ(t)) +θ′′(t)τ(θ(t)), g ′t) = θ′(t)τ(t).

En faisant le produit vectoriel g ′t)∧ g ′′(t), on a donc (car τ(t)∧ τ ′(t) = 0),

g ′ ∧ g ′′ = K.(θ′)3τ ∧ ν,

et en combinant ça avec ∥g ′t)∥ = |θ′ |, on obtient la formule suivante.

Proposition 5.1.2 Soit (I,γ) un arc paramétré comme ci dessus, pas néces-
sairement paramétré par sa longueur d’arc. On a pour tout t ∈ I,

K(t) =
∥γ ′(t)∧γ ′′(t)∥
∥γ ′(t)∥3

.

5.1.2 Torsion dans R3

Soit (I, f ) un arc paramétré, birégulier, de classe C3. On définit le vecteur

β(t) = τ(t)∧ ν(t),

de sorte que (τ(t),ν(t),β(t)) soit un repère direct de R3. Si (I, f ) est l.a.
paramétrisé, ce repère est orthonormé direct (voir définitions et propriétés
du produit vectoriel). On l’appelle trièdre de Frenet au point f (t).

En dérivant l’expression ∥β(t)∥2 = 1 on obtient pour tout t ∈ I , ⟨β′(t),β(t)⟩ =
0. En dérivant l’expression ⟨β(t), τ(t)⟩ = 0 on obtient pour tout t ∈ I ,

⟨β′(t), τ(t)⟩ = −⟨β(t), τ ′(t)⟩ = −K(t)⟨β(t),ν(t)⟩ = 0.

Par conséquent, β′(t) et ν(t) sont colinéaires.

Définition 5.1.3 Soit (I, f ) un arc paramétré l.a., birégulier, de classe C3. La
torsion T (t) est l’unique réel tel que

β′t) = T (t)ν(t).
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En dérivant les identités ∥ν(t)∥2 = 1 et ⟨ν(t), τ(t)⟩ = ⟨ν(t),β(t)⟩ = 0 on obtient
aussi

ν′(t) = −K(t)τ(t)− T (t)β(t).
En récapitulant, on a les formules de Frenet dans le trièdre direct (τ,ν,β) :

τ ′ = K.ν
ν′ = −K.τ −T β
β′ = T .ν

.

Arrêtons nous un instant sur la signification géométrique de cette quantité
”torsion”. Si on a pour tout t ∈ I , T (t) = 0 alors β′(t) = 0 i.e. le vecteur
β(t) = B est constant. De plus on a donc pour tout t ∈ I ,

d

dt
(⟨f (t),B⟩) = ⟨f ′(t),B⟩ = ⟨τ(t),B⟩ = 0,

ce qui montre que pour tout t ∈ I , ⟨f (t),B⟩ = Cte. L’image de l’arc est donc
incluse dans un plan affine : la courbe est plane. La torsion mesure donc le
défaut de planéité de la courbe gauche.

Il nous faut expliciter des formules pour calculer la torsion quand l’arc
n’est pas l.a. paramétrisé.

Proposition 5.1.4 Soit (I,g) un arc birégulier de classe C3. On a pour tout
t ∈ I,

T (t) = −
det(g ′(t), g ′′(t), g ′′′(t))
∥g ′(t)∧ g ′′(t)∥2

.

Preuve. Comme d’habitude, on écrit g = f ◦θ avec θ : J→ I un C3-difféomorphisme,
et f un arc paramétrisé par la longueur d’arc. On note toujours (τ,ν,β) le
trièdre de Frenet associé à (I, f ). Par les formules de Frenet, on a

f ′ = τ
f ′′ = Kν
f ′′′ = K ′ν +Kν′ = K ′ν −K2τ −KT β

.

Par conséquent,

det(f ′, f ′′, f ′′′) = det(τ,Kν,K ′ν −K2τ −KT β) = −K2T det(τ,ν,β)︸      ︷︷      ︸
=1

,

d’où

T = −
det(f ′, f ′′, f ′′′)

K2 = −
det(f ′, f ′′, f ′′′)
∥f ′ ∧ f ′′∥2

.
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Dans le cas général, on écrit

g ′ = θ′f ′

g ′′ = θ′′f ′ + (θ′)2f ′′

g ′′′ = θ′′′f ′ +2θ′′θ′f ′′ + (θ′)3f ′′′
,

et en utilisant les propriétés habituelles du déterminant on a

det(g ′, g ′′, g ′′′) = (θ′)6det(f ′, f ′′, f ′′′) = −(θ′)6K2T ,

et comme on a ∥g ′∥6 = (θ′)6 ainsi que

K2 =
∥g ′ ∧ g ′′∥2

∥g ′∥6
,

on obtient la formule générale. □

Un exemple : l’hélice elliptique. On considére l’arc paramétré γ : R→ R3

avec
γ(t) = (acos(t),b sin(t), kt),

où a,b,k > 0.

Hélice elliptique dans R3.

En dérivant directement, on a

∥γ ′(t)∧γ ′′(t)∥ =
√
(ab)2 + k2(a2 cos2(t) + b2 sin2(t)),
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ce qui donne

K(t) =

√
(ab)2 + k2(a2 cos2(t) + b2 sin2(t))

(a2 sin2(t) + b2 cos2(t) + k2)3/2
.

On a aussi

T (t) = −
(
(ab)2 + k2(a2 cos2(t) + b2 sin2(t))

)−1 ∣∣∣∣∣∣∣∣
−asin(t) −acos(t) asin(t)
bcos(t) −b sin(t) −bcos(t)
k 0 0

∣∣∣∣∣∣∣∣ ,
en développant le déterminant par rapport à la dernière ligne on tombe sur

T (t) = − kab

(ab)2 + k2(a2 cos2(t) + b2 sin2(t))
.

Dans le cas particulier des hélices circulaires où a = b, on a

K(t) =
a

a2 + k2
, T (t) = − k

a2 + k2
,

c’est une courbe gauche à courbure et torsion constante.
On peut montrer, comme pour les courbes planes, en utilisant la théorie

des équations différentielles ordinaires (linéaires), que courbure et torsion
déterminent complètement les courbes gauches à isométrie affine de R3 près.
Voir programme de L3.

5.2 Introduction aux surfaces

5.2.1 Rudiments de calcul différentiel en deux variables.

Si p ∈R2, et r > 0, on notera

B(p,r) = {m ∈R2 : ∥m− p∥ < r},

appelée boule ouverte centrée en p et de rayon r. Un sous ensemble non-vide
U ⊂ R2 est dit ouvert ssi il est un voisinage de tout ses points : pour tout
p ∈U , il existe ϵ > 0 tel que B(p,ϵ) ⊂U .

Définition 5.2.1 Soit U un ouvert de R2 et f :U →R une fonction. Elle est
dite continue ssi pour tout p0 ∈ U , pour tout ϵ > 0, il existe η > 0 tel que
pour tout x ∈ U tel que ∥x − p0∥ ≤ η, |f (x) − f (p0)| ≤ ϵ. Autrement dit, se
fixant ϵ > 0, il existe η > 0 tel que f (B(p,η)) ⊂ B(f (p),ϵ).
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La notion de continuité pour les fonctions de plusieurs variables est plus
subtile qu’en dimension 1. Il n’est pas vrai que si x 7→ f (x,y) et y 7→ f (x,y)
sont continues alors f l’est !

Définition 5.2.2 (Classe C1). Soit U un ouvert de R2, et f : U → R une
fonction. On dit que f admet en p = (x0, y0) ∈U des dérivées partielles ssi

∂f

∂x
(p) := lim

h→0

f (x0 + h,y0)− f (x0, y0)
h

et
∂f

∂y
(p) := lim

h→0

f (x0, y0 + h)− f (x0, y0)
h

existent. Si les dérivées partielles de f existent en tout point de U et sont
continues, on dit que f est C1. On peut montrer qu’elle est alors automati-
quement continue.

Si f est C1, ont dit que f admet des dérivées partielles secondes ssi les limites
suivantes existent :

∂2f

∂x2
(p) := lim

h→0

∂f
∂x (x0 + h,y0)−

∂f
∂x (x0, y0)

h
,
∂2f

∂y2
(p) := lim

h→0

∂f
∂y (x0, y0 + h)−

∂f
∂y (x0, y0)

h
,

∂2f

∂x∂y
(p) := lim

h→0

∂f
∂y (x0 + h,y0)−

∂f
∂y (x0, y0)

h
,
∂2f

∂y∂x
(p) := lim

h→0

∂f
∂x (x0, y0 + h)−

∂f
∂x (x0, y0)

h
.

Définition 5.2.3 (Classe C2). Soit U un ouvert de R2, et f : U → R une
fonction de classe C1. On dit que f est C2 si les 4 dérivées partielles

∂2f

∂x∂y
,
∂2f

∂y∂x
,
∂2f

∂x2
,
∂2f

∂y2

existent en tout point de U et sont continues.

Proposition 5.2.4 (Lemme de Schwarz) Si f :U →R est de classe C2 alors
on en tout point p ∈U ,

∂2f

∂x∂y
(p) =

∂2f

∂y∂x
(p).

Preuve. Admis, preuve assez technique, voir cours de calcul différentiel. □

Par récurrence, on peut ainsi définir les dérivées partielles d’ordre supé-
rieur

∂kf

∂x1∂x2 . . .∂xk
:=

∂

∂x1

(
∂k−1f

∂x2 . . .∂xk

)
,

où xj ∈ {x,y}.
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Définition 5.2.5 (Classe Ck). Une fonction f : U → R est dite de classe Ck

si toutes les dérivées partielles existent et sont continues. On peut montrer
que l’ordre de dérivation ne compte pas pour les dérivées croisées.

Si f = (f1, . . . , fn) : U → Rn est une fonction à valeurs vectorielles, on dit
qu’elle est de classe Ck ssi toutes les fonctions coordonnées f1, . . . , fn sont de
classe Ck.

Définition 5.2.6 Soit U ⊂R2 un ouvert, et f = (f1, f2) :U →R2 une applica-
tion de classe C1. On appelle matrice jacobienne au point p ∈U la matrice

Dpf :=

 ∂f1
∂x (p)

∂f1
∂y (p)

∂f2
∂x (p)

∂f2
∂y (p)

 .
L’application linéaire associée est aussi notée (par abus d’écriture)

Dpf :R2→R2,

elle est appelée ”différentielle” de f au point p.

Si une fonction est de classe C1, la différentielle donne une approximation
linéaire d’une fonction au premier ordre, autrement dit un développement
limité à l’ordre 1 d’une fonction de deux variables.

Proposition 5.2.7 Soit f :U →R2 de classe C1, et p ∈U . Alors Dpf :R2→
R

2 est l’unique application linéaire telle que l’on ait pour tout h ∈ R2 avec
∥h∥ assez petit,

f (p+ h) = f (p) +Dpf (h) + o(∥h∥).

Preuve. Ca n’est pas évident, en particulier il faut utiliser la continuité des
dérivées partielles, voir cours de calcul diff. □

Proposition 5.2.8 Soient f : U → R2 et g : V → R2 deux applications de
classe C1 telles que f (U ) ⊂ V . Alors g ◦ f :U →R2 est aussi C1, et on a la
relation matricielle

Dp(g ◦ f ) = (Df (p)g)(Dpf ),

ce qui composante par composante s’écrit pour i, j ∈ {1,2}, (règle de la chaine) :

∂(g ◦ f )i
∂xj

=
∂gi
∂x

(f (p))
∂f1
∂xj

(p) +
∂gi
∂y

(f (p))
∂f2
∂xj

(p).

Preuve. Ça découle assez directement de la proposition précédente en com-
posant les développements limités. □
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Définition 5.2.9 Soit U,V deux ouverts de R2. Une bijection f : U → V de
classe Ck est dit être un Ck-difféomorphisme ssi f −1 : V → U est aussi de
classe Ck.

Remarque. Si f :U → V est un C1-difféomorphisme, alors comme

f −1 ◦ f = IdU ,

la proposition précédente montre que Dpf est un isomorphisme linéaire et

que Df (p)f
−1 = (Dpf )−1.

5.2.2 Surfaces paramétrées, exemples

Définition 5.2.10 Une surface paramétrée S = (U,f ) de classe Ck dans R3

est la donnée d’un ouvert U ⊂R2 et d’une fonction de classe Ck, f :U →R3.

Exemples. On considèreU =]0,1[×]0,4π[ et f (r, t) = (r cos(t), r sin(t), t), c’est
une surface appelée hélicoide.

Hélicoide dans R3.

On prend U =]− 1,+1[×]− 1,+1[ et g(x,y) = (x,y,x2 + y2).
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Parabolöıde dans R3.

C’est un cas particulier de surface où z est fonction de (x,y) : c’est le graphe
(dans R3) de la fonction z = f (x,y) = x2 + y2.

Considérons maintenant U =]0,2π[×]0,10[ et

R(u,v) = ((2 + sin(2v))cos(u), (2 + sin(2v))sin(u), v),

où u ∈]0,2π[ et v ∈]0,10[. C’est une surface de révolution obtenue en faisant
tourner le graphe de

f (x) = 2+ sin(x)

autour de l’axe Oz.

Surface de révolution dans R3.
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On termine cette série d’exemples par le conöıde de Plucker : c’est la surface
d’équation

z =
xy

x2 + y2
,

avec (x,y) ∈U =R2 \ {(0,0)}.

Conöıde de Plucker.

Définition 5.2.11 Deux surfaces (U,f ) et (V ,g) de classe Ck sont dites Ck-
équivalentes ssi il existe un Ck-difféomorphisme θ :U → V tel que f = g ◦θ.
On appelle θ un changement de carte.

Définition 5.2.12 Une surface S = (U,f ), de classe C1, est dite régulière

en m = f (p) ssi les deux dérivées partielles
∂f
∂x (p),

∂f
∂y (p) sont linéairement

indépendantes. Si m = f (p) est un point régulier, l’espace tangent à S = (U,f )
en m est le sous-espace vectoriel de R3 (un plan)

TmS =R
∂f

∂x
(p) +R

∂f

∂y
(p) = Vect

{
∂f

∂x
(p),

∂f

∂y
(p)

}
= IM(Dpf ).

Remarques. L’espace affine tangent à la surface est TmS := f (p)+TmS. Tout
élément de TmS est appelé vecteur tangent. Les notion de point régulier
et de plan tangent sont invariants par C1-équivalence des surfaces (ou par
changement de carte). En effet, si f = g ◦θ avec θ un C1-difféomorphisme,
alors on a

Dpf = (Dθ(p)g) ◦ (Dpθ),

et comme Dpθ est un isomorphisme de R2→R2, on a bien

Tf (p)S = IM(Dpf ) = IM(Dθ(p)g).
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5.2.3 La première forme fondamentale

Soit S = (U,f ) une surface et m = f (p) un point régulier. La première
forme fondamentale Im est un produit scalaire canonique sur l’espace tangent
TmS qui est définit comme la restriction du produit scalaire usuel ⟨ . , . ⟩ de
R

3 à TmS.

Définition 5.2.13 Pour tout vecteurs tangents X = x1
∂f
∂x (p) + x2

∂f
∂y (p) ∈ TmS

et Y = y1
∂f
∂x (p) + y2

∂f
∂y (p) ∈ TmS, on pose

Im(X,Y ) = (x1 x2)


∥∥∥∥∂f∂x (p)∥∥∥∥2 ⟨∂f∂x (p),

∂f
∂y (p)⟩

⟨∂f∂y (p),
∂f
∂x (p)⟩

∥∥∥∥∂f∂y (p)∥∥∥∥2

(
y1
y2

)
.

Il s’agit bien d’un produit scalaire sur TmS, puisque c’est la restriction du
produit scalaire de R3 à TmS. La première forme fondamentale encode les
propriétés métriques de la surface. Elle ne dépend pas du changement de

carte, mais son expression dans la base B = (∂f∂x (p),
∂f
∂y (p)) en dépend !

Longueur des courbes tracées sur S. Soit S = (U,f ) une surface régulière.
Soit I ⊂R un intervalle fermé borné et γ = (γ1,γ2) : I →U un arc C1, alors

f ◦γ : I →R3

est une courbe gauche tracée sur S. On a de plus

f ◦γ ′(t) = γ ′1(t)
∂f

∂x
(p) +γ ′2(t)

∂f

∂y
(p).

Sa longueur est donc

ℓ(f ◦γ,I) =
∫
I
∥(f ◦γ)′(t)∥dt =

∫
I
∥Dγ(t)f (γ ′(t))∥dt

=
∫
I

√
If (γ(t))((f ◦γ)′(t), (f ◦γ)′(t))dt.

On note traditionnellement

E =
∥∥∥∥∥∂f∂x (p)

∥∥∥∥∥2 , G =
∥∥∥∥∥∂f∂y (p)

∥∥∥∥∥2 , F = ⟨
∂f

∂x
(p),

∂f

∂y
(p)⟩,

de sorte que

MatB (Im) =
(
E F
F G

)
,
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Im(X,X) = Ex
2
1 +2Fx1x2 +Gx

2
2,

où B = (∂f∂x (p),
∂f
∂y (p)), et X = x1

∂f
∂x (p)+x2

∂f
∂y (p). L’expression de la longueur

est maintenant

ℓ(f ◦γ,I) =
∫
I

√
E(γ ′1)

2 +2Fγ ′1γ
′
2 +G(γ

′
2)

2dt.

Exemple : courbes tracées sur la sphère. Soit f :R2→R3 avec

f (θ,ϕ) = (cos(θ) sin(ϕ),sin(θ)sin(ϕ),cos(ϕ)).

C’est une paramétrisation de la sphère. Ce paramétrage est régulier pour

ϕ , 0 mod π.

On va calculer la longueur d’un parallèle correspondant à la courbe γ(t) =
(t,ϕ), où ϕ ∈]0,+π[ est fixé (ϕ = 0 et ϕ = π correspondent aux poles), et
t ∈ [0,2π].

Parallèle (bleu) et méridien (rouge) sur la sphère.

On a par calcul direct

∂f

∂θ
=

 −sin(θ)sin(ϕ)cos(θ)sin(ϕ)
0

 , ∂f

∂ϕ
=

 cos(θ)cos(ϕ)
sin(θ)cos(ϕ)
−sin(ϕ)

 .
Donc E = sin2(ϕ), G = 1 et F = 0. La première forme fondamentale s’exprime
donc dans ce système de coordonnées comme

Im(X,X) = sin2(ϕ)x21 + x
2
2.
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La longueur cherchée est donc∫ 2π

0

√
E(γ ′1)

2 +2Fγ ′1γ
′
2 +G(γ

′
2)

2dt =
∫ 2π

0

√
sin2(ϕ)dt = 2π sin(ϕ).

Que dire dans le cas d’un méridien ? Dans ce cas la courbe est γ(t) = (θ,t)
avec θ fixé et t ∈ [0,π]. La longueur est alors∫ π

0

√
E(γ ′1)

2 +2Fγ ′1γ
′
2 +G(γ

′
2)

2dt =
∫ π

0
dt = π.

5.2.4 Deuxième forme fondamentale, courbure

Soit S = (U,f ) une surface régulière C2. Au point m = f (p), on peut
définir un vecteur unitaire normal directement orthogonal au plan tangent
TmS en posant

N (p) :=

∂f
∂x (p)∧

∂f
∂y (p)

∥∂f∂x (p)∧
∂f
∂y (p)∥

.

On définit une application C1, appelée application de Gauss,

N :U → S2,

où S2 := {x ∈ R3 : ∥x∥ = 1} est la sphère unité de R3. On remarquera
que l’on pourrait aussi choisir −N à la place de N : on fait ainsi un choix
d’orientation de la surface. Par analogie avec le cas des courbes où on a vu que
la courbure pouvait s’interpréter comme variation de l’angle de la normale
(ou de la tangente), on aimerait définir une notion de courbure des surfaces
qui mesure la variation de la normale unitaire au plan tangent quand le point
p bouge. C’est le sens de ce paragraphe.

Proposition 5.2.14 On a pour tout p ∈ U , ∂N
∂x (p),

∂N
∂y (p) ∈ TmS. Autrement

dit,
IM(DpN ) ⊂ TmS.

Preuve. Comme on a pour tout p ∈ U , ∥N (p)∥2 = 1, en calculant les deux
dérivées partielles on a

∂

∂x

(
∥N (p)∥2

)
= 2⟨∂N

∂x
(p),N (p)⟩ = 0

et
∂

∂y

(
∥N (p)∥2

)
= 2⟨∂N

∂y
(p),N (p)⟩ = 0,

Ainsi IM(DpN ) = Vect
{
∂N
∂x (p),

∂N
∂y (p)

}
⊂N (p)⊥ = TmS, c’est fini. □
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Définition 5.2.15 Soit S = (U,f ) une surface C2, régulière. Soit m = f (p)
avec p ∈ U . On définit l’endomorphisme de Weingarten Wm : TmS → TmS
par

Wm(X) = −DpN ((Dpf )
−1X).

Cette définition a bien un sens : en un point régulier, Dpf : R2 → TmS est

un isomorphisme, on peut donc prendre son inverse (Dpf )−1 : TmS → R2,

que l’on compose avec −DpN : R2 → TmS. On peut montrer (exercice) que
l’endomorphisme de Weingarten ne dépend pas du choix du paramétrage.
Par contre il dépend du choix d’orientation que l’on a fait avec l’application
de Gauss : il est changé alors en son opposé. On a par définition

Wm(
∂f

∂x
(p)) = −∂N

∂x
(p), Wm(

∂f

∂y
(p)) = −∂N

∂y
(p).

Définition 5.2.16 La deuxième forme fondamentale, notée IIm(X,Y ) est une
forme bilinéaire sur TmS définie par

IIm(X,Y ) := Im(Wm(X),Y ) = ⟨Wm(X),Y ⟩.

Théorème 5.2.17 L’endomorphisme de WeingartenWm est auto-adjoint pour
le produit scalaire Im i.e. IIm est bilinéaire symétrique.

Preuve. On va tout simplement calculer la matrice MatB (IIm) et montrer
qu’elle est symétrique, ce sera fini. On a par définition

MatB (IIm) =

 IIm(
∂f
∂x ,

∂f
∂x ) IIm(

∂f
∂x ,

∂f
∂y )

IIm(
∂f
∂y ,

∂f
∂x ) IIm(

∂f
∂y ,

∂f
∂y )

 .
On a en outre

IIm(
∂f

∂x
,
∂f

∂y
) = −⟨∂N

∂x
,
∂f

∂y
⟩, IIm(

∂f

∂y
,
∂f

∂x
) = −⟨∂N

∂y
,
∂f

∂x
⟩.

Comme on a pour tout p ∈U , ⟨N (p), ∂f∂y (p)⟩ = 0, en dérivant par rapport la

première variable on a donc

∂

∂x

(
⟨N,

∂f

∂y
⟩
)
= 0 = ⟨∂N

∂x
,
∂f

∂y
⟩+ ⟨N,

∂2f

∂x∂y
⟩,

donc

−⟨∂N
∂x

,
∂f

∂y
⟩ = ⟨N,

∂2f

∂x∂y
⟩.
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En dérivant par rapport à la deuxième variable l’identité ⟨N (p), ∂f∂y (p)⟩ = 0,
on obtient de même :

−⟨∂N
∂y

,
∂f

∂x
⟩ = ⟨N,

∂2f

∂y∂x
⟩.

Le lemme de Schwarz sur l’égalité des dérivées croisées montre donc que

IIm(
∂f

∂y
,
∂f

∂x
) = IIm(

∂f

∂x
,
∂f

∂y
) = ⟨N,

∂2f

∂y∂x
⟩,

et la matrice de IIm est bien symétrique. Un calcul analogue montre que l’on
a aussi

IIm(
∂f

∂x
,
∂f

∂x
) = ⟨N,

∂2f

∂x2
⟩, IIm(

∂f

∂y
,
∂f

∂y
) = ⟨N,

∂2f

∂y2
⟩,

et la preuve est finie. □
La matrice de la deuxième forme fondamentale est souvent notée

MatB (IIm) =
(
L M
M P

)
,

avec

L = ⟨N,
∂2f

∂x2
⟩, M = ⟨N,

∂2f

∂x∂y
⟩, P = ⟨N,

∂2f

∂y2
⟩.

Définition 5.2.18 L’endomorphisme de Weingarten est donc diagonalisable
dans une base Im-orthonormée.

1. Les valeurs propres λ1 et λ2 sont appelées courbures principales de S
au point m.

2. Le produit Km := λ1λ2 = det(Wm) est appelé courbure de Gauss au
point m.

3. La demi-somme 1
2(λ1 +λ2) =

1
2Tr(Wm) est appelée courbure moyenne

en m.

Le signe des valeurs propres dépend du choix d’orientation de S. Par contre
la courbure de Gauss n’en dépend pas. Il est important d’avoir en tête que

la matrice de Wm dans la base B = (∂f∂x (p),
∂f
∂y (p)) n’est pas en général

symétrique car la base B n’est pas toujours Im-orthogonale ! Pour calculer
la courbure de Gauss, on utilise le fait suivant, bien pratique pour faire les
calculs.
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Proposition 5.2.19 On a MatB (IIm) = MatB (Im)MatB (Wm), ainsi

Km =
det(MatB (IIm))
det(MatB (Im))

=
LP −M2

EG −F2
=
⟨N, ∂

2f
∂x2
⟩⟨N, ∂

2f
∂y2
⟩ − (⟨N, ∂

2f
∂x∂y ⟩)

2

∥∂f∂x ∥2∥
∂f
∂y ∥2 − (⟨

∂f
∂x ,

∂f
∂y ⟩)2

.

Preuve. Si X,Y ∈ TmS, notés comme vecteurs colonnes dans la base B , on a

IIm(X,Y ) =
tXMatB (IIm)Y = Im(X,Wm(Y )) =

tXMatB (Im)MatB (Wm)Y .

La preuve est finie par identification des matrices. □
En remplaçant N par son expression en termes de produit vectoriel, on

peut donner une formule pour Km ne faisant intervenir que f et ses dérivées,
qui fait apparaitre des produits mixtes (déterminants). Voir TD.

Exemple 1 : la selle de cheval. Soit U = R2 et f (x,y) = (x,y,x2 − y2). C’est
une surface en forme de selle de cheval, on va calculer la courbure en (0,0).
On a

∂f

∂x
(x,y) = (1,0,2x),

∂f

∂y
(x,y) = (0,1,−2y),

puis
∂f

∂x
(x,y)∧

∂f

∂y
(x,y) = (−2x,2y,1),

de sorte que

N (x,y) =
(−2x,2y,1)√
1+4x2 +4y2

.

Ainsi
∂N

∂x
(0,0) = (−2,0,0) ∂N

∂y
(0,0) = (0,2,0).

Donc on a

W(0,0)

(
∂f

∂x
(0,0)

)
= (2,0,0) = 2

∂f

∂x
(0,0), W(0,0)

(
∂f

∂y
(0,0)

)
= (0,−2,0) = −2

∂f

∂y
(0,0).

L’endomorphisme de Weingarten W(0,0) est diagonal dans la base B , les
valeurs propres sont 2 et −2, la courbure de Gauss vaut K = −4.
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Selle de cheval et courbures principales en (0,0,0).

Exemple 2 : la sphère. On revient sur le paramétrage de la sphère de rayon
R, donné par f (θ,ϕ) = R(cos(θ)sin(ϕ),sin(θ)sin(ϕ),cos(ϕ)) avec (θ,ϕ) ∈
R×]0,π[. La géométrie de la sphère fait que l’on peut prendre

N (θ,ϕ) = (cos(θ)sin(ϕ),sin(θ)sin(ϕ),cos(ϕ)).

On a fait un choix d’orientation qui simplifie les calculs. On a aussi

∂f

∂θ
= R

 −sin(θ)sin(ϕ)cos(θ)sin(ϕ)
0

 , ∂f

∂ϕ
= R

 cos(θ)cos(ϕ)
sin(θ)cos(ϕ)
−sin(ϕ)

 .
Puis

∂2f

∂θ2 = R

 −cos(θ)sin(ϕ)−sin(θ)sin(ϕ)
0

 , ∂2f

∂ϕ2 = R

 −cos(θ)cos(ϕ)−sin(θ)cos(ϕ)
−cos(ϕ)

 ,
∂2f

∂ϕ∂θ
= R

 −sin(θ)cos(ϕ)cos(θ)cos(ϕ)
0

 .
Ainsi on a

⟨
∂2f

∂θ2 ,N ⟩ = −Rsin
2(ϕ), ⟨

∂2f

∂ϕ2 ,N ⟩ = −R, ⟨
∂2f

∂θ∂ϕ
,N ⟩ = 0.

Finalement,

K(θ,ϕ) =
⟨N, ∂

2f
∂θ2
⟩⟨N, ∂

2f
∂ϕ2 ⟩ − (⟨N,

∂2f
∂θ∂ϕ ⟩)

2

∥∂f∂θ ∥2∥
∂f
∂ϕ ∥2 − (⟨

∂f
∂θ ,

∂f
∂ϕ ⟩)2

=
1
R2 .
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On peut voir qu’avec ce choix d’orientation, les deux courbures principales
sont égales à −1R , l’endomorphisme de Weingarten est diagonal dans la base
naturelle.

Exemple 3 : la pseudo-sphère. On considère U =R×R∗ et

f (θ,t) =
(
cos(θ)
cosh(t)

,
sin(θ)
cosh(t)

, t − tanh(t)
)
.

On peut vérifier par calcul que S = (U,f ) est une surface de révolution,
partout régulière (en t = 0, il y a un cercle singulier), et que la courbure de
Gauss de S est égale en tout point à −1, voir TD.

La pseudo-sphère.

Remarques. Il est facile de voir que si l’application de Weingarten est partout
nulle, alors l’application de Gauss est constante. En intégrant on obtient que
la surface est incluse dans un plan affine de R3, elle est plate. En revanche
si la courbure de Gauss Km est partout nulle, rien ne dit que la surface doit
être plate. Considérons par exemple le cylindre (U, f ) avec U =R2 et

f (u,v) = (cos(u),sin(u),v).

Un calcul simple montre que

∂f

∂u
=

 −sin(u)cos(u)
0

 , ∂f∂v =

 0
0
1

 , N (u,v) =

 cos(u)
sin(u)

0

 .
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En dérivant une nouvelle fois, on a

Wm(
∂f

∂u
) = −∂N

∂u
= −

∂f

∂u
, Wm(

∂f

∂v
) = −∂N

∂v
= 0,

ainsi on a

MatB (Wm) =
(
−1 0
0 0

)
, Km = 0.

Le cylindre est à courbure de Gauss nulle !

Le cylindre.

Les surfaces à courbure de Gauss nulle sont loin d’être plates, on dit qu’elles
sont développables : on peut les construire en courbant une bande de papier
dans l’espace. C’est le cas par exemple du ruban de Moebius.

Ruban de Moebius.

Pour conclure. Notre définition de la courbure des surfaces passe par l’ap-
plication de Gauss et la structure euclidienne naturelle de R3, c’est une ap-
proche extrinsèque. Gauss a montré qu’en fait la courbure est complètement
déterminée par la première forme fondamentale, elle est intrinsèque. C’est le
”Theorema Egregium” de Gauss (1827).
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Annexe A

Intégration à valeur complexe et
relèvement C1.

Soit I un intervalle de R et f : I → C une fonction. On a vu que f est
de classe Ck ssi ses fonctions coordonnées Re(f ) et Im(f ) sont elle-mêmes de
classe Ck. On a de plus

f (k)(t) = (Re(f ))(k)(t) + i(Im(f ))(k)(t).

Si f ,g : I → C sont dérivables, il est facile de voir (le vérifier) que la
formule de dérivation des produits s’étend au cas complexe i.e. on a pour
tout t ∈ I ,

(f g)′(t) = f ′(t)g(t) + f (t)g ′(t).

Si ϕ : I →R est une fonction dérivable alors eiϕ l’est aussi et on a(
eiϕ

)′
(t) = iϕ′(t)eiϕ(t).

En effet, on a
eiϕ(t) = cos(ϕ(t)) + i sin(ϕ(t)),

et donc en dérivant partie réelle et partie imaginaire on a(
eiϕ

)′
(t) = −sin(ϕ(t))ϕ′(t) + i cos(ϕ(t))ϕ′(t) = iϕ′(t)eiϕ(t).

Si I = [a,b] avec a < b et f : I →C est continue, alors on pose∫ b

a
f (t)dt :=

∫ b

a
Re(f (t))dt + i

∫ b

a
Im(f (t))dt.
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Il est direct de voir que l’intégrale ainsi définie est C-linéaire : pour tout
f ,g : I →C continues et λ ∈C, on a∫ b

a
(f (t) +λg(t))dt =

∫ b

a
f (t)dt +λ

∫ b

a
g(t)dt.

Tout comme pour les fonctions à valeur réelles, l’intégrale F(x) d’une fonction
continue f , vue comme fonction de la borne supérieure est dérivable i.e. pour
tout x ∈ I ,

F(x) =
∫ x

a
f (t)dt,

définit une fonction C1 sur I et on a pour tout x ∈ I , F′(x) = f (x). La preuve
découle directement du cas réel appliqué à Re(f ) et Im(f ). On a également
la version complexe de l’inégalité triangulaire.

Proposition A.0.1 Soit f : I → C continue. On a alors∣∣∣∣∣∣
∫ b

a
f (t)dt

∣∣∣∣∣∣ ≤
∫ b

a
|f (t)|dt.

Preuve. C’est moins évident. On va montrer d’abord le lemme suivant.

Lemme A.0.2 Pour tout z0 ∈ C, il existe une forme R-linéaire L0 : C→ R
telle que L0(z0) = |z0| et pour tout z ∈C,

L0(z) ≤ |z|.

Preuve du lemme. On peut bien sur supposer z0 , 0, sinon c’est trivial, on
prend L0 = 0 qui convient. Posons alors

L0(z) = Re
(
z0
|z0|

z

)
.

On a bien L0(z0) = Re(|z0|) = |z0|, et pour tout z ∈C,

L0(z) = Re
(
z0
|z0|

z

)
≤

∣∣∣∣∣ z0|z0|z
∣∣∣∣∣ = |z|.

Le lemme est prouvé. □
On rappelle (par exemple par le thm de Riesz) que toute forme R-linéaire

L :C→R s’écrit sous la forme

L(z) = Re(wz),
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où w ∈C. Il est alors facile de voir que pour toute forme R-linéaire L on a

L

(∫ b

a
f (t)dt

)
=

∫ b

a
L(f (t))dt.

En appliquant le lemme avec z0 =
∫ b
a
f (t)dt on a donc∣∣∣∣∣∣

∫ b

a
f (t)dt

∣∣∣∣∣∣ = L0
(∫ b

a
f (t)dt

)
=

∫ b

a
L0(f (t))dt ≤

∫ b

a
|f (t)|dt,

la proposition est prouvée. □

On va pouvoir utiliser l’intégration complexe pour démontrer le théorème
suivant.

Théorème A.0.3 (Relèvement C1). Soit I un intervalle de R et γ : I → S1

une application C1. Alors il existe ϕ : I → R, de classe C1 tel que pour tout
t ∈ I,

γ(t) = eiϕ(t).

On dit que ϕ est une relevée de γ. Si de plus ϕ̃ a les mêmes propriétés, alors
il existe une constante α ∈ 2πZ tel que pour tout t ∈ I, ϕ(t) = ϕ̃(t) +α.

Preuve. Soit a ∈ I . Quitte à multiplier γ par un nombre complexe de module
1, on peut supposr que γ(a) = 1. Posons alors pour tout t ∈ I ,

ϕ(t) :=
∫ t

a

γ ′(x)
iγ(x)

dx.

Comme γ est C1, l’intégrale est bien définie et ϕ est C1 de dérivée

ϕ′(t) =
γ ′(t)
iγ(t)

.

Comme on a pour tout t ∈ I , |γ(t)|2 = 1, en dérivant on trouve

γ ′(t)γ(t) +γ(t)γ ′(t) = 0,

et comme γ(t) = (γ(t))−1 on en déduit que

γ ′(t)
γ(t)

∈ iR.

99



Ainsi ϕ′(t) ∈R et la fonction ϕ définie est bien à valeurs réelles. Considérons
maintenant la fonction F définie sur I par

F(t) := γ(t)e−iϕ(t).

Alors F est C1 et on a pour tout t ∈ I ,

F′(t) = γ ′(t)e−iϕ(t) − iγ(t)ϕ′(t)e−iϕ(t) = 0.

Ce qui signifie que F est constante, mais comme F(a) = γ(a)e−iϕ(a) = 1, on a
bien obtenu que pour tout t ∈ I , F(t) = 1 i.e.

γ(t) = eiϕ(t).

Supposons maintenant qu’on dispose d’une autre relevée de γ notée ϕ̃. Comme
on a pour tout t ∈ I ,

eiϕ̃(t) = γ(t) = eiϕ(t),

on en déduit que ei(ϕ̃(t)−ϕ(t)) = 1, donc pour tout t ∈ I on a

ϕ̃(t)−ϕ(t) ∈ 2πZ.

Comme ϕ̃ − ϕ est continue et I est un intervalle, le théorème des valeurs
intermédiaires dit que ϕ̃ −ϕ doit être constante. □

Remarques. Le théorème du relèvement est valable si on suppose seule-
ment γ : I → S1 continue, mais c’est plus dur...Le Lemme A.0.2 est une
forme élémentaire du théorème de Hahn-Banach, voir cours de L3 d’analyse
fonctionnelle.
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