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Avant propos...

Ce polycopié est destiné aux étudiants de .2 maths a Sorbonne Université.
Sous l'intitulé "Géométrie” on a regroupé I’étude des espaces Euclidiens et
Hermitiens et leurs isométries, puis un chapitre consacré a I’étude des courbes
planes : courbes paramétrées, implicites et leurs propriétés métriques (cour-
bure, longueur). Il contient ausi une introduction rudimentaire aux surfaces,
en faisant appel au moins de calcul différentiel possible.

Ce polycopié a été rédigé intégralement par un étre humain et non pas
par Chat-GPT ou autre Deep-Seek. Il contient donc des typos que vous ne
manquerez pas de signaler a 'auteur pour améliorer le texte. En revanche,
contrairement aux LLM, les preuves de ce poly sont garanties sans halluci-
nations et sont en principe correctes. Certaines preuves faciles sont laissées
en exercice et souvent reprises en TD, mais les plus difficiles sont détaillées
au maximum.

Les prérequis pour ce cours sont l'algebre linéaire de L1 et I’analyse réelle
de L1. Tout est élémentaire, des compléments sur 'intégration des fonctions
a valeur complexes sont donnés en annexe.
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Chapitre 1

Espaces Euclidiens et Hermitiens

1.1 Produit scalaire, définitions

Dans ce qui suit K désigne un corps qui en pratique sera IK = R ou
C. Siz=x+1iy € C, avec x,v € R, on note son conjugué par z = x —iy.
Si M = (m;;) € M, ,(K) est une matrice a p lignes et g colonnes, on note
'M sa transposée, qui est une matrice & g lignes et p colonnes définie par
(‘M);j = mj;, pour tout 1 <i<get1<j<p.

Soit E un K-espace vectoriel de dimension finie. Le vecteur nul de E sera
noté Of si il y a une ambiguité.

Définition 1.1.1 Une forme bilinéaire @ sur E est une application
¢@:ExXE -,
qui veérifie
1. Pour tout uy,u,,v € E, pour tout A € K,
P(uy + Aup, v) = @(uy,v) + Ap(u, v).
2. Pour tout u,vy,v, € E, pour tout A € K,
P(u,v1+ Avy) = p(u,v1) + Ap(u, v2).

Définition 1.1.2 Dans le cas ot K = C, une forme sesquilinéaire ¢ sur E est

une application
@:ExE -,

qui veérifie



1. (linéarité a gauche) Pour tout uy,uy,v € E, pour tout A € K,
Puy + Aup,v) = @(uy,v) + Ap(u, v).

2. (semi-linéarité a droite) Pour tout u,vy,v, € E, pour tout A € K,

Pu, vy +Avs) = @(u,vy) + Ap(u, v2).

Remarque. La bilinéarité (ou la sesquilinéarité) entraine automatiquement
que ¢@(0g,x) = 0 pour tout x € E. En effet, ¢(0f,x) = @(0g+0g, x) = (0, x)+
¢@(0g, x) et donc en simplifiant ¢(0f,x) = 0. Méme chose pour ¢(x,0g).

Définition 1.1.3 1. Si ¢ est une forme bilinéaire et si on a pour tout x,v €
E, ¢(x,v) = @(v,x), on dit que @ est symétrique.

2. Si @ est une forme sesquilinéaire et si on a pour tout x,v € E, ¢(x,v) =

@(v,x), on dit que @ est hermitienne symétrique.

Exemples.

1. STE=R" et six=(x1,...,X,), V= (V1,...,Vp), alors @(x,1) =Y | x;;
est bien une forme bilinéaire symétrique.

2. SLE=C", et si x = (x1,...,X,), V=(V1,..., V), alors @(x,v) = Y7, x;7;

définit une forme hermitienne symétrique.

3. Si 8 =(Sij)i<i,j<n € My(R) est une matrice réelle de taille nx n qui est
symétrique i.e. S;; = §;; pour tout i, j, alors pour

X1 U1
X

x=| 2 v=| |
Xy Uy

P(X,Y)="XSY,
définit une forme bilinéaire symétrique sur R”.

4. Si E = R,[X] est le R-espace vectoriel des polynomes réels de degré
inférieur ou égal a n, la formule

+1
(P, Q) =f P(H)Q(t)dt

1

définit une forme bilinéaire symétrique sur E.



5. Si E =7, le C-espace des polynomes trigonométriques P sur R de la

forme
+n )
P(t) = Z aie'r,
k=—n
ou les coefficients a; € C. Alors
1 27
P, = P(t t)dt
P(P,Q)= o | PO

est une forme sesquilinéaire sur 7,.
Définition 1.1.4 Si ¢ est une forme bilinéaire (si K = R) ou sesquilinéaire
(si K =C) on dit que @ est positive ssi pour tout x € E, ¢(x,x) € R* et
définie ssi pour tout x € E,

P(x,x)=0=x=0.

Remarque. Si ¢ est une forme sesquilinéaire hermitienne symétrique, alors

pour tout x € E, @(x,x) = @(x,x), donc ¢(x,x) € R.

Définition 1.1.5 Soit E un K-espace vectoriel de dimension finie. E est ap-
pelé espace FEuclidien (resp. Hermitien) s’il est muni d’une forme bilinéaire
symétrique définie positive (resp. sesquilinéaire symétrique définie positive).
Une telle forme est appelée produit scalaire.

Exemples : les exemples 1), 2), 4) et 5) ci-dessus sont des produits scalaires.

Proposition 1.1.6 (Inégalité de Cauchy-Schwarz). Soit (E, @) un espace Eu-
clidien ou Hermitien. On a pour tout x,y € E,

lp(x, )l < Vo (x, )V (v, ),

avec €galité ssi x,y sont colinéaires.

Preuve. On commence par traiter le cas réel ou K = R. Se fixant x,v € E, On
étudie la fonction
A f(A) =@(x+ Ay, x+ Ap).

Par bilinéarité et symétrie de ¢, on a donc

F(A) = o(x,x) + 2A(x,p) + A (v, ).



Comme ¢ est positive, on a donc f(A) > 0 pour tout A € R, ainsi le discrimi-
nant de cette fonction polynomiale de degré au plus 2 doit étre négatif. Ceci
donne 4(¢(x,v))* - 4¢(v,v)@(x,x) < 0, ce qui entraine

(@(x,2))> < (v, v)(x,x),

puis en prenant la racine carrée

lp(x, )l < Vo (x, )V (v, p).

Siil y a égalité, c’est que le discriminant est nul et que f(1g) = 0 pour un
certain Ay € R. Comme ¢ est définie, ceci entraine x+ Aoy =0, (x, ) est bien
liée.

Cas complexe IK = C. On s’inspire des mémes idées. On pose pour A € R,
f(A) =p(x+ Ay, x+ Ap).
Quitte & multiplier x par ¢’ avec 6 € R bien choisi, on peut supposer p(x,v) €
R. On a alors, comme dans le cas réel,

F(A) = @(x,x)+210(x, ) + A2 (v, ),
et on suit exactement le méme raisonnement. O

Proposition 1.1.7 Soit (E,p) un espace Fuclidien ou Hermitien. On pose

pour tout x € E,
=, x).

Alors ||.|| est une norme sur E, i.e. elle vérifie :
1. Pour tout x € E, ||x||=0=x=0.
2. Pour tout (x,A) € ExIK, |[Ax]|| = |A|llx]].
3. Pour tout x,v € E, ||x + || < ||x|[+|[v]|-

X

Preuve. Les points 1) et 2) sont évidents. Prouvons 3) dans le cas complexe.
Le cas réel étant analogue. Par bilinéarité et symétrie, on a

[+ 9l17 = [Ixl|* + 2Re (@ (x, 9)) + [ID1%.
Mais par Cauchy-Schwarz on a aussi

X

IRe(q(x, )l < lp(x, )| < Ix]ll[2]l

Ainsi on a

24 20lxllpll -+ 1907 = (1l + ol

2
llx + vl <|lx

la preuve est finie. O
Lorsque deux vecteurs x,v vérifient ¢(x,v) = 0, on dit qu’ils sont ortho-
gonauz. On a 'importante remarque suivante.
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Proposition 1.1.8 (Thm de Pythagore) Si vy,...,v, € E sont deuxr d deux

orthogonauz, alors
2 n
2
=) Il
i=1

n

X

i=1

Preuve. On écrit par bilinéarité

2
ivi =¢ Z%ZW = P(vi,v),
]. .

i=1 i i=1 j=1

=
=

comme pour i # j on a @(v;,v;) =0, la somme double ci-dessus se réduit a

2 n n
2
= E P(vi,v;) = § llvill,
i=1 i=1

n

X

i=1

la preuve est finie. O

La norme || . || associée a un produit scalaire est appelée norme euclidienne
(ou hermitienne). La connaissance de la norme détermine complétement le
produit scalaire. En effet on a les identités suivantes (dites de polarisation).

Proposition 1.1.9 (Formules de polarisation)
— (Cas euclidien) On a pour tout x,p € E,

1
Pvy) =Sl + VI = Dl = 11wll?).

— (Cas hermitien) On a pour tout x,v € E,

1 : :
Pvp) =Sl + VP = 1P = 19017 + e + 911 = [1xll* = 111)).

La preuve (facile) est laissée en exercice. Les normes euclidiennes vérifient
aussi d’autres identités remarquables dont [’identité du parallélogramme :
pour tout x,v € E, on a

[+ 2117 + llx = wlI> = 2(1Ill” + 19 11%).

On peut montrer (voir TD) que cette identité caractérise les normes eucli-
diennes.



1.2 Bases orthonormées et algorithme de Gram-
Schmidt

Définition 1.2.1 Soit (E, @) un espace Euclidien ou Hermitien. Une base (e, ...,e,)
de E est dite orthonormée ssi on a les propriétés suivantes.

1. (Normalisation) Pour tout i=1,...,n on a |le;|| = 1.

2. (Orthogonalité) Pour tout i #j€({1,...,n}, on a ¢(e;,e;) = 0.
Remarque. Une famille orthogonale de vecteurs est automatiquement libre
(a vérifier en exercice).

Exemples. Dans IR”, muni du produit scalaire

n

(x9)i=) xivi

i=1
la base canonique e¢; = (1,0,...,0), e, =(0,1,0,...,0),..., e, =(0,...,0,1) est
une base orthonormée (le vérifier).
Dans I'espace des polynomes trigonométriques 7,,, la famille

(toe™ . —n<k<n)

est orthonormée (exercice). On en déduit donc par Pythagore que si

P(t) = Zakeikt,

k

1 27
IPIP = o | iptoRde =Yl
0

k

on a

c’est [identité de Parseval.

L’interét des bases orthonormées est de ramener tout les calculs de norme
et de produit scalaire a des calculs simples sur les coordonnées.

Proposition 1.2.2 Soit (E, ) un espace Fuclidien ou Hermitien muni d’une
base (ey,...,e,) orthonormée. Alors on a les faits suivants.
1. Pour tout x,y € E tels que x =) ;x;e; et vy =) ;v;e;, on a (cas réel)

n

QD(X; y) = sz'}’i:

i=1
ou dans le cas complexe,

n

P(x,v) = inZTi-

i=1



2. Pour tout x =) ;x;e;, on a

n
2 2
R =) el
i=1

3. Pour tout x € E, on a

Preuve. Exercice. O

Que se passe-t-il dans une base non-orthogonale? On peut toujours donner
une expression pour calculer le produit scalaire via la matrice de Gram.

Proposition 1.2.3 Soit (E, ) un espace Euclidien ou Hermitien muni d’une
base (eq,...,e,), pas forcément orthonormée. Considérons la matrice G définie
par

pler,er) ... @lee,)

G:= : : :

@(enr 61) (P(enf en)

Alors pour tout x,v € E, avec x =) ;x;e; et v = ij]-ej, on a (dans le cas
euclidien)

1
Pv)=(x1 ..xg)G| 1,
yn
et dans le cas hermitien
1
P, )= (x1 ...x,)G|
Un

Preuve. Cas euclidien. On écrit simplement par bilinéarité :
P(ay)=p() xen) vie)=) ) xplene))
i j i

et on reconnait bien le produit matriciel

N

Pxv) = (x1 ...x0)G|
Yn

10



Le cas hermitien est pareil (avec des conjugués). O

On remarque au passage qu'une base est orthonormée ssi la matrice de
Gram est l'identité. On sait que tout espace vectoriel E de dimension finie
admet une base. Si E est de plus doté d’'une structure euclidienne ou hermi-
tienne, il n’est pas évident qu’il posseéde une base orthonormée. On va décrire
ci-dessous un algorithme, dit de Gram-Schmidt, qui permet, partant d’une
base quelconque, de fabriquer une base orthonormée.

Soit donc (vy,...,v,) une base de E, on va construire par récurrence une
base orthonormée (eq,...,ex) de E telle que pour tout k =1,...,n
Vect(ey,...,ex) = Vect(vy,..., vg).

— Etape k = 1. Il n’y a presque rien a faire, on pose e; = ”Zﬁ de telle

sorte que |le;]| = 1.
— Etape k = 2. Posons e}, = v, — @(vy,e1)e;. On a bien e} € Vect(vy,v;)

N . e
et @(e),e;) = 0. Il reste & normaliser en posant e, = ”6—,2”
2

— Supposons avoir construit ey, ...,e; othonormée de telle sorte que
Vect(ey,...,ex) = Vect(vy,..., vg).

On pose alors

k
4 J—
Cre1 = Vk+1 — (P(vk-rllej)ej-
j=1

Il est clair que e, , € Vect(vy,...,Vky) et on vérifie sans peine que
§0(€;<+1, M) =0

. e
pour tout u € Vect(ey,...,er). On termine en posant ej,.; = ”e’f—“”
k+1

— On poursuit ce procédé jusqu’a k = n.

Corollaire 1.2.4 Tout espace euclidien ou hermitien possede une base ortho-
normeée.

Illustrons la méthode de Gram-Schmidt sur un exemple concret. On considere
ici E=R3, muni du produit scalaire standard

3
(xvy)=) xi:
i=1

11



Considérons la famille v; = (1,0,0), v, = (1,1,0) et v3 = (1,1,1). On laisse
le soin au lecteur de justifier qu’il s’agit bien d’'une famille libre et donc
d'une base de R3. On a ||v1|| = 1, donc on pose e¢; = 1. On calcule ensuite
e, = vy —(vyepye; =(1,1,0)—(1,0,0) = (0,1,0). Comme on a [lej]| = 1, on
a e; = (0,1,0). Enfin, on calcule e} = v3 —(v3,e1)e; —(v3,e00ex = (1,1,1) -
(1,0,0)—=(0,1,0) = (0,0,1). Finalement on a obtenu

€1 = (1,0,0), €r = (O, 1,0), €3 = (0,0,l),

c’est la base canonique de R3!

1.3 Distance et projection orthogonale

Définition 1.3.1 Soit (E, ) un espace euclidien ou hermitien. Soit A C E une
partie de E. On appelle orthogonal de A, noté AL, la partie définie par

At:={x€E : YaeA, ¢p(x,a)=0}
AL est automatiquement un sous-espace vectoriel de E (exercice).

Proposition 1.3.2 Soit (E, ) un espace euclidien ou hermitien, et soit F un
sous-espace vectoriel de E1. On a toujours

E=F@F".

De plus, il existe un unique endomorphisme Pr : E — F tel que Pr o Pr = Pr
avec IM(Pg) = F et Ker(Pr) = F+. On lappelle projection orthogonale sur F.
Elle est donnée par l’expression suivante, valable pour tout base orthonormée
(e1,...,e,) de F,

p
Pr(x):= Z@(Xfei)ei-
)

Preuve. Si x € FNF+, il vient ¢(x,x) = 0, et comme ¢ est définie, on a donc
x = 0. Ainsi FNF+ = {0}. On considere (ey,...,¢,) une base orthonormée de
F., et on pose pour tout x € E, Pp(x) := Zle @(x,e;)e;. Clairement Pr(x) € F.
On observe de plus que x — Pr(x) € F*. En effet, on a pour tout y € F,

P(x=Pr(x),v) = @(x,9) = p(Pe(x),v) = p(x,9) = ) p(x,ei)ple;, ).

g

1. On exclut les cas pathologiques F = {0} et F = E.

12



De plus on a (dans le cas hermitien)

X, Zgo(ef,y)ei

= ¢(x, ),

ainsi @(x — Pp(x),v) = 0. L’écriture x = Pr(x) + x — Pp(x) montre donc que
F+F+ = E, et le premier point est prouvé. On vérifie sans peine que x
Pr(x) est une application linéaire telle que Pr o Pr = Pr. On observe que
x € Ker(Pg) ssi pour tout i =1,...,p, on a @(x,¢;) = 0, ce qui équivaut a avoir
@(x,v) = 0 pour tout y € F (car (ey,...,e,) est une base de F). On a donc
bien Ker(Pr) = Ft. Comme IM(Pr) C F, et que dim(F) + dim(F+) = dim(E),
le théoreme du rang appliqué a Pr montre que dim(IM(Pr)) = dim(F) et donc
IM(Pr) = F. Il reste a voir que Pr est unique. Observons d’abord que si z € F,
on a z = Pp(x) pour un certain x € E, et donc Pr(z) = Pr o Pr(x) = Pp(x) = z.
Soit maintenant x € E. Comme E = F® F+, on a une décomposition unique
X = Xp+ Xp1, et ainsi

=@

X, ZQD(% ei)ei]

p
) plneplesy) =g
i=1

Pp(x) = Pe(xp) + Pr(xps) = Pr(xp) = xf.
L’application Pr est donc unique. O

Théoreme 1.3.3 Soit (E,p) un espace euclidien ou hermitien, et soit F un
sous-espace vectoriel de E. Se fixant x € E, on a

X—= PF(X)”,

d(x, F):=inf||lx -] =
veF
et cet inf est atteint uniquement en v = Pr(x). Autrement dit, le projeté or-
thogonal de x sur F minimise la distance de x au sous-espace F.
Preuve. 11 est clair que puisque Pp(x) € F.

infllx =l < [lx = Pe(x)ll
veF

Soit v € F, on écrit

b = 9117 = [lx = Pe () + Pe(x) = .

I

13



Projection orthogonale sur F

En observant que Pr(x)—p € F et sachant que x — Pr(x) € F+, on a donc par
Pythagore (voir figure ci-dessus)

llx = lI* = lx = Pe(x)II* + [1Pe(x) = 21 = [lx = Pe(x)1?,
et donc en passant a l'inf on a

inf{lx = p[| = flx = Pr(x)ll
yeFr

d’ou I’égalité. On remarque de plus que si v € F est tel que ||[x—y|| = |[[x—Pr(x)||,
alors Pythagore montre que Pr(x) =y. O0.

Exemple. On se place dans E = R® muni du produit scalaire usuel noté ¢.,.),
et on considere
F={(x,,2)€R® : x+p+z=0}.

L’ensemble F est un sous-espace vectoriel et on va calculer la distance d((1, 2, 1), F).
On observe d’abord que (x,v,z) € F ssi (x,1,2) = (-v-2z,,2) = v(-1,1,0) +
2(~1,0,1). Ainsi F = Vect{(-1,1,0),(~1,0,1)} et v; = (=1,1,0), v5 = (~1,0,1)
constitue une base de F. Pour calculer la projection orthogonale Pr, il faut
orthonormaliser cette base. On a ||v1]| = V2 donc on pose e; = -=(~1,1,0).

V2

On calcule ensuite
1
6/2 =7 —<U2,€1>€1 = (—1,0,1) — E(—l,l,O) = (—1/2,—1/2,1)

7
€ _

A \/g(—1/2,—1/2, 1). On calcule donc maintenant
2

On a donc e, =
Pr(x,9,2) ={(x,v,2), e1)e; +{(x,1,2),e5)e5
= %(:u -x)(-1,1,0) + %(z —x/2-v/2)(-1/2,-1/2,1).
Ainsi Pr((1,2,1)) = (=1/3,2/3,-1/3), et

V3

d((1,2,1),F) =1I(1,2,1) = Pe((1,2, 1))l = 11(4/3,4/3,4/3)|| = 4?.

14



1.4 Endomorphismes et adjoints

Pour tout endomorphisme T d’un espace euclidien ou hermitien, on va
définir 'adjoint T* via le produit scalaire.

Proposition 1.4.1 Soit (E,p) un espace euclidien ou hermitien. Soit f : E —
E une application linéaire. Il existe une unique application linéaire f*: E — E
telle que pour tout x,v € E,

P(f(x),9) = @(x, f ().

Preuve. Unicité. Si on a pour tout x,p € E,

P(x, f1(v) = p(f (x),v) = p(x, f2(v)),

on a donc pour tout x,v € E,

P 1Y) = £(2) =0,

et en posant x = f1(v)—f2(v) et en utilisant que ¢ est définie on a f,(v) = f>(v)
pour tout v € E. Existence. On traite le cas hermitien, le cas euclidien est
analogue, mais sans conjugués. On considere (ey,ey,...,¢,) une base ortho-
normée de (E, ). On définit alors 'endomorphisme f* en posant pour tout
j=1,...,n,

)= plfle e
i=1
Avec cette définition, on a donc pour tout i, J,
plei, f7(ej) = @(f (e) €)).
On vérifie alors que si x =) ;x;e;, v = Z]- yie;, on a
P =) xTp(flee) =) xbyplen fi(e)),
ij i
et par sesquilinéarité et linéarité de f*, on tombe sur
P(f(x),2) = @(x, f*(v))-
La preuve est finie. O

Proposition 1.4.2 Soit (E, ) un espace Euclidien ou Hermitien. Soit f un
endomorphisme et 9 une base orthonormée de E. Alors on a l’identité ma-
tricielle :

Matg(f*) = tMat@(f) (cas Hermitien),
Matg(f*) = "Matg(f) (cas Euclidien).
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Preuve. C’est fait dans le calcul précédent : dans toute base orthonormée
(e1,€5,...,€,), On a

Pp(f(ej) ei) = p(f(ei)ej)
d’ou l'identité matricielle. O
Terminons cette section par une identité bien utile.

Proposition 1.4.3 Soit (E, p) un espace euclidien ou hermitien. Soit f : E —
E un endomorphisme. On a alors

Ker(f) = IM(f*)*.

Preuve. On a x € IM(f*)* ssi pour tout v € E, ¢(x, f*(v)) = 0. Mais on a donc
pour tout v € E,

P(x, () =@(f(x),v) =0.
Ceci équivaut donc & f(x) = 0, car ¢ est définie, et donc x € IM(f*)+ ssi
x e Ker(f). O

Remarque. Comme (F+)t = F, en remplacant f par f*, on a aussi

IM(f) = Ker(f*)*.

Terminologie. Si f est un endomorphisme tel que f = f*, il est dit auto-
adjoint. Si f est un isomorphisme et que f~! = f*, on dit qu’il est unitaire. Si
onafof*=f"of, ondit quil est normal. Toute application linéaire auto-
adjointe ou unitaire est normale, mais il existe bien sur des endomorphismes
normaux qui ne sont ni autoadjoint, ni unitaires, par exemple si U est unitaire
et si P € C[X] est un polynome, P(U) est normal mais en général pas unitaire
ni auto-adjoint.

1.5 Le théoreme de représentation de Riesz

Si E est un K-espace vectoriel, on appelle dual de E, noté E*, le K-espace
vectoriel des applications linéaires de E — KK (les formes linéaires).

Proposition 1.5.1 Si E est de dimension finie, alors on a dim(E) = dim(E¥).

Preuve. Soit (eq,...,e,) une base de E. Pour tout i = 1,...,7n, on note e;f la
forme linéaire définie sans équivoque par

* R
e; Zx]-ej =X
j

16



On va montrer que (e],...,ey) est une base de E*. C’est une famille libre. En
effet si Aq,..., A, € K sont tels que

Z/\ie’{ =0,
i

alors pour tout x € E, on a

Z/Lej(e]) =0= )L],
:

ainsi A; =... = A, = 0. C’est une famille génératrice. Soit ¢ € E*, on écrit
pour tout x € E,

() =00)_xie)= ) xille)) =) _eixl(er)

i i i
ainsi on a £ =) _;{(e;)e; et la preuve est finie. O

Théoréme 1.5.2 (Riesz) On suppose ici que (E, @) est euclidien ou hermitien,
donc de dimension finie. Pour tout ¢ € E*, il existe un unique vecteur y € E
tel que pour tout x € E on a

t(x) = p(x,p).

Preuve. On se limite pour simplifier au cas K = R. L’idée est la méme dans
le cas de C mais il faut faire attention a la semi-linéarité. On considere
I'application @ : E — E*, donnée pour tout v € E par

D(p)(x) = p(x, ).

Cette application @ est bien définie car x — @(x,v) est bien une forme li-
néaire. Elle est de plus linéaire car par bilinéarité de ¢, on a bien

D(v+Az)(x) = p(x, v+ Az) = @(x, 1) + Ap(x, 2) = P(v)(x) + ADP(2)(x).

Calculons le noyau de ®@. Si @(y) = 0, cela veut dire que pour tout x € E,
@(x,v) = 0, mais comme ¢ est définie, on a p = 0. Ainsi ® est injective.
Comme dim(E) = dim(E"), le théoreme du rang montre que @ est surjective.
O
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Un exemple. On considére E = R,[X], muni du produit scalaire

n

(P,Q)=) aiby,

i=0

ot P(X) =Y .a;X" et Q(X) =Y ,;b;X". L’application P > Jol P(t)dt est une
forme linéaire. Le théoreme de Riesz nous dit qu’il existe un unique polynome
Qo =2 ;b; X" tel que pout tout P =} .;a;X' € R,[X], on a

J;l P(t)dt =(P,Qp) = ;aibi.

En effet on a

1 1
) _ aj _
L P(t)dt:lZﬂiJ; ”“‘ZZ_M _ (P, Qu),

avec Qp(X) =) ; %XZ

Le théoreme de Riesz, et son extension en dimension infinie dans les es-
paces de Hilbert, est un outil tres puissant en algebre et en Analyse, voir
cours de L3 et M1. Comme son nom l'indique, il permet de representer toute
forme linéaire via le produit scalaire.
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Chapitre 2

Groupes d’isométries

2.1 Isométries

Définition 2.1.1 Soit (E,p) un espace euclidien ou hermitien. Une applica-
tion linéaire f : E — E est appelée isométrie ssi on a pour tout x € E,
ILfColl = lIxll, ow || . || est la norme euclidienne (ou hermitienne) associée
au produit scalaire @.

Dans le cas euclidien, on parle de transformation orthogonale, dans le cas
hermitien, on parle de transformation unitaire.

Proposition 2.1.2 Soit (E,¢) un espace euclidien ou hermitien et f un en-
domorphisme. On a alors les faits équivalents suivants.
1. Pour tout x € E, ||f (x)|| = ||x]|.

2. Pour tout x,v € E, on a ¢(f(x), f(v)) = @(x, ).
3. L’application f est un isomorphisme et f~! = f*.

Preuve. On fait une preuve circulaire. On commence par 1) = 2). C’est une
conséquence immédiate des formules de polarisation, voir Proposition 1.1.9.
Prouvons 2) = 3). Puisque pour tout x € E, ||f(x)|| = ||x||, si x € Ker(f) alors
Ilf (x)]| = ||x]| = 0 et donc x = 0. Ainsi Ker(f) = {0}, f est injective. Par le
théoreme du rang, f est donc surjective : ¢’est bien un isomorphisme, dont
I'application réciproque f~! est automatiquement linéaire. Par définition de
I’adjoint, on a pour tout x,v € E,

P(f(x), f) =p(x, o f(¥) = p(x,),

ainsi f*o f = Id, et par unicité de l'inverse f~! = f*. Prouvons pour finir
3) = 1). Pour tout x € E, écrivons

If (IP = @(f (), f(x) = @(x, [0 f(x)),
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(par définition de I’adjoint) et comme f*= f~! on tombe sur

If CONI” = @ (x,x) = [Ix1%,
et la preuve est bouclée. O

L’ensemble des isométries (noté U(E)) d’un espace Euclidien ou Hermitien
est naturellement muni d’une structure de groupe pour la loi o de composition
des applications linéaires. Plus précisément on a les fait suivants.

— L’élément neutre de U(E) pour la composition o est 'application iden-

tité Id.
— Tout f € U(E) admet un inverse & gauche et a droite f~! = f* pour
la composition o.
— La loi o est associative.
En général, ce groupe n’est pas commutatif!

Proposition 2.1.3 Soit (E,¢) un espace euclidien ou hermitien et f un en-
domorphisme de E. Alors f est une isométrie ssi l'image par f d’une base
orthonormée est orthonormée.

Preuve. On a vu précédemment que f est une isométrie ssi pour tout x,y €
E, o(f(x), f(v)) = ¢(x,v). Ainsi si (ey,...,¢e,) est une base orthonormée de
E, (f(ey),..., f(e,)) est sans difficulté une famille orthonormée, donc auto-
matiquement libre, et donc une base car elle a le bon cardinal. Récipro-
quement, supposons qu’il existe une base orthonormée (eq,...,e,) telle que
(f(e1,..., f(ey)) soit une base orthonormée, alors on a pour tout x =) 7, x;ey,
par linéarité de f,

n 2

) xif(e)

i=1

If ()11 =

’

on applique alors Pythagore (deux fois) qui nous donne

2 n

2
=) hilf=

i=1

n

inf(ez’)

i=1

x||?,

If ()II> =

et la preuve est finie. O

Que dire de la matrice d’une isométrie dans une base orthonormée ? Soit
donc f une isométrie et % = (ey,...,e,) une base orthonormée de E. Posons

M = Mat@(f).
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Comme f*= f~! on a donc M~! ="M, dans le cas réel, et M~ = M (cas
complexe). Si ‘M =M~ on a

det(M)det("M) = det(M.M™1) =det(I,) =1,

mais comme det('M) = det(M), il vient det(M)? =1 d’ot1 det(M) = 1. Par
le méme raisonnement, dans le cas complexe on a aussi |det(M)| = 1. Ces
propriétés conduisent naturellement au paragraphe suivant.

2.2 Groupes unitaires et orthogonaux

Définition 2.2.1 On a les définition suivantes.

— On note O,(R)={M e M,(R) : M'M =1,}, c’est le groupe orthogo-
nal.

— On note U, (C)={M e M,(C) : MM = I}, c’est le groupe unitaire.

— On note SO, (R) ={M € O,(R) : det(M) =1}, c’est le groupe spécial
orthogonal.

— On note SU,(C)={M € U,(C) : det(M) =1}, c’est le groupe spécial
unitaire.

Remarques. On vérifie sans peine que si M'M = I,,, alors M est forcément
inversible car det(M) = +1 et M~! ='M. Ainsi la matrice de toute isométrie
d’un espace euclidien de dimension n est orthogonale. De méme la matrice
de toute isométrie d’un espace hermitien de dimension n est unitaire. Les
ensembles O,(R), SO,(R), U,(C et SU,(C) sont des groupes pour la multi-
plication matricielle. Réciproquement, toute matrice orthogonale (resp. uni-
taire) peut étre vue comme la matrice d’'une isométrie de R” muni du produit
scalaire canonique (resp. C" muni du produit scalare hermitien canonique).

Si on munit R"” de son produit scalaire canonique, une matrice est or-
thogonale ssi les colonnes forment une base orthonormée par la Proposition
2.1.3. Par exemple les matrices (0 € R),

cos(6) —sin(0)

R(6):= sin(@) cos(0)

sont dans SO,(IR). Ce sont les matrices de rotations d’angle 6 dans le plan
R°.

Il grand temps d’aborder la notion délicate des angles.
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2.3 Angles et orientation

Dans cette section, (E, @) est un espace euclidien (donc K =R). On a vu
par Cauchy-Schwarz que si x,y € E, avec x,v # 0, alors

Py
el < 1

Définition 2.3.1 (Angle non-orienté de deuzr vecteurs) Si x,v # 0, angle
non-orienté des deux vecteurs x,y est l'unique 0 € [0, 7] tel que

¢(x,v) = [Ix[lllv[lcos(6).

Autrement dit on a

x|l

avec O = 0 ou 7 ssi x,v sont colinéaires. On peut remarquer qu’avec cette
définition on a 6(x,v) = 6(v,x), 'angle est dit non-orienté.

O(x,v) = arccos((p(x'y)),

Définition 2.3.2 Deux bases 9B, B’ d'un R-espace vectoriel sont dites de
meéme orientation ssi det(Pg g) > 0, ou Pg g est la matrice de passage

de la base B o G’ .

L’espace euclidien IR” muni de sa base canonique est muni d’une notion
d’orientation naturelle : une famille libre de n vecteurs vy,...,v, sera dite
directe (ou positivement orientée) si le déterminant de ces n vecteurs dans la
base canonique est > 0, ce qui revient a dire que si % est la base canonique
et B’ =(vy,...,v,), ces deux bases ont méme orientation. On voit alors que
SO,(R) est le groupe des isométries de IR"” qui preservent [’orientation.

En dimension 2, si on se donne un vecteur non nul e € R?, il existe un unique
vecteur ¢’ de méme norme tel que (e,e”) soit une base othogonale directe.
En effet, si e = (x,y) avec x> +y2 # 0, comme e’ est une droite on doit avoir

e = A(-y,x),

avec A = +1 car on veut ||e’]|* = x?> + v2. La condition det(e,e) > 0 force

A=1. Ainsi
e = (-y,x).
On appellera dans la suite ¢’ le vecteur directement orthogonal & e.

La notion d’angle orienté de deux vecteurs n’a de sens qu’en dimension
n=2.
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Définition 2.3.3 Soit (E, ) un espace euclidien orienté de dimension 2. Soient

—

x,v € E avec x,v #0. L’angle orienté O(x,v) est l'unique 6 € IR/21Z tel que
lon a _

¢(x,2) = lIxllllyllcos(0),
et _

det(x,y) = [[x[lllpllsin(6).

Ici det(x,v) est calculé dans une base orthonormée orientée. L’angle O(x,v)
est défini modulo 27t.

On peut vérifier que maintenant,

— —

0(x,v) =-0(y,x) [27].

Cette définition nécessite une explication. Soit % une base orthonormée di-
recte de E et posons %’ = (x,p). Alors un calcul montre que

_ [ elxx) @xy) | _;
B'_( P(v,x) @(v,7v) )_ Po.aPaz-

On a donc
det(B) = det(Pg, )% = x> - ¢(x,v)?,

ce qui nous donne

det(x,y>)2 (qo(w))z_
(uxnnyn \ienr) =

On sait que si a,b € R sont tels que a + b? = 1 alors il existe une unique 6
modulo 27 tel que a = cos(6) et b =sin(6).

On retiendra que det(x,y) est [aire (algébrique) du parallélogramme
donné par x,v et que

—

|vllsin(6).

On a par ailleurs obtenu par ce calcul une autre preuve de Cauchy-Schwarz.
En effet,

X

Aire(x,p) =

0 < det(Pg, 5)* = IxIPIWII* — (x,v)?

ainsi

X

(e ) < NIyl
avec egalité ssi det(Pg /) = 0, i.e. (x,7) est liée.

Que se passe-t-il dans IR?? Méme si on a choisi une orientation de R3,
un plan vectoriel V dans R? n’hérite pas canoniquement d’une orientation
naturelle. Il faut se donner un vecteur unitaire e; normal a V. Une base (e, ¢;)
de V sera dite orientée positivement ssi la base (eq,e;,e3) est positivement
orientée.
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2.4 Etude de O,(IR) et O3(R) : les isométries du
plan et de ’espace

On va commencer par le théoreme suivant qui classifie completement les
éléments de O,(IR).

Théoréme 2.4.1 Soit M € O5(R), vu comme isométrie de R*>. On a les pos-
sibilités suivantes.

1. Soit det(M) = —1 et il existe une base orthonormée directe de R?> dans
laquelle la matrice de M devient

1 0
(o)
i.e. M=USU™!, ot U € SO,(R).
2. Soit det(M) =1 et il existe O € R tel que

_ [ cos(B) —sin(O)
M_( sin(6) cos(0) )

Preuve. On commence par supposer que det(M) = 1. Ecrivons
a b
e 8)
Comme les colonnes de M sont orthogonales, on a ab+cd = 0 et donc les
vecteurs (a,—c) et (b,d) sont liés. Mais comme 1 = b* +d?, (b,d) # (0,0) et
donc il existe A € R tel que (a,—c) = A(d,b). On a aussi det(M)=ad —bc =1
donc A(d?+b%) = A =1. Ainsi on a obtenu a =d et c = —b avec a’> +b> = 1.

11 existe donc 0 € R tel que cos(0) =a et sin(0) = b, et donc le point 2) est
prouvé. Supposons que det(M) = -1, et écrivons de nouveau

a b
M _( c d )
Pour les mémes raisons que précédement, on a (a,—c) = A(d,b) et ad—bc = —1.

Ceci entraine que A = —1 et donc on a

avec a® +c? = 1. Remarquons que si a = 1 alors ¢ = 0 et donc
1 0
(o 5)
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et il n’y a plus rien a prouver. Supposons donc a # 1, alors le vecteur colonne

_c
— 1—a
()

vérifie MX = X. Le vecteur directement normal (de méme norme) est

-1
v L)
1-a

et un calcul direct montre que M X" = —X”. En posant ¢; = ﬁ et ey = X2

X
XA
on obtient bien une base orthonormée (directe) telle que la matrice de M
dans la base (e, e;) est exactement

(b 5)

On voit donc que les isométries d'un espace euclidien de dimension 2
sont de deux types : une réflexion orthogonale, ¢’est le cas 1) ou l'orientation
est renversée, ou une rotation, c’est le cas 2). En particulier les éléments

le théoreme est prouvé. O

de SO,(IR) sont donc tous des rotations. Dans ce cas, si X = ( ; ) avec
X%+ y2 =1,o0na

(MX,X)=cos(0) et det(X,MX) =sin(O),

—_

donc I'angle orienté O(X, M X) est exactement 6 modulo 27t. Notons que —I,
préserve 'orientation et correspond a une rotation d’angle orienté +7t.

SO;,(RR) est un groupe commutatif : on peut vérifier que posant

cos(0) —sin(0)

R(©):= sin(0) cos(0) |’

on a pour tout 61,60, € R, R(01)R(0,) = R(6,)R(01) = R(0;+6,), voir exercice
en TD.

Abordons le cas de la dimension 3. On a le théoréme suivant.

Théoreme 2.4.2 Soit M € O5(RR), vu comme isométrie de R3. On a les pos-
sibilités suivantes.
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1. Soit det(M) = —1 et il existe une base orthonormée directe de R> dans
laquelle la matrice de M devient de la forme (6 € R)

cos(0) —sin(@) 0
S=| sin(@) cos(@) O
0 0 -1

2. Soit det(M) = 1 et il ewiste une base orthonormée directe de R> et
0 € R tel que M se transforme sous la forme

cos(0) —sin(B) 0
R=| sin(@) cos(@) O
0 0 1

Preuve. Considérons le polynome caractéristique x () = det(M —Al3). Clest
un polynome de degré 3, donc par le théoreme des valeurs intermédiaires, il
admet un zero réel noté Ay € R. On rappelle, voir cours de L1, qu’il existe
donc un vecteur propre X, € R3, non nul, tel que MX, = 1yXo. On peut
bien sur supposer que ||Xy|| = 1. Comme M est une isométrie, on a ||M Xy|| =
[ Xoll = 1ApllIX0ll, et ainsi Ay = £1. Considérons maintenant I'orthogonal de
Xy, c’est a dire
Xg={(YeR® : (V,Xq) =0}

Pour tout Y € XOL, on a
(MY, X)) =(Y,M*Xy) =(Y,M™ 1 Xo) = (Y, X,) = 0.

Ainsi F = XOl est stable par M. C’est un espace euclidien de dimension 2,
on est ramené au cas précédent. On voit ainsi que si det(M) =1, soit Ay =1
et alors det(M|r) = 1 et on est donc dans le cas 2) : on choisit une base
orthonormée (eq,e,) de F tell que (e, e;, Xy) soit directe, et la matrice de M
dans cette base est de la forme 2). Si Ay = -1, on doit avoir det(M|g) = -1,
et en choisissant une base orthonormée (positivement orientée par X,) de F
la matrice de M devient

-1 0 0
O 1 0 |,
0 0 -1

ce qui apres une permutation circulaire des vecteurs de la base donne en fait
le cas 2) avec 6 = 1. Le cas ou det(M) = —1 est analogue. O

Dans le cas 2), M est appelée rotation d’angle orienté O et d’axe dirigé
par X,. Notons que l'orientation du plan Xé‘ découle du choix de X;. Comme
SO3(R) est un groupe, la composée de deux rotations est toujours une rota-
tion. Il est en revanche non-commutatif (le vérifier en exercice).
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Rotation d’angle 0, d’axe é = Vect(Xj).

Le Théoreme 2.4.2 est une version moderne d'un théoreme d’Euler (1776)
que l'on cite ici en latin.

Theorema : Quomodocunque sphaera circa centrum suum conuertatur,
semper assignari potest diameter, cuius directio in situ translato conueniat
cum situ initiali.

La traduction francaise approximative serait : si on fait tourner une sphere
autour de son centre, on peut toujours trouver un diametre qui reste invariant
lors de cette transformation. C’est la droite engendrée par le vecteur X, de
la preuve précédente...

Un exemple de matrice de rotation. Calculer la matrice (dans la base cano-
nique) de la rotation 9% d’angle +7 et d’axe é = Vect((1,1,1)). Remarquons
que

&t ={(x,v,2)eR’ : x+v+2z=0).

Une base évidente de é+ est v, = (1,-1,0, v, = (1,0,—1). En appliquant
le procédé d’orthonormalisation de Schmidt a (v,v,) on trouve une base
orthonormée donnée par e; = %(1,—1,0) et e; = \/g(l/Z,l/Z,—l), que l'on
complete par e3 = \%(1,1,1). On vérifie que det(e,e;,e3) > 0 et donc la
matrice de 97 dans cette base est (avec O = 17/4),

VB
2 2
M:ﬁﬁo
2 2
0O 0 1
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Il reste maintenant a calculer la matrice de & dans la base canonique : la
matrice de passage P de la base canonique a % = (eq, €5, e3) est

1 1 1
P=1"Vi Ve V3

Comme P est orthogonale, on a P™! =P, et il ne reste plus qu’a calculer
142 1=V3-VE 1346
3 6 G
Matb.c.(%) =PM tP = 1—\/g+\/€ 1+3\ﬁ 1—\/2—\/6
1V2-V6  1-V24V6  14V2
6 6 3

2.5 Le produit vectoriel dans R’
On se place ici dans Iespace euclidien R3 muni du produit scalaire cano-
nique noté (., . ).

Théoréme 2.5.1 1. Pour tout vecteurs U, V,W € R3, la quantité det(U, V, W)
est invariante par changement de base orthonormée directe.

2. Pour tout vecteurs U,V € R3, il existe un unique vecteur dans R>, noté
UAV, tel que pour tout W € R> on a

det(U,V,W)=(U AV, W).

Preuve. 1) Si U est le vecteur colonne des coordonnées dans la base canonique,
alors dans toute autre base orthonormée directe on a U = PU’ ot P € SO3(IR)
est la matrice de passage a la nouvelle base et U’ les coordonnées de U dans
cette nouvelle base. Mais donc comme le déterminant d’un produit matriciel
est le produit des déterminants, on a la formule

det(U,V,W)=det(PU’,PV’,PW’) =det(P)det(U’,V’,W’) =det(U’, V', W),

car det(P) =1.
2) Se donnant U,V € R3, I'application

W > det(U, V, W)

est une forme linéaire sur IR?, donc par le théoréme de Riesz, il existe un
unique vecteur U AV tel que pour tout W,

det(U,V,W)=(U AV, W).
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La preuve est finie. O

Le vecteur U AV est appelé produit vectoriel des vecteurs U, V. L’opé-
ration "produit vectoriel” vérifie les propriétés suivantes.

Proposition 2.5.2 — Pourtout U,VeR3, ona VAU=-UAV.
— Pour tout U,V,Z€eR3 et A e R, on a

(U+AV)AZ=UAZ+A(V AZ).

— Pour tout U,V € 1R3, ona UAV =0 ssi U,V sont colinéaires.
— Pour tout U,V € R3, avec U,V linéairement indépendants, on a

(UA V)t =Vect(U, V).

Preuve. C’est un exercice facile basé sur 'unicité de U A V et les propriétés
du déterminant. O

Proposition 2.5.3 Pour tout U,V € R?, on a

U AVI=UILIVILsin(6(U, V)L,
ol 5( U, V) est l’angle (orienté) des vecteurs U,V dans le plan F = Vect(U, V),
l’orientation de F étant donnée par le vecteur normal U AV .

Preuve. On peut bien sur supposer que U,V sont non colinéaires. On a par
définition

lUAV|I? =det(U,V,U A V).
On calcule alors ce déterminant dans une base orthonormée directe (e, e,, e3)
ou (e, e;) est une base orthonormée de F et e3 est colinéaire a U A V. Dans
cette base on a U = xje1 + X365, V =v1e1 + V65 et UAV =£||U A Vlle; de
sorte que

X1 0 0
det(U,V,UAV)=| %, 1, 0 — +det(U, V)||U A V||
0 0 #|UAV|

En simplifiant par ||[U A V|| et en prenant la valeur absolue on a bien

—

U A V[ =]det(U, V)| = [[U[L.IVIl.|sin(6(U, V))I.

La preuve est finie. O
En pratique, on peut calculer le produit vectoriel en coordonnées par la
recette suivante.
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Proposition 2.5.4 Soit (e1,e,,e3) une base orthonormée directe de R3. Alors
si U= Z?Zl ue; et V= Z?:l vie;, on a

UAV =(uyvs—usvy)e; + (uzvy —uyvs)ey + (U vy — upvy)es.

Preuve. On commence par remarquer par les propositions précédentes que
ey ANey =e3, e ANes = e et e3 Aep = ep. En utilisant 'antisymétrie et la
bilinéarité du produit vectoriel, on a

Zuiei]/\ Zvjej :Z(uivj—ujvl-)ei/\ej,

F -

j i<j

UAV =

et on obtient la formule en calculant composante par composante. O
Attention, le produit vectoriel n’est pas associatif, mais il existe une for-
mule dite du double produit vectoriel que 'on cite ici.

Proposition 2.5.5 Soit U,V,W € 1R3, on les identités suivantes.
— (Double Produit Vectoriel) U AN(V AW)=(U, W)V —(U,V)IW.
— (Jacobi) UN(VAW)+ WA(UAV)+VAWAU)=0

Preuve. Voir exercice en TD.

Il n’est pas possible de définir un produit vectoriel en dimension quel-
conque en conservant ces propriétés remarquables. On peut en revanche, en
dimension 7, définir le produit x; A... A x,,_; par un déterminant analogue.
La bonne généralisation de l'opération A est celle du produit exterieur, voir
cours de M1.

2.6 Produit vectoriel et rotations

On a vu précédement que si U,V sont des vecteurs non-colinéaires, alors

det(U,V,UAV)=|UAV|?*>0,

donc (U,V,U A V) est une base orientée positivement, avec (U A V)t =
Vect(U, V). On va utiliser ces propriétés pour établir une formule intrinseque

exprimant I'action d’une rotation sur un vecteur quelconque de R3.

Proposition 2.6.1 (Formule de Rodrigues) Soit N un vecteur unitaire de IR
et 6 € R. Notons % € SO3(RR) la rotation d’aze N et d’angle égal a 6 modulo
27t. Pour tout U € R?, on a

F(U)=cos(0)U + (1 —cos(0)){U,N)N +sin(O)N A U.
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Preuve. Posons V =U —(U,N)N. On a
R(U)=R(U,N)N+V)=(U,N)N +Z (V).

Comme V € N+, laction de & sur V est celle d'une rotation de SO,(RR)
d’angle 6. On remarque de plus que N AV est un vecteur de N+ directement
orthogonal & V (pour lorientation de N+ induite par N). Comme N est
unitaire et que N et V sont orthogonaux, on a de plus

INAVII=(VII
Dans la base orthonormée % = (e1,e,) avec e = v € = %, la matrice
de % est donc
[ cos(0) —sin(O)
Matg(#)=| Ging) cos(@) |

et ainsi
FK(V)=cos(0)V +sin(O)N AV,

ce qui donne finalement
R (U)=(U,N)N +cos(0)V +sin(O)N AV

=cos(0)U + (1 —cos(0)){U,N)N +sin(0)N A U.
La preuve est complete. O
La formule de Rodrigues présente plusieurs intéréts : elle est intrinseque,
peut se composer...Elle donne une formule générale pour la matrice d’une
rotation (exprimée dans la base canonique) d’angle 6 et d’axe N = (a,b,¢)

avec a’+b*+c?=1.
Matb.c.(%) =

cos(0) + (1 —cos(0))a? ab(1 —cos(0))—csin(0) ac(l —cos(0)) + bsin(O)
ab(1 —cos(0)) +csin(0)  cos(0) + (1 —cos(0))b?>  be(1 —cos(0)) —asin(O)
ac(1 —cos(0)) —bsin(0) be(1 —cos(0)) +asin(@) cos(0) + (1 —cos(0))c?
D’un point de vue numérique, le calcul des produits de matrices de ro-
tation est couteux, on lui préfere pour les applications (animation, images

générées par ordinateur) l'utilisation des quaternions dont on ne parlera pas
trop ici, faute de temps...
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2.7 Compléments : le groupe SU,(C)

Le groupe SU,(C) est le groupe des matrices unitaires de déterminant 1
en dimension 2. On rappelle que C? est muni du produit scalaire hermitien

<Z' W> =zZ1W] + 2wy,

avec Z = (z1,25) et W = (wy,w,). Comme l'image de la base canonique par
U € SU,(C) est une base orthonormée de €2, les colonnes de U doivent étre
orthogonales et de norme 1. On voit donc que toute matrice U € SU,(C) est

de la forme _
u=( 2 P
B al
avec a, f € C tels que |a]> +|B|> = 1. En écrivant a = x; +iy; et f=x,+ 17,
avec X1,X2,01,V, € R, on voit que

ol +1BlP =1l o xf+x3+v1 +v5 =1,

ce qui montre que SU,(C) est en bijection avec la sphére unité S° de R*
(pour la norme euclidienne standard). En particulier la sphere S° peut étre
munie d’une structure de groupe (celle se SU,(C)). Il n’est pas difficile de
montrer, en calculant le polynome caractéristique, que toute matrice U €
SU,(C) est diagonalisable, avec des valeurs propres conjuguées de module
1. La diagonalisation peut se faire en outre en base othonormée (voir le
chapitre suivant sur les endomorphismes normaux). En résumé, toute matrice
U € SU,(C) peut s’écrire sous la forme

U=VDyV*

el 0
DGZ( 0 0 )

On va voir que malgré les apparences, SU,(C) est en fait tres voisin de
SO;3(IR). Considérons I’ensemble 7 suivant.

ou Ve SU,(C) et

avec 0 € R.

Y = (M eM,(C) : Tr(M)=0 et M* = M).

Ici Tr(M) désigne la trace d’'une matrice, c’est a dire la somme de ses élé-
ments diagonaux. On va voir facilement que 7 est un R-espace vectoriel de
dimension 3. En effet, si M;,M, € 7 et A € R, alors il est clair que

Tr(Ml + /\Mz) = Tr(Ml) + )\TI(MQ) = 0,
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ainsi que
(Ml + AMz)* = MI + /\M; = M] + /\MZ

Par définition de 77, on voit que M € 7 ssi il existe a,x,7 € R tel que
M :( a  xX+iy )
x—iy a

M = })Tl + XT2 + aT3,

Donc on a

ou Ty, T5, T3 est une base de 77 donnée par

0 —i 0 1 10
n=( )] el )

On va définir un produit scalaire sur 77 qui en fait un espace euclidien de
dimension 3. Posons pour tout A,B€ 7/,

Q(A,B):= %Tr(AB).

Il s’agit bien d’une forme bilinéaire symétrique, car la trace est linéaire et on
a toujours Tr(AB) = Tr(BA). Pour voir qu’elle est définie on utilise le fait que

siM:( a b )E%alors
c d

2¢0(M, M) = Tr((MM*) = |a]?> + |b]? + |c|* +|d|*.

On laisse le lecteur vérifier que (T}, To, T3) est en fait une base orthonormée
de 7 pour le produit scalaire ¢. On va construire une application

Ad: SU,(C) — GL(V)

en se basant sur I'espace (7, ). Posons pour tout U € SU,(C), pour tout
Me?7,
Ady(M):=UMU".

Cette application est bien définie : si M € 77, on a
Tr(UMU")=Tr(U'UM) =Tr(M) =0,
ainsi que

(UMU* = UM*U* = UMU".
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De plus, pour U € SU,(C) fixée, 'application M +— Ad (M) est linéaire, et
préserve le produit scalaire car

P(Ady (M), Ady(M)) = %Tr(UMU*UM U*) = %Tr(MZ) = (M, M).

Ainsi la matrice de Ady dans la base (T, T, T3) est dans O3(R). Examinons
I’action de Ady; sur cette base dans le cas simple ot U = Dy. Un calcul direct
montre que

0 —ie?i? .
AdU(T3) = T3, AdU(Tl) = ( i€_2i9 0 ) = COS(ZQ)Tl + 51n(29)T2,

0 €2i9
AdU(Tz) = ( 6_21-6 0 ) = COS(29)T2 — Sln(29)T1

Ainsi la matrice de Adp, dans la base % = (T, T, T3) est

cos(20) —sin(20) 0O
0 0 1 ]

Mat%(AdDQ):{ sin(20) cos(20) 0

Donc Ady; est une rotation d’angle 20, une isométrie directe (pour 'orien-
tation donnée par %) ! Le cas général ou U = V Dy V™ n’est pas plus dur : il
suffit de remplacer la base &% par la base conjuguée par V. En résumé, on a
construit une application

. U — Matg(Ady) '

Avec un peu plus de travail, on peut montrer que J est surjective. C’est de
plus un morphisme de groupes (le vérifier). Elle n’est pas injective, mais son
noyau est Ker(J) = {I,}. En effet, si Ady =1d, c’est que 6 = 0 modulo 7, et
donc U = +I5.

En termes savants (voir M1), on dira que SU,(C) est un revétement
double de SO3(RR)...L’application Ad ne sort pas du chapeau. C’est la re-
présentation adjointe de SU,(C), et 7 n’est autre que l'algebre de Lie réelle
de SU,(C), voir cours de M1 sur les groupes et algebres de Lie.
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Chapitre 3

Réduction des endomorphismes
auto-adjoints

3.1 Sur les déterminants

On rappelle dans cette section les propriétés de bases sur les déterminants
(qu’on a déja librement utilisés dans le chapitre précédent). L’ensemble des
bijections o : {1,...,n} — {1,...,n} forme un groupe pour la composition o
appelé groupe symétrique d’ordre n, et noté S,. Le cardinal de S,, est donc
|S,| = n! Une transposition 7 = (i j) € S,, est une bijection qui échange deux
éléments de S, et laisse les autres invariants : 7(i) = j, 7(j) =1 et pour tout
k=i,j, t(k)=k.

Théoreme 3.1.1 Toute permutation o € S, différente de l’identité peut s’écrire
comme un produit de au plus n —1 transpositions : les transpositions en-
gendrent S,,.

Preuve. Par récurrence sur n. Si n =2, on a S, = {Id,(1 2)}, le théoreme
est bien vrai. Supposons avoir démontré le résultat au rang n. Considérons
0 €S,,1, différente de I'identité. Il existe donc iy € {1,...,n+1} tel que o(ip) =
jo # ig. Soit T = (iy jo la transposition qui échange iy et j, et considérons
0’ =100.0nao’(iy) = iy, donc ¢’ induit une bijection o’ : {1,...,n+1}\ig —
{1,...,n+1}\ iy, on peut donc appliquer I'hypothese de récurrence a o’ qui
dit que 0’ = 1y 0... 7, o Ty,..., T; sont des transpositions et k < n—1. Ainsi
on a
o=To0 =ToT,0...7,

est le théoreme est prouvé par récurrence. O

Attention, cette décomposition n’est pas unique, par exemple dans Sj,
la permutation circulaire o définie par o(1) = 2, 0(2) = 3, 0(3) = 1 s’écrit
o= (1 2)(2 3) mais aussi 0 = (3 2)(1 3).
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Théoréeme 3.1.2 1[I existe un unique morphisme de groupes € : S, — {-1,+1}
tel que €(t) = —1 pour toute transposition T. On appelle signature.

Preuve. Unicité. Si o € Sy, alors par le théoreme précédent, il existe une
décomposition de o en produit de transpositions o = 7; 0...0 7, et comme &
est un morphisme, on a

e(o)=¢(ty)... (1) = (—1)k,

donc ¢(0) est completement déterminée par k.
Existence. Posons pour tout o € §S,,,

e(o):= ]_[ (—U(]]):f(l))
1<i<j<n

Si on note P 'ensemble des parties {7, j} a deux éléments de {1,...,n}, 'ap-
plication T, ({i,j} ={0(i),0(j)} est une bijection de P — P. Ceci montre par
changement d’indice que

= :1’

. lo(j)-o(i) Tlijerlo()—a()l
le(o)l = ]_[ =] M perli— 1

{i,jle®

donc ¢(o0) € {—1,1}. 1l faut ensuite vérifier que c¢’est un morphisme, ce qui
découle d’un changement d’indice analogue. On montre ensuite en distinguant
les cas que si 0 est une transposition alors ¢(0) =-1. O

Définition 3.1.3 Soit E un K-espace vectoriel. Une application 1 : EP — K
est dite p-linéaire alternée ssi elle est linéaire par rapport a chaque variable
et si P est nulle sur toute p-famille de vecteurs dont au moins deux sont
€gaux.

Théoreme 3.1.4 Soit E un K-espace vectoriel et 1 : EP — K une forme p-
linéaire alternée. Alors pour tout o € S,, pour tout x1,...,x, € E, on a

P(Xo (1) 0 Xo(p)) = (@) P(x1,- -0, Xp).

Preuve. On commence par faire I’observation suivante. Si i,j €{1,...,p} sont
deux indices distincts, on a par multilinéarité

LP(...,XI'-I-X]',...,XZ'+X]',...) =0= z,b(...,xi,...,xj,...)+gb(...,x]-,...,xi,...)

+Lp(...,xi,...,xi,...)+Lp(...,xj,...,x]-,...),
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ce qui montre que (..., x;
si T est une transposition,

,x]-,...) =-yY... Xjseeer Xiy ...). En d’autres termes,

IID(XT(l)r' . ';XT(p)) - _¢(x1,- ..,Xp).

Le cas général s’obtient en décomposant o en produit de transpositions. O

Théoreme 3.1.5 On suppose ici E = K". L’espace des formes n-linéaires al-
ternée f : E" — n est de dimension 1. Si on impose f(ey,...,e,) =1 ou
(e1,...,€y,) est la base canonique de E = K", on appelle f(xy,...,x,) le déter-
minant des n-vecteurs xy,...,x, que l'on notera det(xy,...,x,).

Preuve. On écrit pour chaque vecteur x;, x; = Y x;ie;. On a donc

f(x1,..,x,) = Z X1 Xinf(€isnnri)

(i1yeenrin)E{ L)

Comme la forme f est alternée, tout les termes qui ne correspondent pas a
une indexation bijective k + i, s’annulent. On peut donc réecrire

f(Xl,...,Xn) = Zxa nf o (1 -'ea(n))

o€eS,

= Zé(O')AU( nf e1,..,6y) = fler,...,e,) Ze(a)xg(l)l...xg(n)n.

o€eS, o€eS,

On voit donc que cet espace est de dimension 1 et cette n-forme f est unique
si on impose f(ey,...,e,) = 1. Réciproquement, on vérifie (exercice) que si on
pose

fxy,..,x,) = Z €(0)Xg(1)1 -+ X (n)ns

o€S,

elle a bien les propriétés demandées. O

Si M = (m;;) € M,,(K), on définit son déterminant par

det(M) = det(My,..., My) = ) &(0)Mg(1)1 - Mo(nm

o€S,

ou My,...,M,, sont les n colonnes de la matrice M, vus comme vecteurs de
K”. On le note aussi matriciellement

det(M) =



Proposition 3.1.6 On a les propriétés suivantes.

1. On adet(l,)=1.
Pour tout A e M,(K), A €K, on a det(AA) = A"det(A).
Pour tout A, B e M,(K), on a det(AB) = det(A)det(B).
Pour tout A € M,(K), on a det('A) = det(A).

Une matrice A est inversible ssi det(A) # 0. Dans ce cas on a det(A™!) =
(det(A))~!.

Preuve. Les points 1) et 2) sont faciles. Pour le point 3) on observe que
I’application
(X1,...,X,) > det(AXy,...,AX),)

est n-linéaire alternée. Comme c’est un espace de dimension 1, il existe A(A) €
K tel que pour tout (Xy,...,X,) € K", on a

det(AX),...,AX,) = A(A)det(X,,..., X,,).

En prenant X, =e,...,X,, = e, on voit que A(A) = det(A). Le résultat s’obtient
alors en particularisant avec X; = By,...,X,, = B,, ou By,..., B,, sont les vecteurs
colonnes de B. Le point 4) est plus technique et se montre a partir de la
définition en faisant le bon changement d’indice dans la somme portant sur
toutes les permutations. Pour le point 5), si A n’est pas inversible alors son
rang est < n, donc ses colonnes sont liées. Un des vecteurs colonnes s’exprime
donc comme combinaison linéaire des autres ce qui par le fait que det est
multilinéaire alternée entraine que det(A) = 0. Par la contraposée, det(A) = 0
implique donc que A est inversible. Clairement si A est inversible, AA™! =1,
et donc par 3) on a det(A)det(A™!) =det(I,)=1. O

Exemples. En dimension n = 2, on a directement par la définition

a b
-4 ‘—ad—bc.

En dimension n = 3, on a plus péniblement en listant les 6 permutations de
53

a b c
d e f |=aei+dhc+gbf—(gec+dbi+ahf),
g h i

ce qu’on peut retenir par le moyen mnémotechnique des diagonales montantes
et des diagonales descendantes (regle de Sarrus).
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En dimension quelconque, il existe une technique de développement par rap-
port a une ligne ou une colonne qu’on va expliquer ici. Un peu de terminologie
s'impose. Si M = (m;;) est une matrice carrée d’ordre n, on appelle cofacteur
d’indice 7, ], noté A;;, le déterminant de la matrice extraite de M en rayant
la colonne d’indice j et la ligne d’indice 1.

Proposition 3.1.7 Pour tout j =1,...,n, on a

n

det(M) = Z(—l)”mij.

i=1
Comme det("M) = det(M), on a aussi pour touti=1,...,n,

n

det(M) = Z(—1)l’+fAij.

=1

Preuve. On commence par examiner le cas ot M est de la forme :

myp Mipp ... My,
0 Moy ... Mpy

M =
0 mypy ... my,

Par définition on a

det(M) = Z, 5(0)77’[0(1)1 oo Ma(n)nr

o€eS,

mais My (1)1 = 0 pour toute permutation o telle que o(1) # 1. La somme se
réecrit donc

det(M) = mq; Z My2)2--- Mg(n)n

g€S, : a(l)=
= my, det(M),
ou on a posé
Myy ... My,
M =
Myy oo My,

Fixons maintenant j € {1,...,n}. En écrivant la colonne M i de M sous la
forme M; = Y mjje;, on a par linéarité par rapport a la j-eme colonne,

n
det(M) = det(My, ..., M;,..., M) = Zml-jdet(Ml,...,ei,...,Mn).
i=1
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En permutant i fois les lignes et j fois les colonnes de [Mj,...,¢;,...,M,] on
se ramene au cas précédent et on a

det(My,...,e5,...,M,) = (-1)"" Ay,
La preuve est finie. O

Corollaire 3.1.8 Si une matrice est triangulaire supérieure ou inférieure, son
déterminant est le produit des coefficients diagonauz.

La preuve est immédiate par récurrence en développant par rapport a la
premiére colonne (cas triangulaire supérieure), ou la premiere ligne (cas tri-
angulaire inférieure).

Définition 3.1.9 Soit f un endomorphisme d’un K-espace vectoriel de di-
mension finie. Soit % une base de E. Le déterminant de f, noté det(f), est
par définition

det(f) := det(Mat z(f)).

Cette définition ne dépend pas du choix de la base Z. En effet, si A’ est
une autre base, on a par changement de base

Mat g (f) = P 4 Matg(f)Pg,a,
ou Py, g est la matrice de passage de & a %’. Ainsi on a
det(Mat g (f)) = det(Py) , Mat (f)Peg, /)

= det(Pg,7) "' det(Mat 5(f)) det(Pg o) = det(Mat ().

De méme que pour les matrices, un endomorphisme f est un isomorphisme

ssi det(f) = 0.

3.2 Rappels sur la diagonalisation des endomor-
phismes

Définition 3.2.1 Soit E un K-espace vectoriel de dimension finie. Soient F1,...,F; C
E des sous-espaces vectoriels de E. On dit que la somme Fi+...+F} est directe,
et on la note F1 ®...® Fy, ssi pour tout vecteurs (xq,...,Xx) € F{ X... X Fy,

X1+X+...+x,=0=>x;=x,=...=x;, =0.

40



Proposition 3.2.2 La somme F+...+F} est directe ssi pour tout x € F{+...+
Fy, il existe un unique k-uplet (xy,...,x;) € Fy x...xFy tel que x = x1+...+ Xk.
De plus, on a

dim(F; ®...® F;) = dim(F) + ... + dim(Fy).

Preuve. Si la somme est directe, supposons que 'on ait deux telles décompo-
sitions
X=X+ X=X+ X,
on a donc
Xp =X 4.+ X —x,. =0,

avec pour tout i =1,...,k, x; —xlf € F;. Par définition de la somme directe on
a donc x; = x; pour tout i. Réciproquement si x; +... + x; = 0 avec x; € F;
pour tout 7, par unicité de I’écriture on doit avoir x; = 0 pour tout i.

Pour chaque sous espace F;, avec dim(F;) = m;, considérons %; = (ei, ey eini)
une base de F;. On va montrer que

1 1 2 2 k k
B = (€1seems s €1renerCinyreer€1rensCin,)

est une base de F{ @...® Fj. C’est une famille libre car si on a des scalaires
Aij € K tels que
kK m;
i _
33 =
i=1 j=1

alors par définition d’une somme directe on a pour tout i
m;
i _
Z/\l i€ = 0
j=1

et ainsi A;; = 0 pour tout 7, j car les vecteurs e;- sont libres. C’est évidemment
une famille génératrice car tout élément x € F ®...® F; s’écrit sous la forme
X = X1+...+x; avec x; € F;. Comme ; est une base de F;, chacun des x; s’écrit
comme combinaison linéaire des vecteurs e;: et c’est fini. On peut conclure, la
dimension de F; &...® Fj est donc my +...+m =dim(F;)+...+dim(F;). O

Définition 3.2.3 Soit f un endomorphisme d’un IK-espace vectoriel E. On dit
que A € K est une valeur propre de f sl existe un vecteur non nul x € E tel
que f(x) = Ax. Un tel vecteur x est appelé vecteur propre associé a A. Le
sous-espace vectoriel

E\(f):=Ker(f —Ald),

est appelé sous-espace propre de f associé a A.
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Remarques. E,(f) est un sous-espace vectoriel puisque c¢’est un noyau d’ap-
plication linéaire. Si A est une valeur propre de f, alors par définition,
E,\(f) = {0}. Encore par définition, le sous-espace E,(f) est stable par f et
la restriction de f a ce sous-espace est égale a Ald. L’existence d’une valeur
propre pour un endomorphisme donné n’est pas une question évidente et dé-
pend beaucoup du corps de base K. L’outil pour calculer les valeurs propres
est le polynome caractéristique.

Proposition 3.2.4 Soit f un endomorphisme d’un K-espace vectoriel E de
dimension finie n. La fonction de A définie par

x£(A) = det(f - Ald),

est un polynome de degré n en A. De plus Ay € K est une valeur propre de f
ssi on a x¢(Ag) = 0. Le polynome x ¢(A) est appelé polynome caractéristique
de f. Ses zéros dans K sont exactement les valeurs propres de f.

Preuve. La définition du déterminant, qui n’utilise que des sommes et des
produits, montre facilement que )(f(A) est un polynome. Le terme de plus
haut degré provient de o = Id et vaut (—1)"A". Par définition, on a A valeur
propre de f & Ker(f —Ald) # {0} & f—Ald non inversible & det(f —AId) =
Xr(A)=0. Cest fini. O

Définition 3.2.5 Un endomorphisme f est dit diagonalisable ssi il existe une
base % de E constituée de vecteurs propres. Dans cette base 9B, on a alors

AL 0 ... 0
0 A

Matg(f)=| = 7 ,
: .0
0 ... 0 A,

ot Ay,..., A, sont les valeurs propres (pas forcément distinctes).

Remarque importante. Il existe des endomorphismes non diagonalisables, et
ceci méme en dimension 2. Considérons ’'endomorphisme f : C> — C? dont
la matrice dans la base canonique est

u-(03)

Alors xr(A) = A2, donc la seule valeur propre est 0. Si f était diagonalisable,

sa matrice serait donc nulle dans une base de C?, ce qui entrainerait que f
est nulle, absurde.
On a le fait suivant qui est ’observation la plus importante de la théorie.
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Théoréeme 3.2.6 Notons SP(f) C K, l’ensemble des valeurs propres distinctes
de f, appelé "spectre” de f. Si cet ensemble est non vide, alors la somme

@ E\(f)

AeSp(f)
est toujours directe.

Preuve. Notons Ay,..., A; les valeurs propres distinctes de f. On va montrer
par récurrence sur k que si xi,..., Xy avec x; € E)‘j. (f) sont tels que x1+...+x; =
Oalorsx; =...=x;,=0.Si k=1, il n’y arien a faire. Supposons avoir montré
cette propriété au rang k, et écrivons

X1+ + X+ X =0, (3.1)
avec pour tout j=1,...,k+1, x; € E/\j(f). En appliquant f, on a aussi
/\1X1 +... +/\ka + )Lk+1Xk+1 = f(X1 + .0+ X +Xk+1) = f(O) =0.

En multipliant (3.1) par A, et en la soustrayant a la formule ci-dessus, on
obtient
(A1 = Agp)xr +ooo 4 (A = Agyr)x, = 0.

Par hypothése de récurrence on a donc pour tout j = 1,...,k, (A;=Ax1)x; = 0,
mais comme A; — A # 0 (les valeurs propres sont distinctes), on obtient
donc que que pour tout j =1,...,k, x; = 0. En revenant a (3.1), on déduit
que Xp,1 =0 et la preuve est finie. O

Un corollaire facile est le suivant.

Théoréeme 3.2.7 Soit f un endomorphisme d’un K-espace vectoriel E, de
dimension n, admettant n valeurs propres distinctes dans K, alors f est
diagonalisable.

Preuve. Si f admet n valeurs propres distinctes, comme les sous-espaces sont
en somme directe, on a

n>dim| (P Ex(f)[= )  dim(Er(f))2n,

AeSp(f) AeSp(f)

donc

E\(f)=E.
A€Sp(f)
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En prenant un vecteur propre x, (non nul) dans chaque espace E,(f), on
obtient donc une base {x, : A €Sp(f)} de E, et c’est fini. O

Exemples. On consideére 'endomorphisme f : R? — IR? dont la matrice dans

la base canonique est
11
A= ( Ll )
1+V5

On a xr(A) = A2 — A —1, les valeurs propres sont A = >, elles sont dis-
tinctes, donc f est diagonalisable. Considerons maintenant I’endomorphisme
¢ :R? — R? dont la matrice dans la base canonique est

0 -1
B= .
On constate alors que xg(A) = A% +1, qui n’a pas de racine sur R, donc g
n’est pas diagonalisable sur IR. En revanche, si on considere g comme agissant

sur €2, alors les valeurs propres sont i et —i, qui sont distinctes, et g est
diagonalisable sur C.

Le cas complexe. Dans le cas ou K = C, on sait (par le théoreme fondamental
de l’algebre) que tout polyndéme non nul se décompose comme produit de
facteurs irréductibles i.e. pour tout P € C[X] de degré n, on peut écrire

(Z_Zk)mjl

—.

P(z)=a,
j=1

ou a, # 0 est le coefficient dominant, m; +... + m; = n et zy,...,2z; sont les
racines distinctes. Si f est un endomorphisme d’un C-espace vectoriel de
dimension finie 7, on écrira donc

x@ =0 [ ] -

AeSp(f)

L’entier m, est appelé multiplicité algébrique de A. On posera d, = dim(E (f)),
on l'appelle multiplicité géométrique de A.

Théoreme 3.2.8 Soit E un K-espace vectoriel et f un endomorphisme de E.
Il est diagonalisable ssi on a pour tout A € Sp(f), dy =m,.
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Preuve. Si f est diagonalisable, alors dans une base % bien choisie sa matrice
est

A, 0 ... 0
0 A

Matg(f)=| = 7° ,
: o0
0 ... 0 A,

ou les A = A; € Sp(f) sont répetés d) fois. On calcule alors xr(z) dans cette

base et on trouve
xe@ =00 ] e,
A€Sp(f)

donc par unicité de cette écriture irréductible, d, = m, pour tout A € Sp(f).
Réciproquement, si on a pour tout A € Sp(f), d) = m,, alors comme

Z dA: m, =n,
(f)

A€Sp(f) AeSp
on a
dim[ B EA(f)] = Z dy=n,
A€Sp(f) A€SP(f)
et donc on obtient
P Eun=k&
A€Sp(f)

f est donc diagonalisable. O

Exemple. On consideére 'endomorpshime f : R> — R® dont la matrice dans
la base canonique est

1 4 =2
A=l 0 6 -3 [
-1 4 0

En observant que la somme des coefficients sur chaque ligne fait 3, on peut
calculer le polynome caractéristique sous forme factorisée et on trouve

xf() ==(A=3)(A-2)%

Les valeurs propres sont donc 3, valeur propre simple, et 2, de multipli-
cité algébrique 2. L’endomorphisme f est donc diagonalisable (sur C) ssi
dim(E,(f)) = 2. En résolvant le systeme linéaire associé a E,(f), on trouve
que

EZ(f) = Vect{(4,3,4)},

et donc dy =1 #m, =2, f n’est pas diagonalisable sur C.
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3.3 Diagonalisation des endomorphismes auto-adjoints

Dans un espace euclidien ou hermitien (E, @), la structure additionnelle
donnée par le produit scalaire permet d’en dire plus sur les questions de
diagonalisation. On rappelle quun endomorphisme f est auto-adjoint ssi f =
f*, en d’autres termes ssi on a pour tout x,v € E,

P(f(x),9) = px, f())

On a déja rencontré des applications auto-adjointes concretes : si F est
un sous-espace vectoriel de E, alors la projection orthogonale Pr est auto-
adjointe. En effet, si (ej,...,e,) est une base orthonormée de F, on a pour
tout x € E,

et donc pour tout x,p € E,

Pp X), Z(p X, e el, =

On va vu de plus que

X’Z}P ve;

P(x, Pe(v)).

E = IM(Pr) @ Ker(Pr),

comme Pr restreint a IM(Pr) est I'identité, en fait Ker(Pr—1I) = IM(Pr). Ainsi
Pr est diagonalisable, et ses valeurs propres sont 1 et 0. La somme directe
ci-dessus étant orthogonale, Pr est donc diagonalisable en base orthonormée.
On va voir qu’en fait ce phénomene est général.

Proposition 3.3.1 Soit (E, @) un espace hermitien ou euclidien et f : E — E
une application linéaire auto-adjointe.

1. Les valeurs propres sur C de f sont toutes réelles.

2. Les sous espaces-propres associés a des valeurs propres distinctes sont
orthogonauz.

Preuve. 1). On fait d’abord la preuve dans le cas hermitien, qui est le plus
facile. Soit A € C une valeur propre de f et v # 0 un vecteur propre associé.
On a donc f(v) = Av et on peut écrire

P(f (v),v) = Ap(v,v),

mais comme [ est auto-adjoint, on a aussi
o, f(v)=Ap(v,v).
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Comme ¢ est semi-linéaire a droite, on a donc
Ap(v,v) = Ap(v,v),

et comme @(v,v) = ||v]|> # 0, on obtient A = A donc A € R. Dans le cas ol
(E, @) est euclidien, on se ramene au cas précédent en complexifiant. On se
donne une base orthonormée (ey,...,e,) de E et on considére A la matrice de
f dans cette base. On la fait agir sur C" muni du produit scalaire hermitien
canonique, A est autoadjointe et son spectre sur C coincide avec celui de f,
il est donc réel.

2). Soient A # pu € Sp(f) (forcément réelles) et u € Ker(f — Ald), v €
Ker(f —pld) des vecteurs propres. On a

Ap(u,v) = @(f (u),v) = ¢(u, f(v)) = pp(u,v),
d’ott (A —pu)p(u,v) =0, et comme p= A on a donc @(u,v)=0.O

Théoréeme 3.3.2 Soit (E, @) un espace hermitien ou euclidien et f : E — E
une application linéaire auto-adjointe, alors il existe une base orthonormée
de E dans laquelle la matrice de f est diagonale, a coefficient réels.

Preuve. On fait la preuve par récurrence sur la dimension de ’espace, notée
n. On va avoir besoin du lemme suivant.

Lemme 3.3.3 Soit f : E — E une application linéaire auto-adjointe et F C E
un sous-espace vectoriel stable par f i.e. f(F)CF. Alors Ft est aussi stable

par f.

Preuve du lemme. On se fixe y € F*, c’est a dire que pour tout x € F, ¢(x,v) =
0. Comme f(F) C F et utilisant le fait que f = f*, on a donc pour tout x € F,

P(f(x),y)=0=p(x, f())
donc f(y) e F+. O

Retour a la preuve du théoreme. Si n=1, il n'y a rien a faire, toute
application linéaire est diagonale. Supposons avoir démontré le thm pour
dim(E) < n, et placons nous dans le cas dim(E) = n+ 1. Par le thm fonda-
mental de l'algébre, x (1) a au moins une racine complexe Ay, qui est donc
réelle par la Proposition 3.3.1. Le sous espace propre E, (f) = Ker(f —Agld)
est stable par f, de dimension > 1, et donc (E, (f))" est de dimension < n,
stable par f. On applique alors I'hypothese de récurrence a la restriction de f
a (E),(f))* pour trouver une base orthonormée % de (E, (f))* qui diagona-
lise f. On choisit ensuite une base orthonormée de E, (f) que 'on concatene
a 9 pour obtenir cqfd. O
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Corollaire 3.3.4 Soit S € M, (IR) une matrice symétrique réelle, alors il existe
une matrice diagonale a coefficients réels D et P € O,(R) tel que

S=PD'P.

Preuve. On considere R” muni du produit scalaire standard. On considere
I'application f : R” — R"” dont la matrice dans la base canonique est S,
comme f est auto-adjointe, le théoreme précédent s’applique et nous fournit
I'existence d’une base orthonormée qui diagonalise f. La matrice de passage
P de la base canonique a cette nouvelle base est orthogonale. O

Suivant le méme principe, on a aussi le fait suivant dans le cas hermitien.

Corollaire 3.3.5 Soit S € M,,(C) une matrice hermitienne i.e. 'S S, alors
il existe une matrice diagonale a coefficients réels D et P € U,(C) tel que

S=PD'P.
Preuve. Méme chose dans le cas hermitien. O

Un exemple. Soit S la matrice symétrique donnée par

1 20
S=(2 3 2
0 21

On calcule son polynome caractéristique xg(A) qui est

1-1 2 0
xs)=| 2 3-4 2 |,
0 2 1-4A

et en développant par rapport a la premiere colonne on a
Xs(A)=—(A=1)(A=5)(A+1).

Les valeurs propres sont donc 1,5,—1 et on sait que S est diagonalisable.
En calculant les sous espaces propres associés, dont on sait qu’ils sont or-
thogonaux, on trouve une base orthonormée de R® constituée de vecteurs
propres :

1 1 1

E (% 7

Xy = 01 »Xs= B I X = T
_L ¥ B

V2 Vo V3
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Ainsi S = PD'P avec

11 1

V2 \é@ \/% 1 0 O
P= 0 V% ,D=10 5 0

-1 1 1 0 0 -1

ViV

La réduction des matrices symétriques réelles a de nombreuses applica-
tions géométriques et analytiques : redressement des coniques et quadriques,
calculs de courbures, calcul de directions de rotations propres en mécanique
du solide...

3.4 Une application : la décomposition polaire dans
GL,(R)

On va utiliser la théorie précédente pour démontrer un célebre résultat,
appelé décomposition polaire. On va parler au préalable d’endomorphismes
auto-adjoint positifs et défini positifs.

Définition 3.4.1 Soit (E, @) un espace euclidien ou hermitien. Un endomor-
phisme auto-adjoint f : E — E est dit :

— Positif ssi pour tout x € E, ¢(f(x),x)>0.

— Défini positif ssi pour tout x € E, x =0 = ¢(f(x),x)>0.

Remarque. Il revient au méme de dire que f est défini positif ou que la forme
bilinéaire (x,v) — @(f(x), ) est un produit scalaire. Une matrice symétrique
réelle est dite positive (resp. définie positive) ssi I'application linéaire associée
agissant sur R” munit du produit scalaire standard est positive (resp. définie
positive).

Proposition 3.4.2 Soit (E, ) un espace euclidien ou hermitien. Un endomor-
phisme auto-adjoint f : E — E est positif ssi toutes ses valeurs propres sont
positives. Il est défini positif ssi toutes ses valeurs propres sont strictement
positives.

Preuve. Supposons f positif. Soit A € Sp(f) une valeur propre et v un vecteur
propre associé (non nul). On a donc

0<(f(v),v) = AllII%

ainsi A > 0. On voit facilement de plus que si f est défini positif, alors
@(f(v),v) >0 et donc A > 0. Réciproquement, on prend (ey,...,e,) une base
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orthonormée de E qui diagonalise f. Dans cette base, on a pour tout x € E,
avec X =) :Xx;e;,

ZZA xXiXjp(ei e Z/\ Ix;|?,

ol Ay,..., A, sont les valeurs propres de f. Il est maintenant clair que si A; >0
pour tout i, alors ¢(f(x),x) >0, et que si A; >0 pour tout 7, alors si x # 0,

Q(f(x),x)>0.O

Théoreme 3.4.3 Soit M € M,(RR), supposée inversible. Alors il existe une
unique matrice symétrique définie positive S et une matrice orthogonale O
tel que

M =S0.

Preuve. On va faire agir les matrices sur R”, équipé du produit scalaire usuel
noté (. ,. ). On commence par montrer I'unicité si existence. Si M = SO avec
S symétrique et O orthogonale, alors on a

MM* =S0O0*S* = §2,

On va voir que si on impose a S d’étre définie positive, il n’y a qu’un seul
choix possible pour résoudre S? = MM?*. Par suite, O = S™'M et donc O est
aussi unique. Existence. Considérons la matrice R = MM*. C’est une matrice
symétrique définie positive : en effet, pour tout x € R", on a

(MM*x,x)y = (M*x, M*x) = [[M*x||* > 0,

et de plus
(MM*x,x)=0= M*x=0,

mais on a vu que Ker(M*) = IM(M)+ = {0}, car M étant inversible son image
est R" (théoreme du rang). Ainsi x = 0. D’apres la Proposition 3.4.2; les
valeurs propres de M M* sont donc strictement positives. On sait que M M* est
diagonalisable en base orthonormée, donc il existe P une matrice orthogonale
telle que

MM* =PDP?,

avec D diagonale a coefficients strictement positifs, notée

Ap 0 .0
Ho| 0 A

. . c.' O

0 0 A,
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Posons donc
s =prvVDr,

avec

VA .. 0
Vo=| O VR

: .0
0 ... 0 V&,

On a bien sur S? = PDP* = MM*. On observe au passage que les solutions
de T? = MM* sont toutes du type

+4/ :
T=P 0 VA2 P,
: 0
0 0 =vVA,
et que la seule solution définie positive est S. Calculons maintenant pour tout

x € R",
IS~  Mx||? = (S Mx, ST'Mx) = (Mx, S™2Mx),

mais S72 = (MM*)~! = (M*)"!M~!, donc
IS Mx||? = (M, (M*) ™' x) = ||x]|°.

Ainsi S™'M conserve la norme euclidienne, et ¢’est donc une matrice ortho-
gonale O, donc M =S50. O

On peut remarquer en plus que det(O) = det(S~')det(M) et comme on a
det(S71) >0,

il vient que O € SO, (R) ssi det(M) > 0. Le théoreme de décomposition polaire
généralise I'écriture polaire des nombres complexes. En effet, notons

= Vecth{Iz,]} C MQ(IR),

ou

Les éléments de € sont les matrices de la forme

M:a+b]:([aj _ab ),
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qui sont donc inversibles quand det(M) = a® +b? # 0. Il est facile de voir que
€ est une algebre commutative, de dimension 2 sur R, isomorphe a C. Un
calcul direct montre que MM* = (a?+b?)I, donc la décomposition polaire dit

que
M = Va? +b2R(0),

ou bien sur

cos(0) —sin(0)

D _ooie
sin(0)  cos(0) kT exp(0)).

R(0) = -

= cos(0)I, +sin(0)] =

k=

0

est la matrice de rotation d’angle 6. On a bien retrouvé la décomposition
usuelle z = |z[e’? dans C.
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Chapitre 4

Courbes planes

4.1 Courbes paramétrées, généralités

Dans ce chapitre, R” est équipé du produit scalaire euclidien usuel. La
norme associée est notée || . ||. Dans tout ce qui suit I désigne un intervalle
de R. Une application y : I — R" est dite de classe Ck ssi on a pour tout
tel, y(t) = (y1(t),...,yu(t)) ot pour tout i =1,...,n, y; : [ - R est une
fonction de classe C* sur I. On rappelle qu'une fonction f de classe Ck sur
un intervalle de R est une fonction k fois dérivable dont la dérivée k-eme f*)
est continue sur [.

Définition 4.1.1 On appelle courbe paramétrée (ou arc paramétré) Ck dans
R"™ un couple (I,y) ou I est un intervalle de R et y : I — R" est une appli-
cation de classe CX. La courbe est dite réguliére ssi pour tout t €1, y'(t) = 0.
Un point ty € I tel que y'(tg) =0 est dit singulier.

Remarques. L’application ¥ n’est pas forcément injective : I'image y(I) peut
présenter des points de croisement (appelés points multiples). Si k = 0 i.e.
I'application y est juste supposée continue, I'image y(I) peut étre tres com-
pliquée : il existe des courbes C° définies sur I = [0,1] dont I'image est le
carré [0,1] x[0,1], appelées courbes de Peano. Dans ce cours on supposera
toujours que k > 1, voire k > 2.

Deux courbes (I, f et (J,g) peuvent avoir méme image si on passe de
I'une a 'autre par un "changement de paramétrisation”. C’est ce qui motive
la définition suivante.

Définition 4.1.2 Deuxr courbes Ck, (I, f et (J,g) sont dites Ck—équivalentes
ssi il existe un CK-difféomorphisme 6 : 1 — | tel que f=go00.

Un CK-difféomorphisme est une bijection 0 : I — ] dont I’application réci-
proque 07! : ] — I est aussi C¥. Donnons un exemple simple dans le plan. Soit
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f(t) = (cos(2t),sin(2t)) avec I = [0, 1t] et g(t) = (cos(t),sin(t)) avec | = [0, 27t].
Alors les courbes (I, f) et (/,g) sont C*-équivalentes avec O(x) = 2x. Les
images f(I) et g(J) sont les mémes : c’est le cercle unité. On a simplement
changé le paramétrage. Si O est croissant, on dit que (I, f) et (J,g) ont la
meme orientation.

Si un arc est C!, on peut définir la droite tangente en un point réqulier
de la courbe.

Définition 4.1.3 Soit (I,f) un arc C' et p = f(to) un point régulier de la
courbe image. La droite tangente en p a (I, f) est par définition la droite
affine T, := p+ Rf(tg). Elle est indépendante du paramétrage.

Si (I, f) et (J,g) sont Cl-équivalents avec f = go O, posant ry = O(t;), on a
par dérivation des fonctions composées f’(tg) = ¢’(6(t())0’(tg) = g'(r9)0’(t)-
Comme 6 est un C'-difféo, on doit avoir 0’(ty) # 0 et donc

Rf'(tg) = Rg'(r0)0(ty) = R (ro),

les droites sont les mémes.

Droite tangente T),.

Définition 4.1.4 Soit [ = [a,b] et (I, f) un arc C'. L’abcisse curviligne, ou la
longueur d’arc s(t) est définie pour tout t € I par

s(1) =f I ()l

C’est la longueur de la courbe paramétrée sur lintervalle [a,t]. Une courbe
est dite paramétrée par la longueur d’arc ssi pour tout x € I, on a ||f’(x)|| = 1.

Exemple. Soit I = [0,+0co[ et f(t) = (e7"cos(t),e " sin(t)). L’arc (I, f) est
appelé spirale logarithmique. Pour tout t >0 on a

f/(t) = e!(~sin(t) — cos(t),cos(t) —sin(t)),
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ainsi

If (1)l = e_t\/(sin(t) +cos(f))2 + (cos(t) —sin(t))2 = V2¢e .

On a donc

s(t) = \/Ejte_xdx = ﬁ[te_xdx =V2(1-¢7).
0 0

Spirale Logarithmique.

Proposition 4.1.5 Tout arc (I, f) de classe C' régulier est C'-équivalent d
un arc paramétré par sa longueur d’arc. De plus si deuzx arcs paramétrés
par la longueur d’arc sont équivalents, les paramétrages sont les mémes a
translation et changement d’orientation pres.

Preuve. Soit a € I et posons pour tout t € I,

- f I ()lld.

Alors s: I — R est une fonction de classe C!, croissante, et comme (I, f) est
régulier, on a

H=Nf"0l>o.

Donc s: 1 — s(I) est un Cl-diffeomorphisme et notons O :=s"1: ] =s(I) = I
son application réciproque. Posons ¢ = f o 0, définit sur J. L’arc (J,g) est
Cl-équivalent a (I, f) et on a de plus pour tout x € J,

IO _

S

g’ = 11" (OC)DIE ()] =
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Supposons maintenant que (J, ¢) et (U, h) soient deux arcs C'-équivalents tous
deux paramétrés par la longueur d’arc, par exemple g =ho6 avec 6:] - U
un C!-difféo. On a alors pour tout x € J,

Ig" ()l =1 = [IH(E(x))ILIO"(x)| =10"(x)l,

donc 6’(x) = %1, pour tout x € J. Comme 6 est continu, le théoreme des va-
leurs intermédiaires implique que 0’ est constante sur J. Ainsi par intégration
on a pour tout x € ], 6(x) = x+c¢ ou 6(x) = —x+c, ou c est une constante. O

Pour comprendre I'aspect local des courbes paramétrées, 'outil essentiel est
la formule de Taylor-Young vectorielle, que ’on rappelle ici. On rappelle que
si f:I >R"et g:I — R sont deux fonctions, on dit que au voisinage d’un
point tp €l on a

f(t) = o(g(1)),

ssi pour tout € > 0, il existe 17 > 0 tel que pour tout t € [ty —1,ty+ 1],

1/ ()l < elg(t)].

On dira aussi qu’au voisinage de ty €[ on a

ssi il existe M > 0 et 17 > 0 tel que pour tout t € [ty —1, 1o+ 1],

17 (Ol < Mg (#)].

Proposition 4.1.6 (Taylor-Young) Soit f : I — R" une fonction de classe C*.
Soit tg €I, on a alors pour tout h suffisamment petit,

2 k
flto+1h) = f(to)+ hf (tg) + %f”(to)+...+ %f(k)(fo)JrO(hk)-

Preuve. C’est simplement la formule de Taylor-Young scalaire appliquée co-
ordonnées par coordonnées, voir cours de L1. O

4.2 Etude locale dans le plan

Dans la suite de ce chapitre, on supposera que 'on est dans R?.

Définition 4.2.1 Soit (I, f) un arc C? dans le plan. Un point t, est dit biré-
gulier ssi f'(to) et f”(ty) forment une base de R?.
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Définition 4.2.2 Soit (I, f) un arc C* dans le plan. Soit ty € I un point bi-
régulier. Le demi-plan de concavité fermé C; en p = f(ty) € f(I) est par
définition

Cp = p+Rf7 (to) + R f"(to).

Le demi-plan de concavité ouvert est définit par
Co% = p+ Rf (o) + RIf (ko).

Il n’est pas difficile de voir que le demi-plan de concavité ne dépend pas du
choix du paramétrage (exercice). L’intérét de cette définition réside dans le
résultat suivant.

Théoréeme 4.2.3 Soit (I, f) un arc C? dans le plan. Soit t, € I un point birégu-
lier, et posons p = f(tg). Alors il existe > 0 tel que pour tout t € [tg—n,to+17]
f(t)e Cy. De plus, si t €[to—n,to+1]\{to}, alors f(t) € C;’O.

Preuve. On applique la formule de Taylor-Young a 'ordre 2 en t;. On a pour
tout h voisin de 0,

2

7 h v
flto+h) = f(to) =hf(to) + —f (to) + o(h?).
En décomposant le reste o(h?) dans la base (f’(ty), f”(to)), on a alors
2

Flto +h) = Ft0) = B(1 +o(h)f (1) + (1 + 0(1)f (1),

et il est alors clair que pour h suffisamment petit, la composante de f”(t)
est positive, i.e. f(tg+h) e C;. Si de plus h # 0, pour tout h assez petit on a

flto+heCy’. o

Demi-plan de concavité C;; et position locale de la courbe.
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Courbes polaires. Un arc paramétré (I, f) est dit polaire ssi il est de la forme

f(t) = (p(t)cos(t), p(t)sin(t)),

pour tout t € I. Alternativement, on peut aussi utiliser les nombres complexes
et écrire

ft)=p(t)e".
On peut observer que pour les courbes polaires, un point est singulier ssi
p(t) =0 et p’(t) = 0. En particulier il ne peut y avoir de point singulier qu’a
I'origine. On peut appliquer le théoreme précédent aux courbes polaires pour
obtenir le critere de concavité suivant.

Proposition 4.2.4 Soit une courbe polaire (I,p(t)e”), de classe C*. Un point
ot p(tg) = 0 est birégulier ssi p>+20p">—pp” # 0. La courbe tourne sa concavité
vers l'origine $si

p?+2p"% —pp” > 0.

Preuve. On cherche a déterminer A;, A, € R tels que
0= f(to) + A1 f (to) + Aaf "(to).
En dérivant deux fois on a
() =p'(t)e +ip(t)e’, f/(t)=p"(t)e' +2p (t)ie' —p(t)e™.

Dire que t, est birégulier c’est dire que det(f’(t), f” (o)) # 0, ce qui dans la
base e'!0,je'to g’écrit

p/ p//_p'_z » 5 ,
) = +p0°— = 0.
‘ P p N N
En résolvant le systeme par substitution, on trouve dans le cas birégulier
2
P

)LZ = y
20" +p? = pp”

et donc 0 € C;’O ssi Ay >01ie. 2p"2+p?—pp” > 0. Cqfd. O

Un premier exemple d’étude : le limagon de Pascal. On se propose d’étudier
la courbe polaire _ .
f(t)=p(t)e' = (1 +2cos(t))e",

avec I = [0,27]. On observe d’abord que f (27 —t) = m, donc la courbe
est symétrique par rapport a l'axe des abcisses et on a f(0) = f(2mn) = 3,
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f(21/3) = f(41/3) = 0, f(mr) = 1. La courbe passe par 'origine uniquement
pour t = 27t/3,41/3, et en ces points p’ = 0. Donc tout point de cette courbe
est régulier. Pour tout t # 27t/3,47t/3, on a par calcul direct que

20 +p*—pp’ =9 +6co0s(t) >0,

donc tout point est birégulier et la concavité de la courbe est toujours tournée
vers l'origine. Comme p’(t) = —2sin(t), p décroit sur [0, 7] et croit sur [, 27].
Attention, le changement de signe de p en t = 27/3 induit un déphasage
de +7t pour argument de f(t) sur l'intervalle [27t/3,47/3]. On peut donc
esquisser un tracé de la courbe, qui est dessinée ci-dessous.

+
0.8

Le limagon de Pascal.

Que se passe t-il en présence de point non-birégulier, voire non-régulier ? En
I’absence d’hypotheses supplémentaires, méme dans le cas C®, tout peut
arriver. Donnons un exemple. Considérons la fonction ¢ : R — R définie par

1
e 12 silx| <1
@(x)z{ o

0 sinon.

Cette fonction est positive, strictement positive sur |—1, 1[. On peut montrer,
par récurrence, que ¢ est C* sur R. On définit alors la fonction Fy: R — R
par

[ eldt

Folx) = 2z 00
0 [} g(n)dt

39



La fonction Fy est aussi C®, croissante, vaut Fyp(x) = 0 pour x < —1 et vaut
Fo(x) =1 pour x > 1. A partir de Fy, on construit alors I’arc paramétré (I, f)
suivant. On pose [ =[0,4] et

f(t) = (Fo(t=1),Fo(t = 3)).

On observe que pour tout t € [0,2], f(t) = (Fo(t—1),0) avec t > Fo(t—1) qui
croit de 0 & 1. Puis pour tout t € [2,4], f(t) = (1,Fy(t—3)) avec t > Fy(t—3)
qui croit de 0 a 1. La courbe décrite fait un angle droit !

t=4
A

f(I)
>
t=0 t=2

L’angle droit C*.

On peut observer qu’en t = 2, on a un point singulier et f(k)(Z) = 0 pour tout
k > 1. Pour exclure ce type de pathologies, on va définir une notion de point
singulier non-dégénéré.

Définition 4.2.5 Soit (I, f) un arc paramétré de classe C", avec n > 3. Soit
to € I un point singulier. On dit qu’il est non dégénéré s’il existe 2 <k,{ <n
tels que (f®(to), fO(ty) soit libre.

Théoreme 4.2.6 Soit (I, f) un arc paramétré de classe C", avec n > 3, et soit
ty € I un point singulier non dégénéré. Posons alors

p=min{2<k<n: fO(t)) =0}, g=min{p <<n : (FP(ty), f(ty)) libre}.

On a alors 4 cas possibles, en fonction des parités de p et g.

Parité de p | Parité de q Type de singularité
Pair Pair Rebroussement de deuziéeme espéce
Pair Impair Rebroussement de premiere espece
Impair Pair Point de concavité ordinaire
Impair Impair Point d’inflexion

Chaque type de singularité est décrite dans les dessins suivants.
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FA(to)

FP(to)

/ f(tﬂ)

Rebroussement de 2-éme espece.
79 (ko)

FP(t)

f(to)

\

Rebroussement de 1-ére espece.
79 (ko)

FP(t)

f(to)

Concavité ordinaire.
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FA(to)

FP(to)

f(to)

Point d’inflexion.

Preuve. On applique la formule de Taylor-Young. On a pour tout h voisin de

0,
hP hi
fto )= f(t0) = 2/ Pto) + 23 fto) + o(h),

Comme les deux vecteurs fP)(ty), f9)(ty) forment une base, on peut décom-
poser le reste o(h1) dans cette base pour écrire

_a +o(hq"’))f(p)(t0)+ H(1 +0(1))

p! q'
et les parités de p et g déterminent le signe des coordonnées de f(tg+h)—f(tg)
exprimé dans la base (fP)(ty), f@(ty)) pour h voisin de 0. Il y a donc 4 cas
possibles qui sont résumés dans les dessins ci-dessus. Dans chaque cas, la
direction de la tangente a la courbe est f(P)(ty). O

flto+h) = f(to) F9(to),

Un exemple : ’astroide. En pratique, pour déterminer la nature d’un point
singulier, on utilise des développements limités, plus facile a manipuler que
la formule directe de Taylor-Young. Regardons l'exemple de (I, f) avec I =
[0,27] et

f(t) = (cos>(t),sin’(t)).
On observe qu’'en t =0, f’(t) = 0, on a donc un point singulier. En faisant
un développement limité en t = 0 de cos>() et sin®(t) on trouve

3
cos>(t)=1- Etz +O(tY), sin’(t) =1 - =+ o(t"),

ce qui, mis sous forme vectorielle, donne

F(£) = (1,0) + 12 (_730) +83(0, 1)+ o(£2).

On donc p =2 et g = 3 et il s’agit d’'un point de rebroussement de premiere
espece.
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L’astroide.

4.3 Exemples de courbes implicites, coniques

Définition 4.3.1 Soit F : R> — R une fonction de deuz variables. On dit que
F définit une courbe implicite € comme 'ensemble des solutions dans R? de
F(x,v) =0. En d’autres termes,

Cr ={(x,v)eR?* : F(x,v)=0}.

On peut avoir ¢r = 0, par exemple si F(x,v) = x> + > + 1. L’ensemble ¢r
peut étre bien différent d’une courbe : par exemple si

F(x,v)=Fo(x+p)-1,
ou F est la fonction C* "step” définie précedemment, alors on a
Cr={(x,v)eR* : x+p>1},

c’est un demi-plan! On va donc se restreindre a une classe raisonnable de
fonction F, dites polynomiales et les courbes associées ¢r sont dites algé-
briques. On dit que F est un polynome réel a deux variables ssi

N N o
F(X,y) = ZZai,jxly],
i=0 j=0
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avec N € N et a; ; € R. Le degré de F est par définition
deg(F) =max{i+j : a;;=0}.

Par exemple
F(x,9) =x°+1° = 3xp

est de degré 3 et la courbe € associée est appelé "folium de Descartes”.

3

-3

Le folium de Descartes.

Il n’existe pas en général de méthode pour déterminer un paramétrage global
ou une résolution des courbes implicites, méme dans le cas algébrique. On va
étudier quelques cas simples ou il est possible de les paramétrer.

4.3.1 Cas ou on peut isoler une variable.

C’est la situation ol on peut exprimer v en fonction de x, on se ramene
a I’étude d’une fonction d’une variable. Par exemple si

F(x,v) = yz —x34+2x-1,
alors F(x,v) =0 ssi p = +Vx3 - 2x+ 1. On observe que
flx)=x>=2x+1=(x-1)(x*+x-1),
et les racines de I’équation du second degré x> +x—1 = 0 sont # On a

donc
~1-vV5 -1++5
27 2

x3—2x+120<:>xel U[L,+ool.
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L’étude de la dérivée montre que f est croissante sur [_1?@,—@], décrois-

sante sur [—\/g, _15\6], puis croissante sur [1,+oo[. En calculant quelques

points on peut alors tracer la courbe, connue sous le nom de courbe ellip-
tique.

24

Une courbe elliptique.

4.3.2 Exemples de courbes unicursales.

Les courbes unicursales sont des courbes algébriques qui admettent une
paramétrisation rationnelle. On verra que les courbes de degré < 2 sont tou-
jours unicursales. Les courbes de degré 3 qui possedent un point double sont
aussi unicursales. Revenons sur I'exemple du folium de Descartes. Si on in-
tersecte la courbe avec une droite passant par l'origine d’équation vy = tx,
ou t € R est la pente de la courbe, on voit que sauf pour certaines valeurs
particulieres de ¢, il n’y a qu'un seul point d’intersection. En remplacant v
par tx dans x3 + y3 —3xv =0, et en excluant le cas x = 0, on obtient

3t 3t2
x(f) = ——=, v(f) = .
®) 1413 y(t) 1413
La valeur t = —1 correspond a l’asymptote oblique v = —x. Voir TD pour

I’étude paramétrique.

Dans la cas des courbes de degré 4, la situation se complique, mais il existe
des cas ou des stratégies similaires d’abaissement du degré fonctionnent. On
va examiner le cas de la Lemniscate de Bernoulli, de degré 4, dont I’équation
est donnée par

P(x,v) = (x* + y2)2 -x2+ yz.
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Cette équation possede beaucoup de symétries car P(+x,+p) = P(x,7), en
particulier la courbe @p est invariante par réflexions par rapport aux axes
de coordonnées usuelles et aussi par rotation d’angle 7t. Les points (0,0) et
(1,0) sont dans €p. Intersectons donc cette courbe par une famille de cercles
passant par ces deux points, donnés par équation x? + yz =x+ty,outeR
est le parametre. On résoud donc par substitution le systeme

(2+2)2—x2+92=0
X2+p2=x+1y
ce qui en excluant le cas x =0 et x =1 donne

1—t 2t(t? 1)

= ()= —Y————.
tA+6t2+1 y(t) t4+6t2+1
g~

x(t)

04

24 2 1,6 1,2 08 04 1,2 16 2 24

04

0,81

Lemniscate intersectée avec une famille de cercles passant par (0,0) et (1,0). Le
troisieme point d’intersection a des coordonnées rationnelles en t.

4.3.3 Cas quadratique : les coniques.
Une conique est une courbe algébrique du type
ax* +by* + 2cxp+dx+ey+f =0,
oua,b,cd,e f € sont des coefficients.

Théoreme 4.3.2 Pour toute conique définie comme ci-dessus, il existe un
changement de variable affine-orthogonal

X = apx+apy+ b]
b
Y = 6121X+£122y+b2
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avec A = (a;;) € O5(R) une matrice orthogonale, tel que l'on se ramene a l'un
des 4 cas suitvants.

Type Equation réduite
Une conique dégénérée | 0, un point ou une réunion de droites
Une ellipse };—j + };—22 =1
2 2
Une hyperbole % — ;;—2 =1
Une parabole Y?=2pX

Preuve. On commence par examiner la forme quadratique

Q(x,v) = ax? + by? + 2cxy = (x y)( Z Z )( ;C )

Comme la matrice de Q, notée M, est symétrique réelle, elle est diagonalisable
en base orthonormée. Il existe donc une matrice orthogonale P telle que

M ='PDP ou
[ A0
o=(% 2}
En notant
[ )=e0 )
v %
on a

Qx,) = A (¥')* + A,(v')°.

Dans le nouveau systeme de coordonnées x’,7’, on doit donc trouver les so-

lutions de
A (x)? + /\z(y’)z +d'x'+ey+f=0,

ou d’,e’ s’expriment en fonction de d,e via les coefficients de la matrice 'P.
Il faut alors discuter en fonction des valeurs propres A, A,.

Cas ou A; A, = 0. Quitte a permuter les coordonnées, on peut supposer
que A; = 0. Si A, est nul, on est dans un cas dégénéré (droite ou ensemble
vide). Sinon, on a en divisant par A, et appliquant I'identité remarquable

e/ 2 e/Z f d/ e/ 2
(}) +2—/\2) —4—)%4'/\—24‘/\—2)( :(y +2—/\2) +ax +/3:0.

1 S . i
Si a =0, on est encore dans un cas dégénéré, sinon on pose Y =’ + 26_/\27
X =x"+ B/a. On est alors dans le cas

YZ+aX =0,
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c’est une parabole.
Cas ou A; A, #0. On écrit dans ce cas

2 2
d/ d/2 e/ e/Z
MY+ —] ——+ [V +=—] ——+f=0
1(x+ ) i, 2(}”2/\2) Y

En posant X = x" + Zd—/\’l, Y=v'+ 2‘?—/\’2, on tombe sur une équation du type
LX2+ LY 4y =0.

Si Ay, A, sont de méme signe, c’est une ellipse ou un cas dégénéré. Sinon,
c’est une hyperbole (ou un cas dégénéré). O

0,79

Ellipse.

Hyperbole.
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Parabole.

Remarques. Le produit des valeurs propres A; A, est égal au déterminant de
M soit ab—c?. On peut donc voir que si ab—c? = 0, on est dans le cas d’une
parabole (ou un cas dégénéré). Si ab—c? > 0, c’est une ellipse (ou un cas
dégénéré), et si ab—c? <0, c’est une hyperbole (ou un cas dégénéré).
L’excentricité & d’une conique est définie (pour ab—c? # 0) par

ol on a supposé A; < A, et A, > 0. Ainsi dans le cas d’une ellipse, 0 < € < 1,
et dans le cas d'une hyperbole on a € > 1.

Paramétrages des coniques. L’ellipse sous sa forme réduite se paramétrise
par
y(0) = (acos(0),bsin(0)) O € [-1, +7].

En posant t = tan(6/2), ou 6 €] -7, +7[, comme on a

1—t2 2t
= sin(f0) = ——,
1+¢2 in(6) 1+¢2

cos(0)

on obtient un paramétrage rationnel de 'ellipse (moins un point) par

(1—t2 2t

)/(f): am, m), tE]-OO,-f—OO[.

La branche positive de I’hyperbole se paramétrise par

y(r) = (acosh(r),bsinh(r)), r €] — oo, +o0|.
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Ty~ . r_,—r .
Comme on a cosh(r) = <5—, sinh(r) = 5, en posant t = ¢”, on obtient un
paramétrage rationnel

1 a b
y(t) = 5 (at + ?,bt— ?), t €]0,+o0].

En coordonnées polaires, on peut montrer (voir TD), que les coniques non
dégénérées s’écrivent sous la forme

p ezt

i) = 1+ Ecos(t)

ou p >0 et € est 'excentricité de la conique.

4.4 Courbure dans le plan

Considérons un arc C?, régulier, noté (I, f). On posera pour tout t € I,

f()
1@l

qui est le vecteur unitaire tangent a arc en f(t). On pose aussi N (t) = t(f)",
le vecteur directement orthogonal a ().

T(t) =

Définition 4.4.1 Soit (I, f) un arc régqulier de classe C?, paramétré par sa
longueur d’arc. Pour tout t € I, il existe un unique scalaire x(t) tel que

f7(t) = k()N (1),

c’est la courbure algébrique de l’arc au point f(t), qui est une fonction conti-
nue de t € 1.

Cette définition demande quelques commentaires. Comme on a pour tout
tel,||f'(t)]> =1, on obtient en dérivant,

%(IIf’(t)llz) =271, £ (1) = 0,

ainsi f”(t) € T(t)*, ie. f " ) sont colinéaires. Il existe donc bien un
scalaire K( t) tel que F( K(t)N ( ). La continuité découle du fait que x(t) =
7 (1)) qui est blen continue car f est C2.

Cette définition ne dépend pas du choix du paramétrage par longueur
d’arc : par la proposition 4.1.5, si on a deux paramétrages (I, f) et (J,g) par
l.a. C2-équivalents, on a

f(1) =gt +0),
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et donc

fr(t) =g"(t +0).
En général, il est difficile de calculer la longueur des arcs et d’expliciter un
paramétrage par l.a. On peut néanmoins quand méme calculer la courbure
de la fagon suivante. Supposons que (I, f) soit un arc paramétré par l.a. et
(J,g) un arc C?-équivalent tel que ¢ = f 0 0. On a pour tout t €1,

&"(t)=(f"00(1))(0'(1) +(f 0 0(1)6"(1)
= (0'(t)*k(O(1))N(O(t) + 0" () T(O(t)).
En posant 6" = v, cette formule (dite de Frenet) s’écrit donc

¢ =v*kN +v't.

A

Y

v’ T
Repere mobile de Frenet et courbure.

Ainsi on a
(" (£, N(6(1)) = (0'(1))*x(6(1)),
et comme ||¢’(t)|| =16’(t)|, on déduit I'identité
(N O)
gl

De ce calcul on déduit directement les formules suivantes.

K(6(1))

Proposition 4.4.2 Soit y(t) = (x(t),v(t)), définit sur I, un arc régulier de
classe C?. Alors la courbure algébrique est donnée par
_ det(y(1), (1) _ p"(0)x(t) - x"(1)y"(1)

B ) E T ES I

Si on a y(t) = p(t)e’, alors la courbure s’exprime en polaire par

P> (1) +2(p (1) = p(t)p” (1)
(P2(1) + (p'()2) ™
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On observe donc que la courbure est non nulle ssi y(t) est birégulier. Le
signe de la courbure est donné par 'orientation de la base (y’(t),”(t)). En
particulier, si on renverse l'orientation, la courbure algébrique est changée en
son opposée. Dans le cas du cercle ou p(f) = R est constante, on a donc

Dans le cas d’une ellipse, que 'on parametre par
y(t) = (acos(t),bsin(t)), t €[0,2mr],
avec 0 < b <a, on trouve

ab
(a2 sin®(t) + b2 cos?(t))3/2

K(t) =

et donc
a

b
2 <xk(t) < 2

Définition 4.4.3 (Cercle osculateur). Soit (I, f) un arc régqulier de classe C?.
Soit t €I tel que x(t) = 0. Le centre de courbure est le point C(t) = f(t)+
R(t)N(t), ot R(t) = (x(t))~" est appelé rayon de courbure algébrique. Le cercle
de centre C(t) et de rayon |R(t)| est appelé cercle osculateur. Le lieu des
centres de courbure s’appelle la développée.

Par exemple, au point (a,0) de l'ellipse, le rayon de courbure est % et le

2_12
centre de courbure est en (%, 0).

0,75

0,5

05 0,75

-05

Cercle osculateur de ellipse au point (a,0).
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Calculons maintenant la développée de l'ellipse. On a par calcul direct
(=bcos(t),—asin(t))

N(t) =
\/a2 sin®(t) + b2 cos?(t)

’

et C(t) =y (t)+R(t)N(t), avec

(a®sin?(t) + b2 cos?(t))3/?

R(t) =
(t) 72
On obtient apres calculs
2 b2 2 b2
C(t) = (” ; cos3 (1), -2 sin’(1)],

on reconnait les équations paramétriques d’une astroide.

3

3

Developpée de 'ellipse avec a =2, b=1.

4.5 La formule de Gauss-Bonnet en dimension 1

Dans ce paragraphe, on va voir le lien entre courbure et variation de
I’angle fait par la tangente avec un vecteur fixé. On va avoir besoin du fait
fondamental suivant, appelé "théoreme du relévement”. Dans ce qui suit S!
désigne le cercle unité du plan complexe C, ou de R?.

Sl:={zeC : |z]=1).

Théoréme 4.5.1 (Relévement C!). Soit I un intervalle de R et y : [ — S!
une application C'. Alors il existe @:I >R, de classe C! tel que pour tout
tel,

p(t) = e,
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On dit que @ est une relevée de y. Si de plus @ a les mémes propriétés, alors
il existe une constante a € 21Z tel que pour tout t € I, @(t) = @(t) +a.

Preuve. Voir dans I'annexe pour les détails, c’est essentiellement de 'intégra-
tion de fonctions a valeurs complexes bien choisies. O

Proposition 4.5.2 Soit (I, f) un arc régulier de classe C?, a valeurs dans C. I

eziste  : I — R, de classe C! tel que pour tout t € I, on a t(t) = |f(;| = elPt),

De plus pour tout t €I, on a

<0101 = 220

Preuve. Comme on a |t(t)] = 1 pour tout t € . Comme f est C?, f’ est C!
et on peut lui appliquer le théoreme du relevement ci-dessus. Il existe donc
@:1 >R, de classe C! tel que 7(t) = '?!). Par ailleurs, on a la formule

det(f’(t), f”(t)

K(t) =

R
et on a f/(t)=|f’(t)e’?"), donc en dérivant on trouve
() = @ ()i POIF/ ()] + Meiq)(t)

/(8]

Ainsi on a

det(£/(t), f(t) = If ()P’ (t) det(e" M), ie" D) +(f/(1), £ (t)) det(e' 1), '#1)),
=1 -0

donc x(t) = | f’( )I’ le calcul est terminé. O

De ce lien entre courbure et variation d’angle, on peut tirer la premiere
application suivante.

Théoreme 4.5.3 Soit I un intervalle de R et c : I — IR une fonction continue.
On se donne ty €1 et a,b € C. Alors il existe un unique arc C?, noté (I, f),
paramétré par la longueur d’arc, tel que f(ty) = a, f'(tg) = b et pour tout t €1,
k(t) = c(t). Autrement dit, la courbure algébrique détermine compléetement
l’arc a une isométrie affine pres.
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Preuve. Posons pour tout t €1,

Q(t)=a+ .r c(t)dt,

to

avec b = e!®. (Pest une fonction de classe C! puisque ¢ est continue, et Q'(t) =
c(t). On pose ensuite

t
f(t)y=a+ J ') s,
to

f est bien C? et f'(t) =t(t) ='W, £7(t) = c(t)it(t) = c(t)N(t), donc x(t) =
c(t). L’unicité se voit en faisant le raisonnement inverse : si un tel arc existe,
on releve 7(t) = ') et on doit avoir ¢’(t) = c(t) et donc f doit vérifier la
formule ci-dessus. O

Le nombre d’enroulement d’un lacet. Soit (I, f) un arc régulier C2. Si I =
[a,b], on dit que (I, f) est un lacet ssi on a

f(a)=f(b) et f'(a)=f'(D).

Définition 4.5.4 (Enroulement d’un lacet). Soit (I,f) un lacet comme ci-
dessus, et @ : I — R une relevée de T:1 — S'. Alors la quantité

¢(b) - p(a)

Enroul(l, f) := 5

eZ

ne dépend pas du choix du relévement.
En effet, comme f’(a) = f'(b), on a 7(a) = 7(b) et !(¥®)=¢@) =1 donc
@(b)—p(a) € 2nZ.

Si @ est une autre relevée de 7, alors ¢ = ¢ + a et ainsi

P(b) = pla) = p(b) - p(a).

L’enroulement d’un lacet compte le nombre de tours (avec orientation)
que fait la tangente a la courbe quand on parcourt tout le lacet.
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Enroul(Z, f) = 2

Nombre d’enroulement d’un lacet.

Théoréme 4.5.5 (Gauss-Bonnet pour les courbes) Soit (I, f) un lacet C?, avec
I =[a,p]. Alors on a lidentité

B
j k(t)|f'(£)|dt = 2eEnroul(I, f).

Preuve. On a tout simplement

B B
["xonr o= [ oo =p(p)- pla) = 2nnsoult, )

a a

et c’est fini. O

Cette formule remarquable montre que pour les lacets, l'intégrale de la
courbure donne 27t fois le nombre d’enroulement. Ce qui est non-trivial,
c’est que le résultat ne dépend au final que du nombre d’enroulement et
pas des propriétés métriques de la courbe (longueur et courbure). Quand on
I’applique par exemple a 'ellipse, on obtient

27
J ab dt =27,
o a2sin®(t)+ b2 cos?(t)

et ceci quel que soit a,b > 0. Exercice : montrer cette identité directement.
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Chapitre 5

Courbes et surfaces dans R>

5.1 Courbes gauches

Dans ce paragraphe, on va étendre 1’étude métrique des arcs paramétrés
au cas de la dimension 3. Les arcs paramétrés en dimension 3 sont appelés
historiquement des "courbes gauches”. On suppose dans tout ce qui suit que
(I, f) est un arc paramétré C3, avec f : I — R, birégulier i.e. pour tout t € I,
(f'(t), f”(t)) sont linéairement indépendants.

Sim = f(t), le plan O,, := f(t)+ Rf’(t) + Rf”(t) ne dépend pas du pa-
ramétrage (le vérifier en exercice) et est appelé plan osculateur a la courbe
(I, f) au point m.

On rappelle que 'on a posé 7(t) = ”}(:E:;”, qui est le vecteur tangent unitaire

a la courbe.

5.1.1 Courbure dans R>

Définition 5.1.1 Soit (I, f) un arc paramétré comme ci dessus. On suppose
qu’il est paramétré par sa longueur d’arc. Alors pour tout t € I, f”(t) et f'(t)
sont orthogonauz et on pose

¢ _ T
K@) ="l v(t)= 70O
de sorte que f”(t) = K(t)v(t). Le scalaire K(t) > 0 est appelé courbure au
point f(t).

Comme on a pour tout t € I, ||f’(t)||> = 1 (c’est 'hypothese de paramétrisa-
tion lLa.), en dérivant on a directement

TP 0IR) = 0= 20710, £ (1),
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et donc 7(t),v(t) sont orthogonaux. Attention, contrairement au cas des
courbes planes, le plan osculateur O,, n’admet pas d’orientation canonique,
c’est pour quoi on ne peut définir une notion de courbure algébrique (la
notion de vecteur directement orthogonal n’a pas de sens en dimension 3).

La définition de courbure ne dépend pas du choix de la l.a. paramétrisa-
tion, comme pour les courbes planes. Comment calcule t-on la courbure sans
expliciter de l.a. paramétrisation ? C’est le méme calcul qu’en dimension 2.

Si g=f o0 avec (I, f) une La. paramétrisation et 6 : ] — I un difféomor-
phisme (au moins C?), on a alors en dérivant deux fois :

g"(t) = (0"())*K(O(1)v(6(1)) + 0" (1)T(6(1)), ¢'t)=6'(1)T(h).
En faisant le produit vectoriel ¢’t) A g”’(t), on a donc (car t(t) A T/(t) =0),
gAg =K.(0)VTAY,
et en combinant ¢a avec ||g’t)|| =10’], on obtient la formule suivante.

Proposition 5.1.2 Soit (I,y) un arc paramétré comme ci dessus, pas néces-
satrement paramétré par sa longueur d’arc. On a pour tout t € I,

@Ayl
K=" 0F

5.1.2 Torsion dans R>

Soit (I, f) un arc paramétré, birégulier, de classe C2. On définit le vecteur

p(t) = (t) Av(t),

de sorte que (t(t), v(t), 3(t)) soit un repere direct de R>. Si (I, f) est la.
paramétrisé, ce repere est orthonormé direct (voir définitions et propriétés
du produit vectoriel). On Iappelle triedre de Frenet au point f(t).

En dérivant I'expression ||3(#)||> = 1 on obtient pour tout t € I, {'(t), B(t)) =
0. En dérivant I'expression (f(t), 7(t)) = 0 on obtient pour tout t €I,

(B'(1),T(t)y ==(B(1), T'(t)) = =K(t){B(t), v(t)) = 0.
Par conséquent, 5'(t) et v(t) sont colinéaires.

Définition 5.1.3 Soit (I, f) un arc paramétré l.a., birégulier, de classe C3. La
torsion T(t) est l'unique réel tel que

p't)=T(t)v(t).
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En dérivant les identités ||v(¢)||* = 1 et {v(t), T(t)) = (v(t), B(t)) = 0 on obtient
aussi

V()= =K(t)T(t) = T(£)B(t).

En récapitulant, on a les formules de Frenet dans le triedre direct (7,v,f3) :

T = K.v
v/ = -K.t -Tp .
g = T.v

Arrétons nous un instant sur la signification géométrique de cette quantité
"torsion”. Si on a pour tout t € I, T(t) = 0 alors f'(t) = 0 i.e. le vecteur
B(t) = B est constant. De plus on a donc pour tout t €1,

S8 = (1), B) = (x(2),B) =0,

ce qui montre que pour tout t € I, (f(t),B) = Cte. L’'image de I'arc est donc
incluse dans un plan affine : la courbe est plane. La torsion mesure donc le
défaut de planéité de la courbe gauche.

Il nous faut expliciter des formules pour calculer la torsion quand I’arc
n’est pas l.a. paramétrisé.

Proposition 5.1.4 Soit (I,g) un arc birégulier de classe C3. On a pour tout

tel,
det(g'(1),&"(1), 8" (1))
g’ () A g”(MIIF

Preuve. Comme d’habitude, on écrit ¢ = fo0 avec 0 : | — I un C3-difféomorphisme,
et f un arc paramétrisé par la longueur d’arc. On note toujours (7,v,f3) le
triedre de Frenet associé a (I, f). Par les formules de Frenet, on a

fo= r

f7 = Kv
f” = Kv+Kv' =K'v-K?t- KT/s

T(t) = -

Par conséquent,

det f f// f/// det T KV K VY - K2T KTﬁ) —Kszet(T;V;ﬁ)l
—
=1

d’ou

det(f,,f”,f”,) _ _det(f’,f”,f//,)
K2 IF7AFTE
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Dans le cas général, on écrit

g/ — Q/f/ ,
g// — 9//](/_'_(6/) f// ,
g/// — 6///f/+29//6/f//+(9/>3f///
et en utilisant les propriétés habituelles du déterminant on a
det(g',g","") = (0 detlf", £, ") = ~(0' KT,
et comme on a ||g’||® = (0”)° ainsi que
2o g AgIIP
lIg’ll°

’

on obtient la formule générale. O

Un exemple : Phélice elliptique. On considére I'arc paramétré y : R — R3
avec

y(t) = (acos(t),bsin(t), kt),

<

ouabk>0.

Hélice elliptique dans R>.

En dérivant directement, on a

Iy (1) A" (1) = \/(ab)2 +k2(a?cos?(t)+ b2sin’(t)),
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ce qui donne

V(ab)? + k(a2 cos?(1) + b sin(1))

(a?sin?(t) + b2 cos?(t) + k2)3/2

K(t) =

On a aussi

| —asin(t) —acos(t) asin(t)
T(t):—((ab)z+k2(a2cosz(t)+bzsinz(t))) beos(t) —bsin(t) —bcos(t) |,
k 0 0

en développant le déterminant par rapport a la derniere ligne on tombe sur

kab
(ab)? + k2(a? cos2(t) + b2 sin?(t))

T(r) = -

Dans le cas particulier des hélices circulaires ot a = b, on a

a k
- T(f) =,
a?+ k2 () a? +k?

K{(t)

c’est une courbe gauche a courbure et torsion constante.

On peut montrer, comme pour les courbes planes, en utilisant la théorie
des équations différentielles ordinaires (linéaires), que courbure et torsion
déterminent complétement les courbes gauches & isométrie affine de R> pres.
Voir programme de L3.

5.2 Introduction aux surfaces

5.2.1 Rudiments de calcul différentiel en deux variables.

Si p € R?, et r> 0, on notera
B(p,r)={meR* : [lm-p|<r},

appelée boule ouverte centrée en p et de rayon r. Un sous ensemble non-vide
U c R? est dit ouvert ssi il est un voisinage de tout ses points : pour tout
p e U, il existe € > 0 tel que B(p,e) C U.

Définition 5.2.1 Soit U un ouvert de R? et f : U — R une fonction. Elle est
dite continue ssi pour tout py € U, pour tout € > 0, il existe 1> 0 tel que
pour tout x € U tel que ||x — poll <1, |f(x) = f(po)l < €. Autrement dit, se
fizant € >0, il existe 1 >0 tel que f(B(p,n)) C B(f(p),€).
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La notion de continuité pour les fonctions de plusieurs variables est plus
subtile qu’en dimension 1. Il n’est pas vrai que si x = f(x,7) et v — f(x,7)
sont continues alors f 'est!

Définition 5.2.2 (Classe C'). Soit U un ouvert de R*, et f : U — R une
fonction. On dit que f admet en p = (xo,99) € U des dérivées partielles ssi

8f . fxo+hyo)=f(xov0)  If . flxo,p0+h)—f(x0,00)
8~c }]1_13’(1) n et Q_y(p) = lim

h—0 h

existent. Si les dérivées partielles de f existent en tout point de U et sont
continues, on dit que f est C'. On peut montrer qu’elle est alors automati-
quement continue.

Sif est C!, ont dit que f admet des dérivées partielles secondes ssi les limites
suivantes existent :

9 E)
82—f( ) :=lim g{(X0+h Yo) - 8f(x0’y0 82f( lim ;:(Xo’yoJrh) i(xo;}/o)
ox? p): h—0 h ’ 3}22 p _h—>0 h ’
9 el
2 )= lim 700+ hyo)- J;(XO'%) OL (p) = lim L xo, 30+ 1) = L (xo,00)
9x3y h—0 h " Iydx T o0 h .

Définition 5.2.3 (Classe C?). Soit U un ouvert de R*, et f : U — R une
fonction de classe C'. On dit que f est C? si les 4 dérivées partielles

’f  O*f O°f I*f

Ixdy’ dyox’ Idx?’ Jy?

existent en tout point de U et sont continues.

Proposition 5.2.4 (Lemme de Schwarz) Si f : U — R est de classe C? alors
on en tout point p € U,

f o
9xdy (p) = 8y8x(p)'

Preuve. Admis, preuve assez technique, voir cours de calcul différentiel. O

Par récurrence, on peut ainsi définir les dérivées partielles d’ordre supé-

rieur
akf B ) 8k—1f
0x10%5...0x, ~ Oxy \Oxy...0x; |

ou x; € {x,p}.
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Définition 5.2.5 (Classe C*). Une fonction f : U — R est dite de classe CF
si toutes les dérivées partielles existent et sont continues. On peut montrer
que ordre de dérivation ne compte pas pour les dérivées croisées.

Sif =(fi,..., fu) : U = R" est une fonction a valeurs vectorielles, on dit
quelle est de classe C ssi toutes les fonctions coordonnées fi, ..., f, sont de
classe Ck.

Définition 5.2.6 Soit U C IR? un ouvert, et f = (fi, f») : U — R? une applica-
tion de classe C'. On appelle matrice jacobienne au point p € U la matrice

1% 1%
e a0 a—@(p)
Dof =1 o6,y o |
g(P) a—y(P)
L’application linéaire associée est aussi notée (par abus d’écriture)
D,f :R* > R?
elle est appelée "différentielle” de f au point p.

Si une fonction est de classe C!, la différentielle donne une approximation
linéaire d’une fonction au premier ordre, autrement dit un développement
limité a 'ordre 1 d’une fonction de deux variables.

Proposition 5.2.7 Soit f : U — R? de classe C', et p € U. Alors D,f: R? —

R? est l'unique application linéaire telle que Uon ait pour tout h € R? avec
[|h]| assez petit,

flp+h)=f(p)+Dyf(h)+o(llAl)-

Preuve. Ca n’est pas évident, en particulier il faut utiliser la continuité des
dérivées partielles, voir cours de calcul diff. O

Proposition 5.2.8 Soient f : U — R? et g:V - R? deuz applications de
classe C! telles que f(U)C V. Alors go f : U — R? est aussi C', et on a la
relation matricielle

Dy(go f)=(Dsp&)(Dpf)

ce qui composante par composante s’écrit pouri,j € {1,2}, (régle de la chaine) :

d(gof); Ig dfi Ig; f
Tox g(f(ﬁ))a—xj(P) + g—y(f(P))g—xj(P)-

Preuve. Ca découle assez directement de la proposition précédente en com-
posant les développements limités. O
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Définition 5.2.9 Soit U,V deux ouverts de R?. Une bijection f: U — V de
classe CK est dit étre un Ck-difféomorphisme ssi f~1:V — U est aussi de
classe Ck.

Remarque. Si f : U — V est un C!l-difféomorphisme, alors comme
ftof=1dy,
la proposition précédente montre que D, f est un isomorphisme linéaire et

que Df(p)f_l = (Dpf)_l~

5.2.2 Surfaces paramétrées, exemples

Définition 5.2.10 Une surface paramétrée S = (U, f) de classe C* dans R>
est la donnée d'un ouvert U C R? et d’une fonction de classe CX, f : U — R>.

Exemples. On considere U =)0, 1[x]0, 47| et f(r,t) = (rcos(t), rsin(t),t), c’est
une surface appelée hélicoide.

Hélicoide dans R3.

On prend U =]—1,+1[x]=1,+1[ et g(x,v) = (x,v,x% +v?).
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Paraboloide dans R3.

C’est un cas particulier de surface ol z est fonction de (x,7) : c’est le graphe
(dans R?) de la fonction z = f(x,v) = x>+ v°.

Considérons maintenant U =)0, 27¢[x]0,10[ et
R(u,v) = ((2+sin(2v))cos(u), (2 +sin(2v))sin(u), v),

ou u €]0,2m[ et v €]0,10[. C’est une surface de révolution obtenue en faisant
tourner le graphe de

f(x)=2+sin(x)

autour de 'axe Oz.

////\\\\

//\

Surface de révolution dans R3.
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On termine cette série d’exemples par le conoide de Plucker : c¢’est la surface
d’équation
Xy
SE B
X247y

avec (x,v) € U =IR?\ {(0,0)}.

Conoide de Plucker.

Définition 5.2.11 Deux surfaces (U, f) et (V,g) de classe C* sont dites Ck-
équivalentes ssi il existe un CK-difféomorphisme 6 : U — V tel que f=g00.
On appelle O un changement de carte.

Définition 5.2.12 Une surface S = (U, f), de classe C!, est dite réguliere
of of

en m = f(p) ssi les deux dérivées partielles =-(p), a—y(p) sont linéairement

indépendantes. Sim = f(p) est un point réqulier, l’espace tangent a S = (U, f)
en m est le sous-espace vectoriel de R® (un plan)

1s =R )+ R5L ()= Vect| L), 5L 00 = ),
Remarques. L’espace affine tangent a la surface est T,,S := f(p)+T1,,,S. Tout
élément de T,,S est appelé vecteur tangent. Les notion de point régulier
et de plan tangent sont invariants par C!-équivalence des surfaces (ou par
changement de carte). En effet, si f = go0 avec 6 un C!-difféomorphisme,
alors on a

Dpf = (DG(p)g) o (DPQ),

et comme D, 0 est un isomorphisme de R? — IR?, on a bien
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5.2.3 La premiere forme fondamentale

Soit S = (U, f) une surface et m = f(p) un point régulier. La premiere
forme fondamentale I,,, est un produit scalaire canonique sur ’espace tangent
T,,S qui est définit comme la restriction du produit scalaire usuel (., . ) de
R3 & T,,S.

Définition 5.2.13 Pour tout vecteurs tangents X = xl%(p) + X, g’; (p) € T,,S

2N AN

et Y =1 p)+;12a p)€T,S, on pose

o 1wl Ghip) 5ip) (yl)
e Ao dey Lol )

Il s’agit bien d’un produit scalaire sur T,,S, puisque c’est la restriction du
produit scalaire de R3 & T,,S. La premicre forme fondamentale encode les
propriétés métriques de la surface. Elle ne dépend pas du changement de

carte, mais son expression dans la base % = (%(p), %(p)) en dépend!

Longueur des courbes tracées sur S. Soit S = (U, f) une surface réguliere.
Soit I C R un intervalle fermé borné et v = (y,7,) : I — U un arc C!, alors

foy:I >R
est une courbe gauche tracée sur S. On a de plus

d d
Forn=roZe+ 05

Sa longueur est donc

forl) fn foy) ||dt—f||D )t
=j[\/If(y(f))((foy)’(t),(f07/)’(t))dt.

On note traditionnellement

of
5:P)

of

E=| G:“a—y@)

de sorte que



I,n(X, X) = Ex? + 2Fx;x, + Gx3,

on % = (g—i(p),g—g(p)), et X = xl%(p)+x2‘3—/;(p). L’expression de la longueur
est maintenant

€ oy = | JEGiR+2Fyiys+ GOy

Exemple : courbes tracées sur la sphére. Soit f : R? — R® avec
£(6,9) = (cos(6) sin(¢), sin(6) sin(g), cos(¢)).
C’est une paramétrisation de la sphere. Ce paramétrage est régulier pour
@ #0 mod 7.

On va calculer la longueur d'un paralléle correspondant a la courbe y(t) =
(t, ), o ¢ €]0,+7[ est fixé (@ =0 et ¢ = 7 correspondent aux poles), et
t €[0,2m].

Parallele (bleu) et méridien (rouge) sur la sphere.

On a par calcul direct

of [ —sin(0)sin(¢)

50" cos(0)sin(¢p)

0

sin(0)cos(¢p)
~sin(g)

"0

f [cos(@)cos( )

Donc E = sinz(go), G =1 et F = 0. La premiere forme fondamentale s’exprime
donc dans ce systeme de coordonnées comme

L.(X,X)= sinz((p)xf + x%.
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La longueur cherchée est donc

27 27
J \/E(y{)2+2Fy{y§+G(7/§)2dt:J \/sin?(@)dt = 27t sin(g).
0 0

Que dire dans le cas d’'un méridien? Dans ce cas la courbe est y(t) = (0,t)
avec O fixé et t € [0, 7t]. La longueur est alors

T TC
J \/EW{)Z +2Fy 1y, +G(ys)2dt = J dt = 7.
0 0

5.2.4 Deuxiéeme forme fondamentale, courbure

Soit S = (U, f) une surface réguliere C>. Au point m = f(p), on peut
définir un vecteur unitaire normal directement orthogonal au plan tangent

T,,S en posant

L)ngep)

1% 0 ’
I15£(p) A S P
On définit une application C', appelée application de Gauss,

N:U—)Sz,

N(p):=

ot S?:={x e R> : |lx]| = 1) est la sphere unité de R?>. On remarquera
que l'on pourrait aussi choisir —N a la place de N : on fait ainsi un choix
d’orientation de la surface. Par analogie avec le cas des courbes o1 on a vu que
la courbure pouvait s’interpréter comme variation de ’angle de la normale
(ou de la tangente), on aimerait définir une notion de courbure des surfaces
qui mesure la variation de la normale unitaire au plan tangent quand le point
p bouge. C’est le sens de ce paragraphe.

Proposition 5.2.14 On a pour tout p € U, %—I;](p),a—N(p) € T,,S. Autrement

Iy
dit,
IM(D,N) C T,,,S.

Preuve. Comme on a pour tout p € U, |[N(p)||*> = 1, en calculant les deux

dérivées partielles on a

2 (INIP) = 22 (p), N )y = 0

et
J oON
75 (INIIP) = 25PN () =0,

Ainsi IM(D,N) = Vect{Z¥(p), %—Z;](p)} C N(p)* = T,,S, clest fini. O
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Définition 5.2.15 Soit S = (U, f) une surface C?, réguliére. Soit m = f(p)
avec p € U. On définit l'endomorphisme de Weingarten W, : T,,S — T,,S
par

Wn(X) = =DpN (D, f) 7' X).

Cette définition a bien un sens : en un point régulier, D, f : R?> — T,,S est
un isomorphisme, on peut donc prendre son inverse (D, f 7l T,S - R?,

que l'on compose avec =D, N : R? — T,,S. On peut montrer (exercice) que
I’endomorphisme de Weingarten ne dépend pas du choix du paramétrage.
Par contre il dépend du choix d’orientation que l'on a fait avec ’application
de Gauss : il est changé alors en son opposé. On a par définition

of W ON . 9f o ON

Wm(a(P)) = _WQD)' m(8_y(p)) = _5’_y(p)'

Définition 5.2.16 La deuzieme forme fondamentale, notée 11,,(X,Y) est une
forme bilinéaire sur T,,S définie par
I (X, Y) = Ly (Wi (X), V) = (Wi (X), Y).

Théoreme 5.2.17 L’endomorphisme de Weingarten W,, est auto-adjoint pour
le produit scalaire 1, i.e. 11,, est bilinéaire symétrique.

Preuve. On va tout simplement calculer la matrice Mat(11,,) et montrer
qu’elle est symétrique, ce sera fini. On a par définition

(2L, %) 11,9, %)

Mat (I1,,) = ox’ ox ox’ dy
(55 (55 |
On a en outre
of of,_ (9N 9f of of,_ 9N of
(G 3y) = =Gy 3y WGy 30 = =55 3¢

Comme on a pour tout p € U, (N(p), %(p)) =0, en dérivant par rapport la

premiere variable on a donc

(<N of ) <aN af 02 f

50 Vg
donc N of 52
<8 8y> (N 8x5’y>'
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En dérivant par rapport a la deuxieme variable l'identité (N (p), %(p)) =0,

on obtient de méme :
_ 8_N (9_f> (N azf
dy’ ox

2

Le lemme de Schwarz sur 1’égalité des dérivées croisées montre donc que
af af) (9f af)_< 92f>
8;) dx "ox oy’ Y dyox”
et la matrice de II,, est bien symétrique. Un calcul analogue montre que 1'on
a aussi of c9f of af 82f
I, (=, = N, II,,(=,=)=(N,=—),

et la preuve est finie. O
La matrice de la deuxiéme forme fondamentale est souvent notée

2
8f>

Mat%;(llm):( ]\[/lI ]1\21 );
avec 2 ) )
L=(N, f)M <Naf>P <Naf>

Définition 5.2.18 L’endomorphisme de Weingarten est donc diagonalisable
dans une base 1,,-orthonormée.

1. Les valeurs propres Ay et A, sont appelées courbures principales de S
au point m.

2. Le produit K,,, := A A, = det(W,,) est appelé courbure de Gauss au
point m.

3. La demi-somme %(/\1 +A,) = %Tr(Wm) est appelée courbure moyenne
en m.

Le signe des valeurs propres dépend du choix d’orientation de S. Par contre
la courbure de Gauss n’en dépend pas. Il est important d’avoir en téte que

la matrice de W,, dans la base % = (%(p), %(p)) n’est pas en général

symétrique car la base % n’est pas toujours I,,-orthogonale! Pour calculer
la courbure de Gauss, on utilise le fait suivant, bien pratique pour faire les
calculs.
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Proposition 5.2.19 On a Mat4(I1,,) = Mat (1, )Mat z(W,,), ainsi

Pf\yn O 3
detMatg(1L,)  LP-M>  (NoGaXNL55) = (N, 5))°

m = = =
det(Matg(1,,)) EG-F?2 ||%||2||§_£”2 _ ((3_{,% )2

Preuve. Si X,Y € T,,S, notés comme vecteurs colonnes dans la base %, on a
IL,,(X,Y) ="XMat 5 (11,,)Y =1,,(X, W,,(Y)) = 'XMat 5(1,,)Mat z(W,,) Y.

La preuve est finie par identification des matrices. O

En remplacant N par son expression en termes de produit vectoriel, on
peut donner une formule pour K,, ne faisant intervenir que f et ses dérivées,
qui fait apparaitre des produits mixtes (déterminants). Voir TD.

Exemple 1 : la selle de cheval. Soit U = R? et f(x,v) = (x,v,x> —p?). Cest
une surface en forme de selle de cheval, on va calculer la courbure en (0, 0).
On a

af af

5(3@})) = (1;01 ZX), 8_y(x'y) = (0,1;—2}/),

puis

of _
a—(w) A a—y(w) =(-2x,2y,1),

de sorte que

-2x,27,1
N(x,v) = ( p1) .
V1 +4x2 +4y?
Ainsi N N
5(0,0) = (—2, 0, 0) a—y(O, O) = (O, 2, O)
Donc on a

% 0 % 0
Wio,0) (a—];(0,0)) =(2,0,0) = 2a—£(o,0), Wio,0) (6—5(0,0)) = (0,-2,0) = —28—;[(0,0).

L’endomorphisme de Weingarten W o) est diagonal dans la base 2, les
valeurs propres sont 2 et —2, la courbure de Gauss vaut K = —4.
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Selle de cheval et courbures principales en (0,0, 0).

Exemple 2 : la sphere. On revient sur le paramétrage de la sphere de rayon
R, donné par f(6,¢) = R(cos(0)sin(¢),sin(0)sin(¢p),cos(¢)) avec (0, ¢) €
Rx]0, 7t[. La géométrie de la sphere fait que 'on peut prendre

N(60, @) = (cos(0)sin(¢),sin(O)sin(¢), cos(¢)).

On a fait un choix d’orientation qui simplifie les calculs. On a aussi

of —sin(0)sin(¢) of cos(0)cos(p)
59 = R[ cos(0)sin(p) |, 30 R[ sin(0)cos(¢)
0 0 ® —sin(¢p)
Puis
52 —cos(0)sin(¢) 52 —cos(6)cos(¢)
8_9J; =R| —sin(0)sin(¢) |, 8_]; =R| —sin(O)cos(p) |,
0 ' —cos(¢)
9 f —sin(60)cos(¢)
——=— =R| cos(O)cos(¢p)
dpdo 0
Ainsi on a
’f P o’ f _
a92,N) —Rsin?(¢), ( 8@2' Y=-R, <868(p'N>_0'
Finalement,
(N, NN, S &pz ~UN
K(6,p) = =—.
15N - (3 e R
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On peut voir qu’avec ce choix d’orientation, les deux courbures principales
sont égales a %1, I’endomorphisme de Weingarten est diagonal dans la base
naturelle.

Exemple 3 : la pseudo-sphere. On considere U = R x [R* et

_ [ cos(6) sin(0)
~ \cosh(t)" cosh(t)’

£(0,1)

t —tanh(t)].

On peut vérifier par calcul que S = (U, f) est une surface de révolution,
partout réguliere (en t =0, il y a un cercle singulier), et que la courbure de
Gauss de S est égale en tout point a —1, voir TD.

La pseudo-sphere.

Remarques. Il est facile de voir que si ’application de Weingarten est partout
nulle, alors 'application de Gauss est constante. En intégrant on obtient que
la surface est incluse dans un plan affine de R?, elle est plate. En revanche
si la courbure de Gauss K,,, est partout nulle, rien ne dit que la surface doit
étre plate. Considérons par exemple le cylindre (U, f) avec U = R? et

f(u,v) = (cos(u),sin(u),v).

Un calcul simple montre que

—sin(u) 0 cos(u)
a_f =| cos(u) |, 8—f =101, N(u,v) =| sin(u)
814 0 av 1 0
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En dérivant une nouvelle fois, on a

2, d
wu2y=-2 =

of | _
“ou = Taw Mnla) =g

ainsi on a
-1 0
Mat%(Wm):( 0 0 ), K,, =0.

Le cylindre est a courbure de Gauss nulle!

Le cylindre.

Les surfaces a courbure de Gauss nulle sont loin d’étre plates, on dit qu’elles
sont développables : on peut les construire en courbant une bande de papier
dans 'espace. C’est le cas par exemple du ruban de Moebius.

il
ZI\S

Ruban de Moebius.

Pour conclure. Notre définition de la courbure des surfaces passe par ’ap-
plication de Gauss et la structure euclidienne naturelle de IR?, c¢’est une ap-
proche extrinseque. Gauss a montré qu’en fait la courbure est completement
déterminée par la premiere forme fondamentale, elle est intrinseque. C’est le
"Theorema Egregium” de Gauss (1827).
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Annexe A

Intégration a valeur complexe et
relevement C'.

Soit I un intervalle de R et f : I — C une fonction. On a vu que f est
de classe C* ssi ses fonctions coordonnées Re(f) et Im(f) sont elle-mémes de
classe C¥. On a de plus

FOE) = Re(£)W () +i(Im(f)F(t).

Si f,g: I — C sont dérivables, il est facile de voir (le vérifier) que la
formule de dérivation des produits s’étend au cas compleze i.e. on a pour
tout t €1,

(fg)(t)=f'(t)g(t)+ f(1)g'(t).
Si ¢ : I — IR est une fonction dérivable alors ¢'? Pest aussi et on a
() (1) = i/ (1)

En effet, on a )
PV = cos(e(t)) + i sin(¢(t)),

et donc en dérivant partie réelle et partie imaginaire on a

(ei(p),(l‘) = —sin(¢@(1))@’(t) +icos(p(t))@’(t) = i@’ (1) P,

Sil=[ab]aveca<bet f:I— C est continue, alors on pose

b b b
J f(t)dt::f Re(f(t))dt-i—ij Im(f(t))dt.
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Il est direct de voir que l'intégrale ainsi définie est C-linéaire : pour tout
f,g:1 — C continues et A € C, on a

b b b
f(f(t)ﬂg(t))dt:f f(t)dt+AJ g(t)dt.

Tout comme pour les fonctions a valeur réelles, 'intégrale F(x) d’une fonction
continue f, vue comme fonction de la borne supérieure est dérivable i.e. pour
tout x €1,

P = | ftoar

définit une fonction C! sur I et on a pour tout x € I, F’(x) = f(x). La preuve
découle directement du cas réel appliqué a Re(f) et Im(f). On a également
la version complexe de I'inégalité triangulaire.

Proposition A.0.1 Soit f : I — C continue. On a alors

Lbfu)dt < Lb|f<t>|dt.

Preuve. C’est moins évident. On va montrer d’abord le lemme suivant.

Lemme A.0.2 Pour tout zy € C, il existe une forme R-linéaire Ly : C — R
telle que Lo(zq) = |zo| et pour tout z € C,

Lo(Z) < |Z|

Preuve du lemme. On peut bien sur supposer zy # 0, sinon c’est trivial, on
prend Ly = 0 qui convient. Posons alors

Lo(z) = Re(z—oz).
|20l
On a bien Ly(zg) = Re(|zg]) = |zgl, et pour tout z € C,
2y 2y
L (z):Re(—z)s —z| =z|.
" Bl e

Le lemme est prouvé. O
On rappelle (par exemple par le thm de Riesz) que toute forme R-linéaire
L:C — IR s’écrit sous la forme

L(z) = Re(wz),
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ou w € C. Il est alors facile de voir que pour toute forme R-linéaire L on a

b b
LU f(t)dt):f L(f(t))dt.

. b
En appliquant le lemme avec z; = L f(t)dt on a donc

b b b b
j f(1)at =L0(J f(t)dt)=J Lo<f<t)>dtsf F(oldt,

la proposition est prouvée. O

On va pouvoir utiliser I'intégration complexe pour démontrer le théoreme
suivant.

Théoréme A.0.3 (Relévement C!). Soit I un intervalle de R et y : I — S!
une application C'. Alors il existe @:I >R, de classe C! tel que pour tout
tel,

y(6)= e,

On dit que @ est une relevée de y. Si de plus @ a les mémes propriétés, alors
il existe une constante a € 2mZ tel que pour tout t €1, @(t) = p(t)+a.

Preuve. Soit a € I. Quitte a multiplier y par un nombre complexe de module
1, on peut supposr que y(a) = 1. Posons alors pour tout t € I,

(MY
o(t) ._L l,y(x)dx.

Comme y est C!, intégrale est bien définie et ¢ est C! de dérivée

Comme on a pour tout t €1, |y(z‘)|2 =1, en dérivant on trouve

Y ()y(t)+y(t)y'(t)=0,

et comme y(t) = (y(t))!

on en déduit que

y'(t)
y(1)

eilR.
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Ainsi ¢’(t) € R et la fonction ¢ définie est bien a valeurs réelles. Considérons
maintenant la fonction F définie sur I par

F(t) := p(t)e ¢,
Alors F est C! et on a pour tout t €1,
F'(t) =y (e iy (t)g'(t)e” ) = 0.

Ce qui signifie que F est constante, mais comme F(a) = )/(a)e_i‘f’(“) =1,o0na
bien obtenu que pour tout t €I, F(t)=1 i.e.

y(t) — ei(p(t)'

Supposons maintenant qu’on dispose d'une autre relevée de y notée ¢. Comme

on a pour tout f €1,

on en déduit que e/(P()=*() = 1 donc pour tout t €I on a

Q(t)—p(t) € 2nZ.

Comme @ — ¢ est continue et I est un intervalle, le théoreme des valeurs
intermédiaires dit que ¢ — ¢ doit étre constante. O

Remarques. Le théoreme du relevement est valable si on suppose seule-
ment y: I — S I continue, mais c’est plus dur...Le Lemme A.0.2 est une
forme élémentaire du théoreme de Hahn-Banach, voir cours de L3 d’analyse
fonctionnelle.
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